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Abstract. One promising approach to verifying heap-manipulatinggprms is
based oruser-definednductive predicates in separation logic. This approach ca
describe data structures with complex invariants and soeasioning based on
unfold/fold. However, an important component towards nexeressive program
verification is the use demmashat can soundly relate predicates beyond their
original definitions. This paper outlines a newvtomaticmechanism for proving
and applyinguser-specified lemmasmder separation logic.
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1 Introduction

Inductive predicates based on separation logic [22, 1&r&fh important approach to
the specification of data structures that make extensive@lgeinters and require so-
phisticated invariants. The technique brings the convergs of algebraic data struc-
tures to the imperative settings, including precise yeps&nand intuitive data structure
definitions. It also enables effective and automatic reagplbased on the folding and
unfolding of predicate definitions, and can verify programsr a wide range of inter-
esting data structures. However, there are some crucidgtions in existing automated
verification systems that rely solely on the unfold/fold ima&cism. Firstly, it constrains
traversals of a data structure to links explicitly allowsgthe recursively defined predi-
cates. These are typically top-down unravelling of the datactures, in that a program
first accesses the “root” of a data structure, then any ohitsm{dangling) fields that
can be shown pointing to other objects or data structuresirisily, the unfold/fold rea-
soner cannot discover auxiliary relations between preeléchat may require inductive
proofs.

In this work, we propose a new mechanism that aims to addresgorementioned
shortcomings. The main idea is to explicitly state any aamjlrelations between pred-
icate definitions, so that a deductive mechanism based ahdffafid can prove and use
them. This information is presented to the system in the fofi@emmasthat can be
viewed as auxiliary relations for the predicates, apartftbeir definitions. These aux-
iliary properties can capture different linkage pattemshie data structure. They can
also reveal complex relations between distinct but relptedicates. Currently, user ef-
fort is required in stating the lemmas. Nevertheless, otated, each of these lemmas
is automaticallyprovenonce andappliedmany times, without further user assistance.

As the need for lemmas in theorem proving is well-known, antgbution is not
on the lemmas per se, but rather on the mechanisms to provepahdthem for auto-
mated verification via separation logic. These mechanisesan-trivial, especially for



handling more complex lemmas. We shall show that our praesdisound, terminates
and is directed. Our specific contributions are:

— Alternative Traversals. Lemmas provide different ways to reason about induc-
tive predicates, which allowalternative traversalof data structures that are not
captured by the original predicate definitions.

— Complex Subsumption. Predicates are often related to one another in complex
ways (possibly involving multiple predicates from a heagtestwith side condi-
tions) that may require inductive proofs. Lemmas providegplicit way to cap-

ture suchcomplex subsumptiotgetween heap states for use through the deductive

mechanism based on unfold/fold reasoning.
— Lemma Proving.To prove lemmas automatically, we use the same deductive-mec
anism as our entailment checker, after an initial unfoldhebsepredicate in the
antecedent. The lemma itself can be applied during provihgn needed, which
corresponds to a cyclic proof by infinite descent [5, 4]. Oposal can be viewed
as a special case of [4] since it is based on a fragment of aigatogic. However,
we have succeeded in providing an automated procedure étic @roving under
this fragmentwhich is highly suited for program verificaticia forward reasoning.
— Lemma Application. Our program verifier can also apply the lemmas describing
auxiliary relationships between predicates by automifyicaercing one predicate
to another, as needed. Coercion provides suitable tranaf@ns on formulas that
facilitate proof searchto enhance the capability of automated verification. Our co-
ercion mechanism is goal-directed and terminates.

2 Examples

We now illustrate the usefulness of lemmas in program vetific with an example
which shows the ability of lemmas to provide alternativealdiihgs and foldings of
predicates, thereby providing different ways to reveahpmto facts not apparent in
the original definitions of predicates. Let us consider tiowing class and predicate
definitions.

classnode { int val; node next}
classnode2 { int val; node2 prev; node2 next}
root::11(s) = root=null A s=0 V Jr-root:node(.,r) *r:11l(s—1) inv s>0;

root::dsegN(s,p,n,t) = root=n A p=t A s=0 V
Jr-root::node2(_, p,r) * r::dsegN(s—1,root,n, t) inv s>0;

root::dcl(s) = root=null A s=0 V
Jry, ro-rootiinode2(_,ry,Ty) * ro::dsegN(s—1, root, root, ry) inv s>0;

Predicatell defines a linear-linked list of length. PredicatedsegN, adopted from
[11], defines a doubly-linked list segment. Parameteenotes its length, whilgis the



danglingprev field of the first element, is the danglinghext field of the last element
which is also pointed to by. Thedcl predicate defines a circular list by making the
dangling pointer of thelsegN predicate point to the same distinguishegbt node,
thereby making a cycle.

Details of our specification language is given in Sec 3. Briefach predicate de-
scribes a data structure, which is a collection of objecishable from a base pointer
denoted byr oot in the predicate definitiorr. oot also serves as an implicit argu-
ment of the predicate. The expression after keyword captures pure, i.e. heap-
independentformula that always holds for the given predicate. Fornpula(v*) de-
notes either a points-to factdfis a class name, or an instance of predieatéth p, v*
as its arguments, whepds the actual argument foroot andv* are arguments for the
explicit parameters.

ThedsegN predicate, by its definition, favors one direction of linkadraversing
the list in a forward manner by following theext field is naturally supported by the
definition with unfold/fold reasoning. However, travergihe list in a backward manner
using theprev field is not as easily done. The problem manifests itselfangkample,
the followingdelete procedure for a circular doubly-linked list. The proceddietetes
the element pointed iy and updates. The precondition requires the circular list to be
non-empty, and the postcondition asserts that the upetatethts to a circular list with
one fewer element.

void delete(ef node2 x)
requires x::dcl(s) A s> 1
ensuresx’::dcl (s—1);

if (x.next ==x) x = null;
else{
/I x::node2(_, ry, 1) * rp:dsegN(s — 1,x,x,r1) As > 2
node tmp = x.prev;
/I x::node2(_, ry,rz) * rp:dsegN(s — 1,x,x,r1) Atmp =11 As > 2
tmp.next = x.next;
/l x::node2(_, r1,ra) * ra::dsegN(s — 2, x,T1,T3) * ri::node2(_, r3, ra)
/I ANtmp=riAs>2
X.next.prev = x.prev;
/I x:node2(_,ri,rs) *ri:node2(,ri,r2) ATo =T1 Ax=T3As=2Atmp =1
/I'V x:node2(_,ri,ra) * ra:node2(_, rs, ra) * ra::dsegN(s — 3,12, Ty, r3)
1/ x ri:node2(., r3,ra) As >3
X =x.next;}}

Fig. 1. Delete from circular list

For exposition purpose, intermediate program states aemgis comments (after
//) in the code, though they are automatically derived frominitel precondition. To
verify the assignment temp.next at line 10, the program verifier requires an explicit
points-to facttmp::node2(_, _, -). This is enforced by the following entailment where



@ is inferred.

x:mode2(_, Ty, Ty) * ro:dsegN(s—1,x,x, 1) A tmp=r3 A s>2
F tmp::node2(_,_, ) x Pp

This proof obligation is challenging for reasoning basedinfolding and folding
of inductive definitions [16], since thisegN predicate does not explicitly state that the
parametett points to an object when the data structure is non-emptyuRately, the
problem can be solved by adopting the following two-way eglg@nce lemma.

root::dsegN(s,p,n,t)As>0 < Jr-root::dsegN(s—1,p, t,r)*t:node(_, r,n) (1)

3 Specification Language

Figure 2 shows the grammar for our specification languagd#sabeen mostly adopted
from [16] except for lemma specifications. Shape predispted is the main specifi-
cation construct that provides data structure descriptiBormulas are compiled to an
internal representation in which arguments for heap foasiare distinct and fresh.
Additional existentially quantified variables are intreed if necessary to obtain this
normal form.

Predicate spred ::= [root::|c(v*) = @ [inv 7]
Formula & ==\ 30" (kAw)
Pure form. w =7y AN¢
Pointer form. v u=wvi=wv2|v=null|vi #v2|vF#null |y Ay
Heap form. Kk = emp | Vic{V") | k1 * ko
Presburger arith. ¢ ==arth| g1 Ad2 | p1 V2| —gp|Tv-¢|Vv-o
arith s=a;=az |as #az |ar <az |ar < az
a =u=k|v|kxalai+az|—a|max(ai,az) | min(ai,as)
Lemma L ==HANGXDB
Complex Lemma L' =:=Yv*-((H+xE)AG — B)
Head H := [root:]c(v™)
ExtraHeap FE =k
Body B =@
Guard G ==m
Xon=— | — | o
k € Integer constants

v,c € ldentifiers

Fig. 2. Grammar for Shape Predicates and Lemmas

Recursive shape predicate definitions need to satisfyinesyatactic restrictions,
namelywell-formedand well-foundedconditions, to ensure soundness and termina-
tion of static reasoning/Vell-formedconditions ensure that shape predicates and for-
mulas do not admit garbage. They thus disallow predicatels asroot::p() = Ix -
root::node(., ) *x:node(_, ) wherex::node(_, ) is garbage as itis inaccessible from



the free variableaMell-foundectonditions disallow oot to be passed as argument to
a recursive predicate invocation. That meao®t either isnul | , dangles, or points
to an object which ensures a decreasing heap with each reepredicate instance.

We now describe a special class of lemniasllowed by our new specification
language. Eacli lemma consists of head H and abody B. The headH is a single
predicate. Theguard G is a pure formula whose variables are solely fréfmwhich
can be omitted if it ixrue. The bodyB is a formula in separation logic. The direction
1 of a lemma constrains its applicability. The lemmas areddigiinto three groups,
namely : ()weakenindemmas using-, (ii) strengthenindemmas using—, and (iii)
equivalencéemmas using-. We expect lemmas to lveell-formedandwell-founded
but allows theroot parameter to reference a predicate. These lemmas havelarsimi
format as user-defined predicates and can therefore beduhlnglthe same unfold/fold
mechanism of our prover, except that it can be goal-directed

However, we are also interested to support lemmas with memergl LHS and with
universally quantified variables in the guard. These monegiex lemmas are captured
by L’ in Fig 2 as a weakening lemma. There is no need to considegragsirening ver-
sion of complex lemma since it can be convertedtdorm by swapping the two sides.
To illustrate the utility of complex lemma, consider a lisgment predicate below:

root::lseg(p,s) = root=p A s=0 V Jr-root:node(.,r) * r:lseg(p,s—1) inv s>0;
One simpleL-form lemma to support list segment breaking and joining is:
root::lseg(p,n) « Ja,b,r - root::lseg(r,a) * r:lseg(p,b) An=a+b A a,b>0

However, this lemma cannot support entailment provingrib@tires the capture of size
properties for broken segments, such as the following:

x::1seg(p,n) An=8 I dr - x::1seg(r, a) * r::1seg(p,b) Aa=2 Ab=6 * Pp

To support the above entailment, we require a more geiéifarm lemma where some
variables in the guard, such asndb, are universally quantified, as follows:

Va,b - (root:lseg(p,n) An=a+b A ab>0 — Jr - root::lseg(r,a) x r::1seg(p, b))

Such lemmas allow universally quantified variables to béaimsated which can
crucially increase the expressive power of our entailmeowgr. They can be provided
for the list segment with length property, but not for thé $isgment with bag of values
property. Furthermore, there are also lemmas with mulppéelicates on the LHS. An
example of this was used in [1] for a decidable fragment ofson logic to safely
break a class of non-touching list segments. (Our thankster®'Hearn for highlight-
ing the importance of complex lemmas to us.)

4 Entailment

Given formulasp; and®,, our entailment prover checksdf; entails®,, that is if in
any heap satisfying, we can find a subheap satisfyitdg. Moreover, we determine
a formula® g, for the residue heap state which captures the frame condfarmally,
our entailment relation is defined as follows:



Definition 4.1 (Entailment) A formula®; entails a formula®, with residuedr, iff
Vs,hl 'S,hl ':Q51 = th,hR'hl = hy *hR/\S,hQ |:¢2As,hR ':QSR

The main features of our entailment prover are that, besidesmining if the above
relation holds, it alsanfers the residual heaypof the entailment, that is a formutag
such thats, hg = @i andderivesthe predicate parameters. These two features are
important for program verification tasks using forward gsed. The relation is formal-
ized using judgment of the form wheredenotes the consumed heap ands the set
of existential variables encountered :

41)1 ""Q/ @2*@3

A sound and terminating proof system for the above entaitmedation is presented
in [16]. That system relies on unfolding and folding of thegticate definitions to com-
pute the subheap @, that matche®, and the residuér. In the current paper, ad-
ditional proof rules that handle user-supplied lemmasl ffeapresented which greatly
enhances our entailment prover. We provide a re-cap on tloédéfiold mechanisms.

We apply arunfoldoperation on a predicate in the antecedent that matchesawith
object in the consequent. For instance, when checking:

x:11{n) An>3 F (Jr - x:mode(_, 1) x rinode(_, y) A y#null) x &

whereéy, is the residue, we unfold the:11(n) heap formula in the antecedent twice to
match two objects in the consequent. This results in theviatg reductions towards a
residual state:

dqi-x:mode(_, q1)*q1::11(n—1)An>3 F (Jr-x::node(_, r)*r::node(_, y)Ay#£null) x &y

q1::11(n—1)An>3 F (qi::node(_, y) A y#null) x &
Jq,-q1::node(_, go)*qa::11(n—2)An>3 I q;::node (., y)Ay#null x &y
q2::11(n—2)An>3Aqo=y F y#null = &y

We apply afold operation when an object in the antecedent is aliased witledi{p
cate in the consequent. An example is:

x::node(1,qi)*qq::node(2, null)«y::node(3,null) F x:11(n)An>1 3y

The fold step may be recursively applied but is guarantetatioinate for well-founded
predicates. Furthermore, the fold operation may introduicdings for free parameters
of the folded predicate. In the above, we obtai2 which may be transferred to the an-
tecedentsinceis free. This allows our folding step to finally deriyenode (3, null) A
n=2 F n>1* & from which we will obtain®; = y::node(3,null) A n=2.

5 Lemma Application

User-supplied lemmas amovedand appliedto support sound proof search by the
entailment prover. Since the proof of a lemma may apply thenea itself inductively,
we first present the proof rules that apply lemmas. Depenadinghether the lemma
is applied to the antecedent or the consequent of the emtiaijraur entailment prover
treats it as an unfolding or folding, respectively.lemmas can be applied to only the
consequent of an entailment; to only the antecedent, ard to both.



5.1 Weakening the Antecedent by Lemma Unfolding

AlemmaH A G <1 B wherexi is — or «» can be seen as an alternative way to unfold
a predicate. Its application is formalized below which stingg the lemma is applied if
we can find a substitutiopthat matche$7 to p;::¢; (vj) and satisfies the guard.

L-LEFT
IsPredc;) pricr (V) * ke A pG
kxpriier (v])

p = match(H,py::ci(vy)) (pB)* k1 Amy by,
prici (Vi) * k1 AT Y (ke Ao) x P

(ko A o) @

where® - m checks if guardr holds under?, andmatchis defined as:

match(py::c{vy), po:c(vg)) « [p1 +— po, v} > V]

For a goal-directed lemma application, we shall only applig tule when there
exists a predicatg,::co(vi) € ko in the consequent that would (subsequently) match
up via aliasing with &,::co(v}) in the RHS of lemmaB wherep, € {p:, vi}.

We now show how a lemma can help verify thelete procedure, in particular
during an assignment to therev field of the tmp object at linel0. As part of the
verification, the following entailment needs to be checkdtkre the antecedent denotes
program state at that program point.

x:node2(_,ry,Ty) x r1::dsegN(rs, _, _,T2) A tmp = 15
Arz=s—1As>1F tmp:node2(_,_, ) *Pp
~» ([L—LEFT])
x:mode2(_, Ty, Ty) * ri::dsegN(ry, , o, ) * To:node2( , _, )
Atmp=TyArs=13—1AT3=5—1As>1F tmp:node2(_, ) *xPp
~ ([ENT-MATCH])
Success

After the above goal-directed lemma application, we caraka match up between
ro:node2(_, _, ) (from the lemma) andmp::node2(_, _, -) (from the consequent), be-
fore successfully proving the entailment.

Our proposal also handles the more complex lemma foih: (H « EAG — B).
We have designed and implemented it as follows:

[L-LEFT-COMPLEX]
IsPredc;) p = match(H, py:ci(v]))
K1 AT I—f/*pl"cl (wr) pE « &y
pB * ([(v =2)*]FpG) % By A my FEPED (160 A o) &
prici(vy) * k1 A Y (ke A o) x P

To support the above proof rule, we provide a new delayeddyiar —7)*|FpG)
that is used to support the instantiationadfwhen the body B is being matched by
our entailment procedure. Oncé have been instantiated, we test the gu@rbefore
its instantiations are added to the antecedent. The usenohdes with universal vari-
ables, where possible, allows stronger proofs to be asktré® what is possible using
corresponding lemmas with existentially quantified vagabln our approach, this is
realised by a novel instantiation mechanism from the delaysrd construct.




5.2 Strengthening the Consequent by Lemma Folding

AlemmaH A G =< B wherex is «— or « provides an alternative way to fold a
predicate. Its application is formalized as follows:

L—RIGHT]
IsPredcz) p = match(H, pa::ca(v3)) k1 Am FpG
(@", k", ") € foldL" (k1 A 71, paiica(vs), pB)
(%, 7€) = Splité,vz}(ﬂ”) D"ATEE (kg Ao ATC) * P
K1 AT (poiica(Vs) * Ko A ) % D

foldL performs folding using a lemma instead of the body of a pegdic

[L—FOLD|
W =Vi—{v*,p}  KATEY, oy pB (@i, ki, Vi m) iy

{p,v

foldL"™ (k A 7, pr:c(v*), pB) = {(Py, ki, IW; - 1)}y

Note that the folding functiofoldL uses a specialized entailment checking proce-
dure. The checker returns a set of quadrupigs <", V, n"), each being the result of a
successful folding against a disjunct of the predicate d&finor the lemma body. The
meaning of each component of a triple is as following:

— @" is the residue (frame) not consumed by the folded disjunct.

— k" is the part of the heap consumed by the folded disjunct. Byhiief, <" * "
equals the heap in the first argumentfold L.

— V is the set of existential variables generated from unfgsliof the predicate def-
inition.

— " is the pure constraint of the folded disjunct. It is used ttaobinformation,
such as bindings to values, for predicate parameters. iitaenation is especially
useful for forward verification.

This use of aset of stategan be generalized to the entire system which results in
entailment proving of the forme, - &; * S that has been implemented in our tool.
Here,S denotes a set of residual heap states that arise from praafstor successful
entailment. Failure of entailment is denoted$y{}, while multiple answers denote
alternative successful outcomes of entailment with thpaetve residual heaps. Proof
search (with the help of lemmas) increases the expressivayr verifier.

5.3 An Example of Entailment with Lemma Capability

An interesting application of lemma involves the list-witil predicate which is de-
fined as follows:

root::11 tail(tx,n) = root:node(_,null) An=1Atx = root
V root:node(_,r) *r::11 tail(tx,n—1) invn>1

The predicate captures a listmbbjects, withtx pointing to the last one. It can be
coerced to a list segment, and vice versa, via the lemma:

root::11_tail(tx,n) < root::lseg(tx,n — 1) * tx:node(_,null) 2



By applying this lemma, our verifier can easily prove thedaiing specification for
the concatenation of two lists with tail pointers:

{x::11 tail(tx,n) * y:1l tail(ty,m)}
tx.next =y;
{x::11_tail(ty,m+n)}

Separation logic semantics requitas:node(_, ) to be present in the program state
in order to safely perform the dereference operationtwiaext. Such an object can
be exposed via an unfolding of the@_tail predicate using the lemma, resulting in the
following program state prior to the assignment:

{x::1seg(tx,n — 1) x tx:node(_,null) x y::11 tail(ty,m)}
which is then updated by the assignment to:

{x:lseg(tx,n — 1) * tx:node(_,y) * y:11l tail(ty,m)}

The weakening on the postcondition is done via an entailmehose proof is
sketched below. This proof is performed automatically bysystem.

(match ty with )

described below

recursive entailment
residue from fold

(FOLD)

tx:node(.,y) * y:11 tail(ty,m) ty::node(_,null)
F tx:lseg(ty,m) F ty:node(_,null)
*{ty:node(_,null)} x{emp}
tx:node(_,y) * y:1l tail(ty,m)
F tx:lseg(ty,m) * ty:node(_,null) % {emp}

(FOLD)

(L—RIGHT)
x::lseg(tx,n — 1) * tx:node(.,y) * y:1l_tail(ty,m)

F x:lseg(ty,m+n — 1) x ty:node(_,null) x {emp}

(L—RIGHT)
x::lseg(tx,n — 1) * tx:node(.,y) * y:11l_tail(ty,m)

F x:11 tail(ty,m+ n) * {emp}

Our entailment prover first converts the list with tail p@intn the consequent to
a list segment and a node. It then breaks the list segmentvimt@nd match the first
segment with the aliased segment in the antecedent. Sudrabgit performs a fold on
atx:lseg(ty,m) predicate which invokes a recursive entailment, as follows

( derive residue)
ty:node(_,null) - emp * {ty::node(_,null)}

(MATCH)
y::lseg(ty,m — 1) * ty:node(_, null)

F y:lseg(ty,m — 1) x {ty:node(_, null)}

(L-LEFT)
y::11 tail(ty,m) F y::lseg(ty,m — 1) x {ty:node(_,null)}

(MATCH)
tx:node(_,y) * y::11 tail(ty,m)

F (3r- tx:node(_,r) * r:lseg(ty,m — 1)) * {ty:node(_,null)}

(FOLD)
tx:node(_,y) * y::11 tail(ty,m)

F tx:lseg(ty,m) * {ty:node(_,null)}



Such applications of lemmas are critical for automatiocddlyiving non-trivial proofs
to support program verification.

5.4 Termination

To prevent non-termination during lemma applications, 8gégn a history to each heap
constrainip::c{v*) wherec is a predicate name. The history is a set of predicate names
which are transitively rewritten tp::c(v*). Lemma application is possible only if it
does not rewrite a predicate to some predicate already ifotheer’s history. Initially

the history is empty. After each predicate application greslicate name in the hedfl

is added to the history of each and every predipatév*) in the bodyp B, in addition to

the history of the matching predicate instapce(v*). Folding and unfolding predicate
instances pass the predicate history on to the predicaires in the body.

Theorem 5.1 (Termination) Entailment proving is terminating, even in the presence
of lemma applications.

Proof Sketch. Termination is guaranteed by the fact that only a finite numebEmma
applications can occur when proving an entailment. Thibésdase since there is a fi-
nite number of lemmas, and each predicate instance masraalstory of predicates
that are rewritten by lemma applications to the current igegd instance. Therefore
lemma applications cannot occur after a finite number ofssiiethe entailment check-
ing process. Termination is then guaranteed by the entatlofescking as in [16].

6 Lemma Proving

Correctness of lemmasaaitomatically provedby our system via the entailment prover.
A weakening lemma is proved by showing that the predicathérhiead of the lemma
entails the body. A strengthening lemma needs an entailmehe reverse direction.
An equivalence lemma needs both. During this entailmentipgy the lemma being
proved can be soundly used in the proof itself as an instahcygctic proof. Formally,
proving— and« lemmas amount to discharging the following proof obligatio

unfold H « E A G,root) - B x emp (3)
whereas— and« generate the following obligation:
unfold B, root) - (H * EAG) * emp 4)

At the start of lemma proving, we always unfold the head @i in the an-
tecedent. This ensures thafinite descenbccurs for the resulting cyclic proof which
guarantees a progress condition needed for sound induBtising lemma proving, the
lemma being proved may be applied to the unfolded formulasasstance of cyclic
proving. Furthermore, we also check that the entailmeriveganempty residual heap.
This ensures that both sides of the lemma cover the same égiap r



7 Implementation

We have built a prototype system using Objective Caml. Tloofobligations gen-
erated by this verification system are discharged by ouiilergat proving procedure
with the help of Omega Calculator [21] and CVC [23]. These &wvithmetic solvers
have complementary strengths. In many cases, CVC Lite ferfasut Omega is more
complete. We therefore run both of them and get the timingefitst returning prover;
or use Omega’s when CVC Lite fails.

We tested our system on a suite of examples summarized imeFydT hese exam-
ples are small but handle data structures with sophisticsttape and size properties
such as sorted lists, balanced trees, etc. in a uniform wayfidation time for each
function includes time to verify all functions that it call/e compare the timings ob-
tained with and without lemmas. Lemma proving time is notuded, since they are
proven once and applied many times. Preliminary resulisate that proof search with
lemmas does not incur much overhead due to the directedenaitsearch. On the other
hand, lemmas are important to verify a number of exampldsabald fail otherwise.
For example, the bubble-sort algorithm requires sortdddive coerced into an un-
sorted list expected for its precondition, whenever a swagpdtcurred for the bubble
procedure. Also, the file manager traverses its doublyelihksts in two directions.
while circular lists are built using list segments that meguire breaking and joining.

8 Related Work and Concluding Remarks

The general framework of separation logic is highly expreskut undecidable. Thus,
in the search for a decidable fragment of separation logécdBeet al. [1] supports
only a limited set of lemmas and predicatg@thoutsize properties, disjunctions and ex-
istential quantifiers. This fragment forms the basis of ggpmm verifier called Small-
foot [2]. Jia and Walker [13] also identified a decidable tofut without recursive
predicates for automated reasoning of pointer prograneot@asa [20] showed that
separation logic rules such as the frame rule are correbtnepect to the predicate
transformer semantics for a language with recursive pna@s local variables, value
and value-result parameters via the PVS theorem prover [Marti et. al. [15] verifed
the heap manager of a small embedded operating system,dmitget. al. [9] showed
how the effects of interrupts and thread preemptions cambedly modelled through
ownership transfers. These approaches are based on sapévgic but currently re-
quire hand-written Coq proofs. Separation logic has algnhesed to automatically
reason about heap-manipulating programs in various ctsitexg. locality [8], termi-
nation [3], concurrency [19]. Similar to [1], most of thesenks only support a limited
predefined set of predicates and lemmas. Our recent worla]léyed user-specified
inductive predicates in separation logic, which are thetoraatically verified via a
sound, terminating but incomplete verification systemldng on this prior work, the
current paper proposes a hew mechanism basedenspecified lemmadbkat can be
automatically proverandappliedby our program verifier. This feature can greatly en-
hance the capability of our automated program verificaty@tesn, and is an important
step towards building a more complete program verifier. Canegbto traditional theo-
rem provers, like Isabelle [17], our approach attained tiewing improvements: 1) it



Programs LOC Timing
with lemmas without lemmas
List with Tall verifies size/length
append 1 0.18 | failed
Circular Linked List verifies size + circularity
deletefirst 15 0.07 0.04
count 15 0.13 failed
Doubly Linked Circular Lisf verifies size + double links + circularity
delete 12 026 | failed
Doubly Linked List verifies size + double links
append 26 0.16 0.12
flatten (from tree) 34 0.35 0.33
Sorted List verifies size + min + max + sortedness
delete 21 0.16 0.15
insertionsort 36 0.37 0.32
selectionsort 52 0.34 0.31
bubblesort 42 0.64 failed
mergesort 105 0.61 0.56
quick_sort 85 0.67 0.65
File Manager verifies directory structure
searchname 18 1.71 1.49
mkdir 43 3.02 failed
remove 50 4.66 failed
copy._folder 67 7.50 failed
AVL Tree verifies size + height + height-balanced
insert 169 5.06 | 5.00
Red-Black Tree verifies size + black-height + height-balanced
insert 167 153 | 1.39

Fig. 3. Verification Times (in seconds) for Data Structures withtimetic Constraints

is based on separation logic (not classical logic), 2) itit®matically proven (via cyclic
proof), 3) it is automatically applied (during entailmerdhd 4) it always terminates.
In contrast, traditional theorem prover handles lemmasgissical logic) using either
user-specifiable tactics/heuristics or requires manuabfsr and is not guaranteed to
terminate.

On the inference front, Lee et al. [14] has formalized areiptocedural analysis for
loop invariants using grammar approximation under sefmaraigic. Their analysis can
handle a wide range of shape predicates with local sharinig bestricted to predicates
with two parameters angithoutsize properties. Another work [10] has also formulated
interprocedural shape inference but is restricted to hestist segment shape predicate.
More recently, Guo et al [12] showed how fairly complex steapan be inferred with
the help of a technique based wancation pointwhich can be viewed as a lemma for
cutting (or grafting) a subheap of the same predicate frarinfo) a given shape. How-
ever, the presence of numerical properties makes the tiongaint technique difficult
for more general user-defined predicates. The reason jsftetcutting a subheap and



then grafting back a piece of heap of the same shape, the shépeoriginal heap is
restored, but not necessarily its content or other quaingtproperties. Another recent
work by Chang and Rival [6] proposes a backward unfoldintriégue that requires
an in-built (but generic) lemma for splitting inductive segnts. This hardwired use of
a lemma can be viewed as a special case to our user-definezhapp¥While our sys-
tem does not focus on the inference aspect, we provide kmtfgrort for automated
verification via an expressive data structures and lemmefggation mechanism. For
example, data structures with strong invariants, such Embad heights, sortedness
and graph-like pointer links, are easily captured by oucHjation mechanism prior
to automatic verification.

To the best of the authors’ knowledge, most past works inmated program ver-
ification have not made systematic provision fiser-specified lemmabat can be au-
tomatically proven and applied, so as to widen the class@jnams that can be auto-
matically verified. However, the use of user-specified lemigan be found in works
based on dependent type systems and proof checkers. An kexafithis is the Ap-
plied Type System (ATS) [7] that was proposed for combininggpams with proofs.
In ATS, dependent types for capturing program invariants lammas are highly ex-
pressive, but users must supply all expected propertissciged proofs, and precisely
state where they are to be applied, with ATS playing the réla proof-checker. On
the contrary, our proposed technique performs lemma pgail program verification
automatically, without the need for such detailed guidance

To summarise, we have introduced a new mechanism to supgersupplied lem-
mas for automated program verification via separation lofiis approach iglirected
and is guaranteed terminate It is directedbecause the lemmas are applied selec-
tively, as guided by the need for the eventual matching upeafphpredicates during
entailment proving. It terminates since we use well-forraad well-founded heap for-
mulae for both shape predicates and lemmas, together wjttle @etection technique.
One strength of our approach is that users are allowed toedédant lemmas to fur-
ther enhance the capability of the automated program vatiibic system. This puts
creative control back into users’ hands. Nevertheless, neige machine support for
automatically proving and then applying these given leméth the appropriate use
of universal quantifiers, these lemmas can be quite expeedsdke believe that lemmas
can greatly enhance the capability of automated prograifioation in general, and
separation logic in particular; as they play the role of cigs in proof systems.
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