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Abstract. In this paper we describe a system that continually verifies
the presence/participation of a logged-in user. This is done by integrating
multimodal passive biometrics in a Bayesian framework that combines
both temporal and modality information holistically, rather than sequen-
tially. This allows our system to output the probability that the user is
still present even when there is no observation.

Our implementation of the continuous verification system is distrib-
uted and extensible, so it is easy to plug in additional asynchronous
modalities, even when they are remotely generated. Based on real data
resulting from our implementation, we find the results to be promising.

1 Introduction

For most computer systems, once the identity of the user has been verified at
login, the system resources are typically made available to the user until the
user exits the system. This may be appropriate for low-security environments
but can lead to session “hijacking” (akin to hijacking [1]) in which an attacker
targets a post-authenticated session. In high risk environments or where the cost
of unauthorized use of a computer is high, continuous verification, if it can be
realized efficiently is important to reduce this window of vulnerability. By this
we mean that biometric verification is not merely used to authenticate a session
on startup, but that it is used in a loop throughout the session to continuously
authenticate the presence/particapation of the user. Examples where continuous
verification is desirable include the usage of computers for airline cockpit con-
trols, in defense establishments, and in other processing that affects the security
and safety of human lives. In such situations, the desirable default action might
be to render the computer system ineffective when the authorized user is not
the one controlling it.

One way to realize (an approximation of) continuous verification is to use
passive but accurate biometric verification. However, a single biometric may be
inadequate for passive verification either because of noise in data samples or
because of unavailability of a sample at a given time. For example, face verifi-
cation cannot work when frontal face detection fails because the user presents
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a non-frontal pose. To overcome this limitation, researchers have proposed the
use of multiple biometrics, and have demonstrated increased accuracy of veri-
fication with a concomitant decrease in vulnerability to impersonation [4]. Use
of multiple biometrics has led to the investigation of integrating different types
of inputs (modalities) with different characteristics. Kittler et al. [2] experiment
with six fusion methods for face and voice biometrics, using the sum, product,
minimum, median, and maximum rules. In our work, we follow a similar approach:
we combine face and fingerprint to do continuous verification.

For a continuous verification system, three criteria are important with regard
to biometrics fusion:

1. The different reliability of the various modalities must be accounted for.
That is, any fusion method must factor in the reliability of each modality.

2. Older observations must be discounted, to reflect the increasing uncertainty
of the continued presence of the legitimate user.

3. Any fusion method should be able to handle lack of observations in one or
more modalities, which arises from a normal usage pattern, i.e., when the
user looks away from the camera.

Thus the usual fusion methods of sum, product etc. cannot be directly used
because they do not satisfy the above criteria.

The key to continuous verification is the integration of biometric observations
across both modality and time. Up to now, the task of integrating data across
both modality and time has not been addressed satisfactorily. In this paper,
we propose a Holistic Fusion method that combines face and fingerprint across
modalities and time simultaneously and in a way that satisfies the above three
criteria. This is realized by using the Hidden Markov Model (HMM). We ex-
perimentally compare our fusion method with a few alternatives – Time-first,
Modality-first, and Naive Integration – and show that our method is superior.

2 Theory

The goal of verification is to determine wh-
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Fig. 1. Integration scheme

ether the person with the claimed identity is
who he claims to be. Two situations can occur:
either the verifier accepts the claim as genuine,
or the verifier rejects it (and decides that the
user is an imposter).

In our case, the verification uses two types
(modalities) of observations: fingerprint and
face images. The challenge is to integrate these
observations across modality and over time.
To do this, we devised the integration scheme
shown in Figure 1. Currently we implement a face verifier and a fingerprint
verifier, other modalities are possible in the future. Each verifier computes a
score from its input biometric data (fingerprint or face), which is then integrated
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(fused) by the Integrator. The output from the Integrator is then used by the
operating system kernel to delay or freeze user processes. For implementation
details, please refer to [3].

2.1 Fingerprint Verifier

We acquire fingerprint images using the SecureGenTM mouse, which incorpo-
rates a fingerprint scanner ergonomically where the thumb would normally be
placed. This makes the mouse a passive (non-intrusive) biometric sensor, ideally
suited for continuous verification. The mouse comes with a SDK that matches
fingerprints, i.e., given two images, it computes a similarity score between 0
(very dissimilar) and 199 (identical). Unfortunately, the matching algorithm is
proprietary and is not disclosed by the vendor. Nevertheless, it is enough to get
good results using the score generated by the proprietary algorithm.

First, we collect 1000 training fingerprint images from each of four users. For
each user, we compute two probability density functions (pdf) - the intra-class
and inter-class pdfs (represented by histograms). If we denote the similarity score
by s, the intra-class set by ΩU , and the inter-class set by ΩI , then these pdfs
are P (s | ΩU ) and P (s | ΩI). The pdfs are similar to those in Figure 2 (which
are for faces), but have smaller overlap, indicating that fingerprint verification
is reliable (high verification accuracy).

Given a new fingerprint image and a claimed identity, the image is matched
against the claimed identity’s template (captured at registration time) to pro-
duce a score s. From this we compute P (s | ΩU ) and P (s | ΩI). These values
are then used by the Integrator to arrive at the overall decision. See Section 2.3
for more details.

2.2 Face Verifier

Our Face Verifier is also based on intra- and
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inter-class pdfs, except that the score s is now
an image distance, rather than a measure of sim-
ilarity. To train the Face Verifier, we first cap-
ture 500 images of each user under varying head
poses, using a Canon VCC4 video camera and
the Viola-Jones face detector [6]. The images are
resized to 28×35 pixels. For each user, the train-
ing images are divided into the intra-class and
inter-class sets. For each set, we calculate the
pairwise image distance using the Lp norm (de-
scribed below). This is similar to the ARENA
method [5]. These distances are now treated as scores s, and the pdfs P (s | ΩU )
and P (s | ΩI) estimated as before.

The Lp norm is defined as Lp(a) ≡ (
∑

|ai|p)
1
p , where the sum is taken over

all pixels of image a. Thus the distance between images u and v is Lp(u−v). As
in ARENA, we found that p = 0.5 works better than p = 2 (Euclidean). Given
a new face image and a claimed identity, we compute the smallest Lp distance
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between the image and the intra-class set of the claimed identity. This distance
is then used as a score s to compute P (s | ΩU ) and P (s | ΩI), which in turn are
used by the Integrator.

2.3 Holistic Fusion

The heart of our technique is in the integration of biometric observations across
modalities and over time. This is done using HMM, which is a sequence of states
xt that “emit” observations zt, for time t = 1, 2, . . . Each state can assume one
of two values: xt ∈ {Safe, Attacked}. Safe means that the logged-in user is
still present at the computer console, while Attacked means that an imposter
has taken over control. It is also possible for the user to be absent from the
console, but for a high security environment, this is considered to be the same as
Attacked. Each observation zt is either a face or fingerprint image, or equivalently,
its corresponding score (See Sections 2.1, 2.2). Note that the states are hidden
(unobservable), and the goal is to infer the state from the observations.

The result of the fusion is the calculation of
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0

Fig. 3. State transition model

Psafe, the probability that the system is still
in the Safe state. This value can then be com-
pared to a pre-defined threshold Tsafe set by
the security administrator, below which appro-
priate action may be taken. A key feature of
our method is that we can compute Psafe at
any point in time, whether or not there are bio-
metric observations. In the absence of observations, we decay Psafe, reflecting the
increasing uncertainty that the system is still Safe.

Let Zt = {z1, . . . , zt} denote the history of observations up to time t. From
a Bayesian perspective, we want to determine the state xt that maximizes the
posterior probability P (xt | Zt). Our decision is the greater of P (xt = Safe | Zt)
and P (xt = Attacked | Zt). Equivalently, we seek to determine if P (xt = Safe |
Zt) > 0.5, since the probabilities must sum to 1. We may rewrite:

P (xt | Zt) ∝ P (zt | xt, Zt−1) · P (xt | Zt−1) (1)

P (xt | Zt−1) =
∑

xt−1

P (xt | xt−1, Zt−1) · P (xt−1 | Zt−1) (2)

This is a recursive formulation that leads to efficient computation1. The base case
is of course P (x0 = Safe) = 1, because we know that the system is Safe imme-
diately upon successful login. Observe that the state variable xt has the effect of
summarizing all previous observations. Because of our Markov assumptions, we
note that P (zt | xt, Zt−1) = P (zt | xt), and P (xt | xt−1, Zt−1) = P (xt | xt−1).

However, P (zt | xt) is simply the intra-class pdf (when xt = Safe) or the
inter-class pdf (when xt = Attacked). As for P (xt | xt−1), this is described by
the state transition model shown in Figure 3. In the Safe state, the probability

1 At time t, if there exists a biometric observation, we use Equation 1 to compute
Psafe, otherwise Equation 2.
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of staying put is p, while the probability of transitioning to Attacked is (1 − p).
Once in the Attacked state, however, the system remains in that state and never
transitions back to Safe.

The value of p is governed by domain knowledge - if there is no observation
for a long period of time, we would like p to be small, indicating that we are less
certain that the user is still safe (and thus more likely to have been attacked).
To achieve this effect, we define p = ek∆t, where ∆t is the time interval between
the current time and the last observation, and k is a free parameter that controls
the rate of decay, which the security administrator can define. For instance, if
the security administrator decides that p should drop to 0.5 in 30 seconds, then
k = −(log 2)/30.

In general, any decay function may be used to specify p, with a suitable rate
of decay. We chose an exponential function for its simplicity: a value of k = 0
means that the user is never attacked (p = 1), while a very large value of k
indicates that attacks are very likely.

3 Discussion

We compare our method with other alternatives: Temporal-first, Modality-first
and Naive Integration.

3.1 Temporal-First and Modality-First Integration

Figure 4 shows how observations from dif-
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Fig. 4. Combining multiple biomet-
ric modalities

ferent modalities present themselves over
time. Observations from a single modality
are shown horizontally, while observations
across time are shown vertically. Note that
at time t3, only fingerprint is observed and
also for ease of understanding, we show ob-
servations a and d as aligned vertically. In
practice we allow a and d to occur within a
small window of time apart.

One common method of fusion is the following: let P (xt | Zmj

t ) denote the
posterior probability of being safe at time t for modality mj . To combine across
time, we compute the weighted sum:

P (xt | Zmj

t ) =
1
N

∑
p(xti | z

mj

ti
) · ek∆ti (3)

Where ∆t is the time difference between the current time and observation time,
N is the number of observations. This decays older observations by the weight
ek∆t such that it satisfies Criterion 2 for continuous verification.

To combine over modalities, we may again use a weighted sum:

P (xti | zti) = wm1 · P (xt | zm1
ti

) + wm2 · P (xt | zm2
ti

) (4)
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Note that here the two weights are wm1 and wm2 . They should be chosen to
reflect the reliability of each modality, in order to satisfy Criterion 1. We will
use the area under the ROC curve to represent the reliability.

Thus, Temporal-first implies the application of Equation 3 followed by Equa-
tion 4. Similarly, Modality-first changes this construction by applying Equation
4 first, then Equation 3. Note that if there is only a single modality (i.e., time
t3 in Figure 4), we just use the modality (no weight applied) as the combined
result. Likewise if there is only one observation across time, then we just decay
the observation by ek∆t. In practice, for computational efficiency, we combine
observations that occur within a recent history H from the current time, since
observations that are too old have negligible weights.

3.2 Naive Integration

Since fingerprint is more reliable than face and also more reliable than the two
combined (See Section 4.1), the idea of naive integration is to use the most
reliable modality available at any time instant. More precisely,

1. At any time t, if a fingerprint observation exists, then P (xt | Zt) = P (xt |
zm2

t ) (m2 = fingerprint) whether or not face observation exists.
2. Otherwise if there exists only face observation, then P (xt | Zt) = P (xt | zm1

t )
(m1 = face), since now face is the most reliable biometric that is available.

3. Else if no biometric observation is available, then we just decay the proba-
bility P (xt | Zt) = P (xt−1 | zt−1) · ek∆t. Where P (xt−1 | zt−1) is calculated
from Step (1) or (2), depending on the last biometric observation (fingerprint
or face). Here ∆t is the time interval between the current time and the latest
observation time.

It is clear that Naive Integration satisfies the three criteria in Section 1.

4 Experiments

All the experiments were conducted on real users using an Intel Pentium 2.4
Ghz Workstation with 512MB RAM. The captured images are 384× 288, 24-bit
deep taken using a Euresys Picolo capture card with a Canon VCC4 camera.

Ideally all the biometric data are acquired at fixed times. But in reality the
observations greatly depends on how the user presents himself to the Biometric
system. Following are the possible cases where there could be no observation. (1)
User is not using the mouse or not placing his thumb on the fingerprint scanner.
(2) User is not presenting a frontal face to the camera.

4.1 ROC Curve Analysis

For assessing the Receiver Operator Characteristic (ROC) our system, we run 6
sets of experiments for each user under the different combinations of legitimate
user versus imposter for face and fingerprint modalities.
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The area under ROC curve is the reliability measure. From the fused prob-
abilities of the above experiments, we compute ROC’s for face verifier, finger-
print verifier and both combined. The ROC areas for fingerprint-only, combined-
modality, and face-only verifiers are 0.9995, 0.989, and 0.970, respectively. Thus
verification using fingerprint alone is the best, followed by combining the two
modalities. Face verification alone is the least reliable.

However, for continuous verification, combining multimodal biometrics is pre-
ferred over using just a single modality. The lack of observations from a single
modality can be compensated by using a second modality. Also it is more difficult
for an imposter to impersonate multiple biometrics.

4.2 Comparing the Fusion Methods

We run four experiments to evaluate how the system behaves when one or both
of the biometrics are impersonated. In these we take turns to impersonate each
modality one at a time. Because each user presents his biometric in a differ-
ent way, we cannot average the curves from different users. Figure 5(a) 5(b)
5(c) show five plots each in the following order: individual probabilities, Holistic
Fusion, Naive Integration, Modality-first, Temporal-first Integration. In these
experiments, ∆t = 1.5s is used for modality integration, H = 30s for temporal
integration and k = −log(2)/30 for the decay function. There can be no obser-
vation at some time periods. In these situations in order to maintain the system
integrity we choose to lock the system. The user has to re-login to regain access.
These four setups can be classified into three cases.

Legitimate user using the system. Figure 5(a) shows the biometric obser-
vation for 15 minutes. The individual probabilities Psafe (5(a)-1) are not con-
sistently high, it occurs in a sporadic manner. This means that any value for
the threshold Tsafe will result in significant False Accept (FAR) and False Re-
ject (FRR) rates. In continuous verification, a False Accept is a security breach,
while a False Reject inconveniences the legitimate user, because he must re-
authenticate himself. Ideally Psafe should not fluctuate, but be equal to 1 as
long as observations are available. Of the four fusion methods, Holistic Fusion
comes closest to this ideal (5(a)-2). It computes a Psafe value close to 1, except
for the periods when there are no observations from both modalities (around
300s and 600s). At such times Psafe decreases gradually according to the de-
cay function. By comparison, the Psafe computed by Naive Integration (5(a)-3)
fluctuates wildly, because only a single modality is used any at time. Again, this
means no Tsafe value will make both FRR and FAR small. As for Modality-first
(5(a)-4) and Temporal-first (5(a)-5) Integration, the plots are similar. The Psafe

values are not close to 1. Moreover in the absence of observations Psafe drops
abruptly to zero resulting in sudden lock outs. From these plots, it is clear that
Holistic Fusion is superior to the other fusion methods.

Imposter taking over the system. Figure 5(b) shows the observations when
an imposter takes over the system at some time instant (around 38s). The prob-
abilities of individual biometrics (5(b)-1) as well as Psafe for all integration
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methods drop to near zero after the attack. The goal here is to detect the attack
as soon as possible so that damage to the system is minimized. Both Holistic
Fusion (5(b)-2) and Naive Integration (5(b)-3) detect this situation sooner than
the other two methods. However, Psafe for Naive Integration does not remain
consistently low; it fluctuates widely. This implies that FAR > 0 for most values
of Tsafe. For Modality-first (5(b)-4) and Temporal-first (5(b)-5) Integration, the
system takes longer to detect the imposter (when Tsafe = 0.5). Choosing a larger
value for Tsafe can reduce the time to detection, but at the expense of a higher
FRR. The best method is Holistic Fusion, which detects the imposter quickly
(within 5s in our experiments), and whose Psafe remains low after the attack.
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Fig. 5. (a) Legitimate user using the system for 15 minutes. (b) Imposter taking over
the system. (c) Partial impersonation: Genuine fingerprint + Fake face. Experiments
conducted with Fake fingerprint + Genuine face produced similar results as (c).

Imposter successful in faking one of the biometric (Partial imperson-
ation). Figure 5(c)-1 depicts a situation where the imposter has successfully
faked the fingerprint but not face. The individual probabilities contradict each
other, and results in wildly fluctuating plots in both Holistic Fusion (5(c)-2) and
Naive Integration (5(c)-3). This gives us a way to detect partial impersonation:
We may just take two thresholds, one high and one low (say: 0.8 and 0.2) and
simply count the number of times within a fixed time interval that Psafe jumps
between these thresholds. However, comparing Figures 5(c)-3 and 5(a)-3, we see
that Naive Integration cannot distinguish between partial impersonation and
the legitimate user. Fluctuating Psafe values seem to be an inherent property of
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Naive Integration. The plots for Modality-first (5(c)-4) and Temporal-first (5(c)-
5) Integration are relatively flat, and are in fact similar to those in Figure 5(a)
(except when there are completely no biometric observations). Again, this means
these two methods cannot distinguish between partial impersonation from legiti-
mate usage. Only Holistic Fusion provides a way to detect partial impersonation
that is different from detecting the real user.

What happens if an imposter is careful not to present any observation (neither
face nor fingerprint)? In this case, Psafe decreases to zero due to the decay
function. This is also the situation if the legitimate user has left the console
without logging off. In either case, system integrity is ensured.

5 Conclusion

In summary, our work has the following key features:

1. We propose a Holistic Fusion approach that satisfies all the three criteria for
continuous verification.

2. We experimentally show that our Holistic Fusion is superior to other alterna-
tive methods: Temporal-first, Modality-first and Naive Integration. It is the
only method that (a) achieves a low FAR and FRR, (b) detects an attack
quickly after it occurs, and (c) is able to detect partial impersonation.

3. In our system, there is only one free parameter k that governs the decay rate.
This is intuitively specified by the security administrator based on security
requirements.

In the near future, we plan to incorporate keyboard dynamics as another bio-
metric modality. We also plan to make face verification more robust by using
incremental training.
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