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Abstract 

We have solved the following problem using Pattern 
Classijication Techniques (PCT): Given two histogram 
methods M I  and M2 used in query optimization, ifthe esti- 
mation accuracy of M1 is greater than that of M2, then M I  
has a higher probabilio of leading to the optimal Query 
Evaluation Plan (QEP) than M2. To the best of our knowl- 
edge. this problem has been open for at least two decades, 
the difJicul9 of the problem partially being due to the hur- 
dles involved in the formulation itseg By formulating the 
problem from a Pattern Recognition (PR) perspective, we 
use PCT to present a mathematical, rigorous proof of this 
fact, and show some uniqueness results. We also report em- 
pirical results demonstrating the power of these theoretical 
results on well-known histogram estimation methods. 

1. Introduction 

1.1. Problem Statement 

The theory of Pattern Recognition (PR) is quite ad- 
vanced. Numerous books and papers have been written to 
present a foundational basis for the field [6,  7, 19, 201. As 
opposed to this, the area of query optimization in database 
technology has still quite a few open, unsolved problems. In 
this short paper, we show that a fundamental open problem 
in the database theory can be solved using the principles of 
the theory of pattern classiJication. 

Query optimization is an NP-Hard problem [9, 5, 21, I ]  
which has been studied for many decades. Given a query, 
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the main problem is to find the optimal Query Evaluation 
Plan (QEP). In this paper we resolve a problem, which has 
been (to our knowledge) open for more than two decades 
and describes how the accuracy of an estimation method 
relates to the quality of the solution obtained. More specifi- 
cally, we solve the following problem: Given two histogram 
methods M1 and M2 used in Query Optimization, if the es- 
timation accuracy of M1 is greater than that of Mz, then M1 
has a higher probability of leading to the optimal QEP than 
M2. By means of a rigorous analysis based on a distribution 
used in the failure models, the doubly exponential distribu- 
tion, we prove that the higher the accuracy of the method, 
the greater is the probability of this method yielding the op- 
timal solution. The difficulty of this open problem is par- 
tially being due to the hurdles involved in the formulation 
itself. Indeed, after formulating the problem from a PR per- 
spective, we use pattern classijication techniques to present 
a mathematical, rigorous proof of this fact, and show some 
uniqueness results. 

1.2. Importance of the Result 

In the 1999 IDEAS Conference in Montreal, Canada, the 
database authority, Prof. J. D. Ullman from Stanford pro- 
posed the following question. He queried: “Does a system 
using a superior histogram method necessarily yield a su- 
perior QEP?”. He also alluded to the experimental result- 
s using the Equi-width [ 1 1, 21 and Equi-depth histograms 
[ 17, 131 which seemed to imply that the answer to the query 
was negative. 

The importance of the results of this paper is that we 
show that the answer to his question is “stochastically pos- 
itive”. In other words, we prove that although a superior 
histogram method may not always yield a superior QEP, the 
probability that the superior histogram method yields a su- 
perior QEP exceeds the problem that i t  yields an inferior 



QEP. This thus justifies and gives a formal rigorous basis for 
why all current day database systems use histogram meth- 
ods to determine the QEP. We also show that if two “almost 
comparable” histogram methods (like the Equi-width and 
the Equi-depth) are compared, the probability of the supe- 
rior one yielding a superior QEP is negligible. However if 
the error of one is significantly less than the error of the 
second, the probability of obtaining a superior QEP is also 
significantly greater. This is because of the explicit form 
of the function involved, and answers for the experimental 
results alluded to by Prof. Ullman. The corresponding re- 
sult for significantly superior histograms also follows from 
the functional form, and is verified by experimental result- 
s involving the Equi-width, the Equi-depth, and the Rect- 
angular Cardinality Attribute Cardinality Map (R-ACM), a 
recently devised histogram method [23, 151. 

The theoretical significance of this paper is the fact that it 
demonstrates how PR techniques can be used to solve open 
“unsolved” problems in various other unrelated domains. 
In particular, we present a solution to this fundamental, un- 
solved problem in the area of query optimization in database 
technology using the theory of pattern classification. 

1.3. Overview 

We consider the fundamental query optimization prob- 
lem. When an end user performs a query, many internal 
operations need to be done to retrieve the information re- 
quested. The most important operation between tables is 
the natural join on a particular attribute. In real databases, 
a query may consist of joining several tables. When more 
than two tables have to be joined, intermediate join opera- 
tions are performed to ultimately obtain the final relation. 
As a result, the same query can be performed by means of 
different intermediate Goin) operations. A simple sequence 
of join operations that leads to the same final result is called 
a QEP. Each QEP has associated an internal cost, which 
depends on the number of operations performed in the in- 
termediate joins. The problem of choosing the best QEP 
is a combinatorially explosive optimization problem. This 
problem is currently solved by estimating the query result 
sizes of the intermediate relations and selecting the most 
efficient access QEP. 

Since the analysis of selecting the best QEP must be done 
in “real” time, it is not possible to inspect the real data in this 
phase. Consequently, query result sizes are usually estimat- 
ed using statistical information about the structures and the 
data maintained in the database catalogue. This informa- 
tion is used to approximate the distribution of the attribute 
values in a particular relation. Hence the problem of select- 
ing the best QEP depends on how well that distribution is 
approximated. 

In [IO], i t  has been shown that errors in query result size 

estimates may increase exponentially with the number of 
joins. Since current databases and the associated queries in- 
crease in complexity, numerous efforts have being made to 
devise more efficient techniques that solve the query opti- 
mization problem. 

Many techniques have been proposed to estimate query 
result sizes, including histograms, sampling, and paramet- 
ric techniques [ l l ,  17, 13, 3, 4, 12, 221. Histograms are 
the most commonly used form of statistical information. 
They are incorporated in most of the commercial database 
systems such as Oracle, Microsoft SQL Server, Terada- 
ta, and DB2, which mainly use the Equi-depth histogram. 
The prominent models of histograms known in the litera- 
ture are: Equi-width [ l l ,  21, Equi-Depth [ 17, 131, the R- 
ACM [23, 151, the Trapezoidal Attribute Cardinality Map 
(T-ACM) [23, 161, and the V-Optimal Histograms [lo,  181. 

In this paper, we focus on these histogram methods (or 
for that matter any histogram estimation methods). We an- 
alytically prove that under certain models, the better the ac- 
curacy of an estimation technique, the greater the probabil- 
ity of it  choosing the optimal QEP. 

In order to provide additional evidence, we have also 
provided some empirical results that shows the superiority 
of R-ACM over the traditional histogram estimation meth- 
ods, the Equi-width and the Equi-depth. The empirical re- 
sults obtained by testing these properties for many of the 
above histogram methods in random databases show that 
the R-ACM is significantly superior to both the Equi-width 
and the Equi-depth schemes. 

2. The Relation between Efficiency and Opti- 
mality 

Consider two query-size estimation methods, 
M I  and M2. The probability of choosing a cost value 
of a particular QEP by M I  and that of choosing a cost 
value by Mz are represented by two independent random 
variables. Clearly, this assumption of independence is valid 
because there is no reason why the value obtained by one 
estimation strategy should affect the value obtained by the 
second. 

Although we consider the analysis for any two arbitrary 
histogram schemes, referred to by M I  and M2, the result we 
claim can be extended to any of the query-size estimation 
methods mentioned above. 

For the analysis done below, we work with the model that 
the error function is doubly exponential’. In other word- 
s, the probability of obtaining a value that deviates from the 
mean falls exponentially as a function of the deviation. This 

’ A random variable, X, has doubly exponenliuf distribution with pa- 
rameter X if the density function is given by fx(z) = ~ X e - X l z - - M l ,  
-m < I < CO, where the expected value of X,  E ( X 1  = M .  The 
variance of X can be seen to be 5.  
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model (unlike the Gaussian error function) is more typical 
in reliability analysis and in failure models, and in this par- 
ticular domain, the question is one of evaluating how reli- 
able the quality of a QEP is if only an estimate of its perfor- 
mance is available. 

Without loss of generality, if the mean cost of the optimal 
QEP is p, by shifting the origin by p, we can work with the 
assumption that the cost of the best QEP is 0, which is the 
mean of these two random variables. The cost of the second 
best QEP is given by another two random variables (one for 
M1 and the other one for M2) whose mean, c > 0, is the 
same for both variables. An example will help to clarify 
this. 

Example 1. Suppose that M1 chooses the optimal cost val- 
ue with probability represented by the random variable 
Xiopt) whose mean is 0 and A1 = 0.4. This method 
also chooses another sub-optimal cost value according to 
Xjsubopt) whose mean is 8 and A1 = 0.4. 

M2 is another method that chooses the optimal cost val- 
ue with probability given by Xiop t )  whose parameters are 
M = 0 and A2 = 0.2. Another sub-optimal cost value is 
chose with probability given by X$subopt) whose parame- 
ters are M = 8 and A2 = 0.2. 

Since -$ < 4, we would hope that the probability that 
M I  chooses a sub-optimal cost value is smaller than that of 
M2 choosing the sub-optimal cost value. This scenario is 
depicted in Figure 1 .  The result depicted above is formal- 
ized in the following theorem, which is the primary result 
of this short papec and answers the open question referred 
to above. Observe too that the formulation and proof use 
techniques typically foreign to database theory, but which 

0 

X l  A* 

are fundamental to the theory of PR. 

Theorem 1. Suppose that: 

0 M1 and M2 are two query result size estimation meth- 
ods. 

0 X1 and X2 are two doubly exponential random vari- 
ables that represent the cost values of the optimal QEP 
obtained by MI and M2 respectively. 

0 Xi and Xi are another two random variables repre- 
senting the cost value of a non-optimal QEP obtained 
by M I  and MZ respectively. 

0 = E [ X l ]  = E[X2]  5 E [ X ; ]  = E [ X J  = c . 

Let p l  and p2 be the probabilities that M1 and M2 respec- 
tively make the wrong decision. Then, 

2 2  
i f ~ a r [ ~ 1 ]  = var[X;] = - < - = Var[X2] = Var[Xi], xq - x; 

Pl I P 2  . 

Proot Consider a particular value IC. The probability that 
the value z leads to a wrong decision made by M I ,  is given 
by: 

Solving the integrals, ( 1 )  results in: 

Le-X1(-u+c) + 1 - L e - X 1 ( S - C )  + 1 
112 = 1imu+", e 2 2  2 

= 1 - $ e - X ~ ( z - c )  . 

(2) 

The probability that M1 makes the wrong decision for 
all the values of z is the following function of XI and c: 

p l  = I ( X ~ ,  c)  = f, 111 + e x I x  ciz + J," 111 +e--Xlx ciz 

+ Jc' 112  %e-''" dx  . 
(3) 

which, after applying the distributive law and substitut- 
ing the values of 111 and 112,  can be written as: 

After solving the integrals, (4) is transformed into: 

Similarly, we do the same analysis for p z ,  which is a 
function of A2 and c: 
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(ii) 0 < k 5 1 and a1 2 0 + 0 < kal I 
a1 =+ ka1+ 2 > 2 > 0. 

Hence the theorem. 0 (6) 
1 1 
2 4 

p2 = I ( x ~ ,  c) = -e-’zc + --~2ce-’2~ . 

We have to prove that: The above theorem can be viewed as a “sufficiency re- 
sult”. In other words, we have shown that q1 - q2 5 0 
or that p l  5 p2. We now show a “necessity result” stated 

1 1 1 1 as a uniqueness result. This result states that the function 
2 4 - 2  4 pl  I p 2  has its equality ONLY at the boundary condition 

where the two distributions are exactly identical. 
To prove the necessity result, we consider q2 - q1 which, 

derived from (9), can be written, as a function of a1 and k ,  
as: 

p l  = - e - h ~  + - ~ ~ ~ ~ - A i c  < - e - A ~ c  + - - x 2 c e - X ~ c  = p 2  . 
(7) 

Multiplying both sides by 2, and substituting Xic for ai 
and X2c for cy2, (7) can be written as follows: 

1 
2 

G(a1, k )  = e-kcr1 + -kale-kcr1 - e 
1 1 
2 2 

+ -ale-a1 5 e-m2 + -a2eVaz . (8) 

Substituting a2 for kal, a1 2 0 and 0, < k I 1, (8) 
(16) 

By examining its partial derivatives we shall show that 
there are two solutions for equality. Furthermore, when 
a1 2 0 and 0 < k 5 1, we shall see that for a given k ,  there 
is only one solution, namely a1 = 0 and k ,  0 < k I 1, 

results in: 

1 1 
2 + --cyle-al < e-kal + -kale-kal = 9 2 .  

2 proving the uniqueness. 
- q1 = e-al 

(9) 

We now prove that q1 - q2 5 0. After applying natural 
logarithm to both sides of (9) and some algebraic manipu- 
lation, q1 - 92 5 0 implies: 

a1 kai 
2 2 

~ ( a ~ ,  k )  = ka l  - al + h ( l +  -) - In( 1 + -) I 0. 
(10) 

To prove that F(a1, k )  5 0, we use the fact that In 2 5 
2 - 1 [8]. Hence, we have: 

a1(k - l)(ka1 + 1 )  
2 + ka1 

IO, (15) - - 

because: 

(i) 0 < k 5 l a n d a l  L 0 a ~ ~ ( k - 1 )  5 Oand 
kai  + 1 > 0. Hence a1 ( k  - l ) ( k a l  + 1) 5 0, 
and 

Theorem2. Suppose that a1 2 0, 0 < k 5 1. Let 
G(a1 , k )  be: 

1 1 
2 2 

G ( a l , k )  = e-kal + - e-al - -ale-al . 

(17) 

Then G(a1, k )  2 0, and there are exactly two solutions for 
G(a1, k )  = 0, being: (a1 = -1, k = 1) and (a1 = 0, k }  . 

Prooj We must prove that, as defined in the theorem state- 
ment, G(a1, k )  2 0. 

We shall prove that this is satisfied by determining the 
local minima for G(., .), where a1 >_ 0 and 0 < k 5 1. 
We first find the partial derivatives of (17) with respect to 
al and k :  

We now solve (18) and (19) for a1 and I C .  Equation (19) 
can be written as follows: 
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which, after canceling some terms results in k a l +  a1 = 
0. Solving this equation for cq, we have: a1 = -$  and 
a1 = 0. Substituting a1 = --i in (18) and canceling some 
terms, we obtain: 

Run 
1 
2 
3 
4 

Total 

which results in the solution to be cy1 = -1, and conse- 
quently, k = 1. 

The second root, a1 = 0, indicates that the minimum is 
achieved for any value of k.  

We have thus found two solutions for (18) and (19), 
(a1 = 0 , k )  and (a1 = -1, k = 1) . Since a1 2 0, it 
means that a1 can have at least a value of 0, and hence the 
local minima is in (a1 = 0, k } .  Substituting these two val- 
ues in G, we see that G(a1, k )  = 0 ,  which is the minimum. 
Therefore, G(a1, k )  2 0 for a1 2 0 and 0 < k 5 1. 

Hence the theorem. cl 

R-W Eq-width R-D Eq-depth 
26 12 35 12 
24 15 42 13 
35 11 46 8 
29 15 46 8 
114 53 169 41 

To get a physical perspective of these results, let us an- 
alyze the geometric relation of the function G and the his- 
tograms estimation methods. G is a positive function in the 
region a1 2 0, 0 < k 5 1. When cy1 -+ 0, G -+ 0. This 
means that for small values of a ] ,  G is also small. Since 
cy1 = Xlc, the value of cy1 depends on X1 and c. When c 
is small, G is very close to its minimum, 0, and hence both 
probabilities, pl and p z ,  are very close. This behavior can 
be observed in Figure 2 .  

In terms of histogram methods and QEPs, when c is s- 
mall, the optimal and the sub-optimal QEP are very close. 
Since histogram methods such as Equi-width and Equi- 
depth produce a larger error than the R-ACM and the T- 
ACM, the former are less likely to find the optimal QEP 
than the latter. 

On the other hand, G is very small when A1 is close to 
0. This means that Var[X1] is very large. Since Var[X1] 5 
Var[Xa], Var[Xa] is also very large, and both are close each 
other (In Figure 1, we would observe almost flat curves for 
both distributions). Random variables for histogram meth- 
ods such as Equi-width and Equi-depth yield similar error 
estimation distributions with large and similar variances. 
Hence, the probabilities p1 and p~ are quite close, and con- 
sequently, similar results are expected for these estimation 
methods. As a consequence of this, the results of Theorems 
1 and 2 are not too meaningful in the absence of the new 
histogram methods, the R-ACM and the T-ACM, which ef- 
fectively imply random variables with smaller variances and 
with underlying random variables quite different from those 
implied by the Equi-width and the Equi-depth methods. 
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3. Empirical Results 

In order to provide practical evidence of the theoretical 
results presented above, we have performed some simula- 
tions with randomly generated databases. In the experi- 
ments we have conducted, the details of which can be found 
in [14], four independent runs. In each run, 100 random 
databases were generated. Each database was composed of 
six relations, each of them having six attributes. Each rela- 
tion was populated with 100 tuples. 

The efficiency of R-ACM was compared with that of the 
Equi-width and the Equi-depth after performing these sim- 
ulations using 50 values per attribute. We set the number 
of bins for the Equi-width and the Equi-depth to be 22. In 
order to be impartial with the evaluation, we set the num- 
ber of bins for the R-ACM to be approximately half of that 
of the Equi-width and the Equi-depth, because the former 
needs twice as much storage as that of the latter. 

The simulation results obtained from 400 independen- 
t runs, used to compare the efficiency of the R-ACM with 
that of the Equi-width and that of the Equi-depth, are giv- 
en in Table 1. The column labeled “R-W” is the number 
of times that R-ACM is better than Equi-width. The col- 
umn labelled “Eq-width” indicates the number of times in 
which the Equi-width obtains a better QEP than that of the 
R-ACM. Similarly, the column labelled “R-D” represents 
the number of times that the R-ACM yields better solution- 
s than Equi-depth, and the column labelled “Eq-depth” is 
the number of times in which the Equi-depth is superior to 
the R-ACM. The last row, the total of each column gives 
us the evidence that the R-ACM is superior to Equi-width 
in more than twice as much, and the R-ACM is better than 
Equi-depth by a factor of about four. 

4. Conclusions 

The theory of PR is quite developed, and has many appli- 
cations. We believe that this theory can be used to prove un- 
solved results in various other fields. In particular, we have 



applied pattern classification techniques to solve problems 
in the area of database query optimization. In this paper, 
we have discussed the efficiency of using histogram estima- 
tion methods for database query optimization and resolved 
an open problem, which has been (to our knowledge) open 
for at least twenty years. The problem describes how the 
accuracy of an estimation method relates to the quality of 
the solution obtained. The efficiency has been quantified by 
means of the probability of a method choosing the optimal 
solution. 

We have shown analytically (using a reasonable mod- 
el of accuracy, namely the doubly exponential distribution 
for errors) that as the accuracy of an estimation method in- 
creases, the probability of it leading to a superior QEP al- 
so increases. We have shown that histogram methods that 
produce errors with similar variances (such as the recently 
introduced R-ACM and T-ACM), the expected results are 
also similar. We have also shown that the R-ACM and the 
T-ACM, which produce error with smaller variances than 
the traditional methods, yield better QEPs in a substantially 
larger number of times. 

We have also provided evidence of the theoretical result- 
s by means of the empirical results obtained from evalu- 
ating the Equi-width, the Equi-depth, and the R-ACM on 
randomly generated databases. These results show that the 
R-ACM provides superior solutions in more than twice as 
many times as the Equi-width, and in more than four times 
often than the Equi-depth. 

The question of analyzing the accuracy/speed problem 
for other distributions (for example, Gaussian) remains 
open, but is far from trivial. More detailed empirical re- 
sults including the design of random databases and random 
queries in these random databases can be found in [ 141. 
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Figure 1. An example of doubly exponential distributions for the random variables X1(OPt), X i o p t ) ,  
X 1 ( S U b q P t )  and Xisubopt) , whose parameters are X1 = 0.4 and X2 = 0.2. 

Figure 2. Function G(a l ,  k )  plotted in the ranges 0 5 al 5 1 and 0 5 k 5 1. 
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