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Abstract. Automatic classes are classes of languages for which a finite automaton
can decide whether a given element is in a set given by its index. The present work
studies the learnability of automatic families by automatic learners which, in each
round, output a hypothesis and update a long term memory, depending on the input
datum, via an automatic function, that is, via a function whose graph is recognised by
a finite automaton. Many variants of automatic learners are investigated: where the
long term memory is restricted to be the just prior hypothesis whenever this exists,
cannot be of size larger than the size of the longest example or has to consist of
a constant number of examples seen so far. Furthermore, learnability is also studied
with respect to queries which reveal information about past data or past computation
history; the number of queries per round is bounded by a constant. These models
are generalisations of the model of feedback queries, given by Lange, Wiehagen and
Zeugmann.

1 Introduction

The present work carries on recent investigations of learnability properties in connection with
automatic structures and automatic families [9, 18, 19]. An advantage of an automatic family
over general indexed families [1, 24, 26] is that the first-order theory of automatic families, as
well as of automatic structures in general, is decidable [15, 16, 22]. Here in the first-order theory,
the predicates (relations) and functions (mappings) allowed are automatic. Furthermore, rela-
tions and functions that are first-order defined from other automatic relations and functions are
automatic again [15, 16, 22]. Also, automatic functions are linear time computable [9]. These nice
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properties of automatic structures make them not only a useful tool in learning theory but also
in other areas such as model checking and Boolean algebras [6, 7, 22, 30, 31]. Common examples
of automatic predicates from the prior literature are predicates to compare the length of strings,
the lexicographic order (denoted by ≤lex) and the length-lexicographic order (denoted by ≤ll).
Here x is length-lexicographically less than y iff either |x| < |y| or |x| = |y| and x <lex y, where
|x| denotes the length of string x.

Furthermore, although the class of all regular languages is learnable using queries [4], this
is not true for the case of inductive inference from positive data [1, 13]. Hence, it is worth
investigating more closely which classes of regular languages are learnable from positive data
and which are not. For example, Angluin [3] considered learnability of the class of k-reversible
languages. These studies were later extended [11, 14]. In this context, it is useful to consider
which automatic families are learnable and which are not. As noted by Jain, Luo and Stephan
[18], even the class of 0-reversible languages is not automatic. However, some very nice sub-
classes of pattern languages [2, 9] are automatic families and learnable automatically, that is, by
learners which are given using finite automata.

The underlying model of learnability we consider is inductive inference [1, 13, 21, 28] and the
main changes to the standard model of inductive inference are the following two: (1) the target
class of languages for learning is an automatic family [15–17, 19, 20, 22], that is, membership for
the class to be learnt is recognised by a finite automaton in a uniform way; (2) the learner itself
has to be automatic [18]. These learners will then be given by a function, where in each stage,
the learner outputs a hypothesis and updates its long term memory based on a current input
and its previous long term memory; this function has to be recognised by a finite automaton.
Such learners satisfy much more realistic complexity bounds than learners which have access to
the full history of all past data and computations. A further motivation for studying learners
which are automatic is that in some situations (such as space exploration by robots), it may
be more reasonable to have finite automata as a model rather than Turing machines. Another
motivation for the work goes back to the programme of Khoussainov and Nerode [22] to find
which results from computable model theory can be transferred to model theory based on finite
automata.

The notion of learners with explicit bounds on the long term memory had already been
studied previously in the setting of algorithmic learners [12, 23]. Such memory restrictions were
considered as too restrictive. This led to enrichment of the learners by allowing feedback queries
and other instruments to access some, but not all information about the past [8, 25, 33]. The
present work investigates these notions for the case of automatic learners learning automatic
families.

Outline of the paper. Section 2 gives the basic notation and definitions. Section 3 provides
some examples to give some insight into the above definitions and notions. Section 4 provides the
main results on learning with feedback queries. Theorem 10 shows that every automatic family
satisfying Angluin’s tell-tale condition has a feedback learner with only one query per round
and with an additional long term memory permitted to be as large as the longest datum seen
so far. Theorem 11 shows that there is a class which has a learner employing only one feedback
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query per round and without any long term memory but which does not have an automatic
learner relying on long term memory only. Theorems 12 and 15 relate various memory types
with feedback queries and investigate the hierarchies which result from counting the size of the
bounded example memory and the number of feedback queries per round. Section 5 deals with
learners using a marked memory space (see Section 2 for definition). Theorem 16 shows that the
more general marked memory space of type 2 permits to learn any learnable class with a long
term memory bounded by the size of the hypothesis. In contrast to this, Theorem 17 shows that
such a result is not possible for a marked memory space of type 1. It is an open problem whether
a learner using long term memory bounded by hypothesis size can be replaced by an iterative
class-preserving learner [18]. Theorem 18 gives a partial answer: this is possible if the iterative
learner has additionally access to a marked memory space of type 1.

2 Learning with Feedback and Memory Limitations

The symbol N denotes the set of natural numbers, {0, 1, 2, . . .}. Given two strings x = x(0)x(1)
. . . x(n − 1) and y = y(0)y(1) . . . y(m − 1), over the alphabet Σ, we define the convolution
[22], conv(x, y), over the alphabet (Σ ∪{�})2 as follows (where � 6∈ Σ). Let p = max{n, m}, and
x′ = x�p−n, and y′ = y�p−m. Then, conv(x, y) = (x′(0), y′(0))(x′(1), y′(1)) . . . (x′(p−1), y′(p−1)).
Similarly, one can define conv on multiple arguments. A relation (predicate) R or a function f is
called automatic if the set {conv(x1, x2, . . . , xn) : R(x1, x2, . . . , xn)} and {conv(x1, x2, . . . , xm, y) :
f(x1, x2, . . . , xm) = y}, respectively, are regular.

A family of languages, {Lα : α ∈ I} is said to be automatic [22] iff (a) I (called the index
domain) is regular, (b) there is a regular set D (called the domain) such that each Lα ⊆ D and
(c) the set {conv(α, x) : α ∈ I ∧ x ∈ D ∧ x ∈ Lα} is regular. Here D and I are sets of strings
over some finite alphabet.

Automatic structures are structures given by finitely many automatic relations and functions
— where these structures can also be considered in a more general sense, when they are just
isomorphic to a collection of finitely many automatic predicates and functions with corresponding
regular domains.

Fix a domain D ⊆ Σ∗, where Σ is a finite alphabet. Let # 6∈ Σ. A text is a mapping from N
to D∪{#}. We let T [n] denote T (0)T (1) . . . T (n− 1). Content of a text T , denoted content(T ),
is {T (i) : i ∈ N}−{#}. Sequences are initial segments of texts. Content of a sequence σ = T [n],
denoted content(σ), is {T (i) : i < n} − {#}. Intuitively, # denotes pauses in the presentation
of data. A text T is for a language L iff content(T ) = L.

We will be considering learning of an automatic family L = {Lα : α ∈ I} by a learner using
hypothesis space H = {Hβ : β ∈ J}, where L and H are automatic families, with I and J being
regular sets and languages Lα, Hβ being subsets of a regular set D ⊆ Σ∗, for Σ being a finite
alphabet.

A learner is an algorithmic device mapping Γ ∗ ×(Σ∗ ∪ {#}) to Γ ∗ × (J ∪ {?}), where Γ
is a finite alphabet. Intuitively, members of Γ ∗ represent the long term memory of the learner.
Furthermore, ? represents that the learner repeats its previous hypothesis.

3



The basic model of learning [13] is given as follows. Fix an input text T for a target language
L. The learner has initial memory mem0 ∈ Γ ∗ and initial hypothesis β0 ∈ J ∪ {?}. In stage n,
the learner receives the input T (n), updates its previous memory memn to memn+1 and outputs
a hypothesis βn+1. For general learners as studied by Gold [13], there is no restriction on the
learners except for the mapping (memn, T (n)) 7→ (memn+1, βn+1) being computable (here note
that the learner does not know n, unless it stores it in its memory). The learner learns [13] a
language L iff for all texts T for L, for βn as defined above, there is an n such that (i) Hβn = L,
and (ii) for all m ≥ n, βm ∈ {βn, ?}. The learner learns a class L of languages iff it learns each
L ∈ L. This model of learning is also referred to as TxtEx-learning.

For learning automatic families of languages a characterization based on Angluin’s condition
[1] determines when an automatic family is learnable (where the learner can even be made
consistent, conservative and set driven, for the positive side [18]).

Proposition 1 (Based on Angluin [1]). An automatic family {Lα : α ∈ I} is learnable by
an algorithmic learner iff, for every α ∈ I, there is a bound bα such that, for all β ∈ I, the
implication

{x ∈ Lα : |x| ≤ bα} ⊆ Lβ ⊆ Lα ⇒ Lβ = Lα

holds. We call the set {x ∈ Lα : |x| ≤ bα} a tell-tale set for Lα. This condition is called Angluin’s
tell-tale condition. Note that we can take bα = |α|+ c for a suitable constant c independent of α.

Therefore, the challenge is to study learnability by more restrictive learners. In the setting of
automatic structures, it is natural that such learners are automatic [18], that is, for which the
mapping (memn, T (n)) 7→ (memn+1, βn+1) is automatic. Hypothesis and updated memory of
such learners can be computed in time linear in their previous memory and current datum [9].
The price paid is that the learner can no longer access the full past history of the data observed.
In general, the requirement of a learner to be automatic is a real restriction [18].

Jain, Luo and Stephan [18] had considered various ways in which the size of the long term
memory of the automatic learners is bounded in length. The length-restrictions considered are
as follows. For the following, T is an arbitrary input text, memn and βn denotes the long term
memory and hypothesis of the learner just before getting input T (n).

(a) the size of the hypothesis plus a constant; that is, for some constant c (independent of
T ), |memn| ≤ |βn|+ c.

(b) the size of the longest datum observed so far plus a constant;, that is, for some constant
c (independent of T ), |memn| ≤ max {|T (i)| : i < n}+ c.

(c) just constant size; that is, |memn| ≤ c, for some constant c.
For the ease of notation, the “plus a constant” is omitted in the notations below. Note that

the learner is not constrained regarding which alphabet it uses for its memory; therefore, it
might, for example, store the convolution of up to k number of examples in the case that the size
of the longest datum seen so far is the memory bound (here k is some a priori fixed constant).

Note that, in the case that memory bounded by the hypothesis size is allowed, the learner can
memorise the most recent hypothesis output, and, thus, abstain from outputting ?, outputting
instead the stored most recent hypothesis.
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As such memory limited learners are quite restrictive, it is natural to consider mechanisms
which provide some access to past data, besides what can be remembered in the memory by
automatic learners. If one considers fat texts, see [28], where every data item is repeated infinitely
often in the text, then Jain, Luo and Stephan [18] showed that automatic learners are able to
learn all automatic families satisfying Angluin’s tell-tale condition. Hence, the present work looks
at criteria which are more powerful than just limited memory structure but less powerful than
fat texts. These methods are based on active strategies of the learner, such as making feedback
queries about whether some data item has already been seen in the past. While the mechanisms
presented here are well-studied in the case of algorithmic learners, the combination of such
mechanisms with automatic learners is novel. Also novel is the generalised model of memory
space, which subsumes feedback learning and related criteria.

For the following definitions, L = {Lβ : β ∈ I} refers to the language class being learnt. Lα

refers to the target language, and a text T for Lα is the input given to the learner. H = {Hβ :
β ∈ J} refers to the family used by the learner as hypothesis space. Furthermore, memn and βn

denote the long term memory and hypothesis of the learner just before receiving input T (n). We
sometimes consider memory of the learner as a set. For this, conv(x1, x2, . . . , xr) represents the
set {x1, x2, . . . , xr}. When we consider memory as a set, we assume that it was in sorted order:
that is, x1 ≤ll x2 ≤ll . . . ≤ll xr. This allows for automatic updating and testing of elements in a
set. For ease of notation, we will often refer directly to the sets in these cases, rather than the
representation.

Definition 2. (a) An automatic learner is called iterative iff, for all n, memn = βn.
(b) An automatic learner is a learner with k-bounded example memory iff, for all n, memn ⊆

content(T [n]), number of elements in memn is at most k, and memn+1 ⊆ memn ∪ {T (n)} (note
that the memory of the learner here is interpreted as a set).

If k is not specified, we call the learner a bounded example memory learner.

The following notion of feedback learning for general inductive inference was first studied by
Wiehagen [33] and Lange and Zeugmann [25].

Definition 3. An automatic learner using k-feedback (also called a learner which uses k feedback
queries) is a learner, with an associated automatic query function Q asking k questions per round,
defined as follows on input text T .

Initial memory of the learner is mem0, initial hypothesis of the learner is β0. Furthermore,
memn, and βn denote the long term memory and hypothesis of the learner just before receiving
input T (n).

(a) Q is an automatic mapping from (Γ ∗, Σ∗ ∪ {#}) to a subset of Σ∗ of size k.
(b) Suppose, Q(memn, T (n)) = Sn = {y1, y2, . . . , yk}. Let bi = 1 iff yi ∈ content(T [n]). Then,

the mapping, (memn, T (n), b1, b2, . . . , bk) 7→ (memn+1, βn+1) is automatic.

For the following definition, we provide an automatic learner with a different kind of memory
(called marked memory space), which is a set of strings over a finite alphabet ∆. This marked
memory will only grow (set inclusion wise) as the learner gets more data. Marked memory can
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be considered as a generalization of feedback learning as feedback learning can be simulated by
Type 1 memory.

Definition 4. An automatic learner using a marked memory space is a learner, with an associ-
ated marked memory space, an automatic query function Q (asking k questions per round, for
some constant k), and a marked memory space updater F defined as follows on input text T .

Initial memory of the learner is mem0, initial hypothesis of the learner is β0 and initial
marked memory space is Z0 = ∅. Furthermore, memn, Zn and βn denote the long term memory,
the marked memory and hypothesis of the learner just before receiving input T (n).

(a) Q is an automatic mapping from (Γ ∗, Σ∗ ∪ {#}) to a subset of ∆∗ of size k.
(b) Suppose, Q(memn, T (n)) = Sn = {y1, y2, . . . , yk}. Let bi = 1 iff yi ∈ Zn. Then, the

mapping, (memn, T (n), b1, b2, . . . , bk) 7→ (memn+1, βn+1) is automatic. Furthermore, Zn+1 =
Zn ∪Xn+1, where

(i) for Type 1 memory space, there is an automatic function F such that F (memn, T (n), b1, b2,
. . . , bk) = Xn+1, and

(ii) for Type 2 memory space, there is an automatic function F such that for all w ∈ ∆∗,
F (memn, T (n), b1, b2, . . . , bk, w) = 1 iff w ∈ Xn+1.

Note that in case of Type 1 memory space, Xn is necessarily finite (with cardinality bounded
by some fixed constant), whereas for Type 2 memory, Xn may be infinite.

Remark 5. An automatic feedback learner is a special case of an automatic learner using a
marked memory space of Type 1, for which, in Definition 4, the domain D is used for memory
instead of ∆∗, and Xn+1 = {T (n)}.

Definition 6. An automatic learner using hypothesis queries is a special case of a learner using
a marked memory space, for which, in Definition 4, the index set J of the hypothesis space is
used for memory instead of ∆∗ and Xn+1 = {βn+1}. This allows a learner to check whether it
had earlier issued a particular hypothesis.

For ease of notation, when describing hypothesis query learners, we just give the queries made
by the learner at each input, rather than giving details of Xn and Zn.

Notation. For a learner M , let M(σ) denote the hypothesis of the learner M after having seen
input segment σ. For input segments σ and τ , let σ ◦ τ denote the concatenation of σ and τ .
Furthermore, let σ ◦x denote concatenation of σ and the sequence consisting of just the element
x. For a string x, x(i) denotes the (i + 1)-th element in the string x. Thus, string x is same as
x(0)x(1) . . . x(|x| − 1).

Many of these learning notions had been defined earlier without requiring that the learners are
automatic. The general notion of learning which is underlying the notion of an automatic learner
is due to Gold [13] and is called explanatory learning. The variant with an explicit long term
memory as used here was introduced by Freivalds, Kinber and Smith [12]. The special case of it-
erative learning is quite popular and predates the definition of general memory limitations, it was
introduced by Wiehagen [33] and later by Wexler and Culicover [32]. Bounded example memory
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was considered by Osherson, Stob and Weinstein [28]; Lange and Zeugmann [25] extended this
study. Wiehagen [33] and Lange and Zeugmann [25] introduced and studied feedback learning;
Case, Jain, Lange and Zeugmann [8] quantified the amount of feedback queries per round.

For many of these types of automatic learners for automatic families, one can choose the
hypothesis space H to be equal to L; this may sometimes cause a restriction, for example, when
the amount of the memory allowed to the learner depends on the size of the hypothesis or when
the long term memory of the learner has to be the most recent hypothesis, as in the case of
iterative learning. The main reason for hypothesis space not to be critical in many cases is that
one can automatically convert the indices from one automatic family to another for the languages
which are common to both automatic families. This stands in a contrast to the corresponding
results for indexed families of recursive languages [25, 26]. A result in the present work which
depends on the choice of the hypothesis space is Theorem 18. In the case that the hypothesis
space does not matter, often, for the ease of notation, the languages are given in place of the
indices as conjectures of the learner.

3 Some Illustrative Examples

We now provide some examples to give insight into the learning criteria considered and their
properties. Example 7 shows that learnability by automatic learners cannot be characterised from
the inclusion structure of a family alone, as the inclusion structure in the class of co-singleton
sets is independent of the alphabet size.

Example 7. The family of all co-singleton sets {0, 1}∗ − {x}, with x ∈ {0, 1}∗, is automatic.
It does not have an automatic learner, as such a learner cannot memorise all the data observed
[18]. However, it can be learnt by an automatic feedback learner (using one query per round),
which converges to a hypothesis for {0, 1}∗ − {x}, for the length-lexicographically least member
x of {0, 1}∗ for which the feedback query answer remains negative forever.

In contrast, the family of all sets {0}∗ − {x}, with x ∈ {0}∗, has an automatic learner using
memory bounded by the size of the longest datum seen so far. This is so because, automatic
families defined over unary alphabet can be learnt by an automatic learner whenever they satisfy
Angluin’s tell-tale condition [18].

Example 8 deals with intervals of the lexicographic ordering; one could formulate similar results
also with other automatic linear orderings. For the case of the lexicographic order, there is a
difference between closed and open intervals.

Example 8. The family of the closed intervals Lconv(x,y) = {z ∈ {0, 1}∗ : x ≤lex z ≤lex y}
is automatic and can also be learnt by an automatic learner with 2-bounded example memory.
Furthermore, it has an automatic iterative learner. Both learners memorise, either explicitly or
implicitly by padding into the hypothesis, the lexicographically least and greatest data seen so far.

The family of the open intervals Lconv(x,y) = {z ∈ {0, 1}∗ : x <lex z <lex y} is also auto-
matic. However, it cannot be learnt as it violates Angluin’s tell-tale condition. The open interval

7



Lconv(000,1) is the ascending union of the open intervals Lconv(03,01m); already Gold [13] observed
that classes of this form cannot be learnt from positive data.

The following examples show the limitations and possibilities for learners which use a marked
memory space but do not have access to any long term memory. In case (a) the marked memory
space can be made more concrete by just marking off which hypotheses have been issued and
which data-items have been observed. Note that the family in (a) is the same as in Example 7.

Example 9. (a) An automatic learner without any long term memory, but using at most one
feedback and at most two hypothesis queries per round, can learn the class of all co-singleton
subsets of {0, 1}∗.

(b) An automatic learner, using a marked memory space of type 1 but no other memory, cannot
learn the class {S ⊆ {0, 1}∗ : S has at most two elements}.

Proof. (a) The automatic learner for the class is the following. For y ∈ {0, 1}∗, let Ly =
{0, 1}∗ − {y}. Let succ(x) be the length-lexicographic successor of x within the given domain.
Assume that the input is of the form x01n for some n. Then the learner computes the y with
succ(y) = x, if any. If y exists and queries determine that hypothesis y was conjectured previously,
hypothesis x was not conjectured previously and y has been observed in the input data, then
the learner conjectures hypothesis x. If y as above does not exist and queries determine that
hypothesis x was not conjectured previously, then the learner conjectures x. In all other cases,
the learner conjectures ? in order to signal that there is no new conjecture (that is, it repeats
the previous conjecture). When learning Lx, it is easy to see that, for all y <ll x, eventually y is
conjectured, y is observed in the input and, then, succ(y) is conjectured. Hence, x is eventually
conjectured. The learner never conjectures succ(x) as x never shows up in the input; indeed, the
learner will output ? after the time it conjectures x.

(b) Suppose an automatic learner using marked memory space of type 1 (and no long term
memory) learns the class {{x, y} : x <ll y}. Now consider the text y ◦ x ◦ x ◦ x ◦ . . . being
presented to the learner. Note that the learner, when reading x, can ask only constantly many
questions. Thus, there are two strings y, z >ll x such that, among the strings queried by x, the
same strings are marked on input y and input z. It follows that the learner either converges on
the texts y ◦x ◦x ◦x ◦ . . . and z ◦x ◦x ◦x ◦ . . . to the same conjecture, or abstains from taking x
into account for making its conjecture, which is thus based on y or z only, respectively. Hence,
the learner fails to learn one of the languages {y}, {z}, {x, y}, {x, z}. 2

Further examples on learnable automatic families can be found in the prior literature on auto-
matic learners [18, 19].

4 Learning with Feedback Queries

The following result shows that feedback queries together with a quite liberal long term mem-
ory permit to reach the full learning power, that is, every family satisfying Angluin’s tell-tale
condition can be learnt this way. Equivalently one can also say that the automatic learners with
feedback are as powerful as algorithmic learners without memory limitations.
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Theorem 10. If automatic family L satisfies Angluin’s tell-tale condition, then L can be learnt
by an automatic learner using one-feedback query per round and a long term memory bounded
by the longest word seen so far plus a constant.

Proof. Suppose L = {Lα : α ∈ I} is an automatic family satisfying Angluin’s tell-tale condition.
Without loss of generality assume that for α, α′ ∈ I with α 6= α′, Lα 6= Lα′ , By results from [19],
there exists a constant c such that, (i) for each index α, {w : |w| ≤ |α|+ c} is a tell-tale set for
Lα and (ii) for each L ∈ L, if L is finite, then there exists an index α such that L = Lα and
|α| ≤ c + d where d is the length of the longest string in L. Fix such a constant c. The goal of
the learner is to find an α such that

(a) the input contains the above tell-tale set for Lα and
(b) every element in the input is contained in Lα.

Intuitively, for each potential conjecture α, the learner checks if the above tell-tale set for Lα is
contained in the input. If so, then it checks if every string in the input language is contained in
Lα. If any of these are violated, then the learner tries the next possible conjecture α. However,
potential obstacles for doing this are

– the learner may not yet have seen the tell-tale set for Lα, but these elements appear later in
input;

– the learner may already have seen an element outside Lα, forgotten this fact, and the future
elements to be seen are all in Lα.

To address the first problem above, each potential α will be tested more and more times until the
algorithm finds the correct hypothesis. To address the second problem, feedback queries are used
to check, for all strings length-lexicographically at most the largest datum seen before current
conjecture α was tried, if any of them has been seen earlier but not in Lα.

The memory of the learner is of the form conv(z, α, y, b). Here z is the length-lexicogra-
phically largest datum seen so far, α is the current conjecture (which will be of length at most a
constant plus the length of z), b ∈ {0, 1} is used to remember whether the algorithm is testing
clause (a) or (b) above, and y is used to remember which current string (relevant to (a) and
(b) above) is being tested (the length of y will be at most the maximum of (a constant plus
the length of α, the length of z)). Note that for (b), the algorithm need only use feedback for
strings length-lexicographically smaller than the largest string seen up to the point at which the
algorithm started testing for (b) above; rest of the strings are tested as they arrive.

Without loss of generality assume that ε is the length-lexicographically least string in D (the
domain for the languages) as well as in I, the set of indices.

Initial memory of the learner is (ε, α, ε, 0), where α is the length-lexicographically largest
index which is of size at most c. Let succ(y), pred(y) denote the length-lexicographic successor
and predecessor of y in domain D, and pred(α) denote the length-lexicographic predecessor of α
in the index set I (here pred(ε) = ε). On input x and previous memory (z, α, y, b) the algorithm
follows that of the following three cases which applies.

Case b = 0: (* this step checks whether the learner has already seen the tell-tale set for Lα *)
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If y ∈ Lα and y has not been seen in the input so far
Then the new memory of the learner is (z′, α′, ε, 0), where z′ is the length-lexicographically

largest datum seen so far; if α 6= ε, then α′ is length-lexicographic predecessor of α, oth-
erwise α′ is the length-lexicographically largest index of length at most |z′|+ c; conjecture
of the learner is irrelevant in this case. (* Here the learner has not seen the tell-tale set
for Lα, and thus tries the next possible α. *)

Else If y is the length-lexicographically largest string of length at most |α|+ c
Then new memory of the learner is (z′, α, z′, 1), where z′ is the length-lexicographically

largest string seen so far. The conjecture of the learner is Lα. (* Here the learner has seen
the tell-tale set for Lα, and thus goes on to test if the input language is a subset of Lα. *)

Else let new memory of the learner be (z′, α, succ(y), 0) and the conjecture of the learner be
Lα, where z′ is the length-lexicographically largest string seen so far. (* Here the learner
continues checking whether the tell-tale set for Lα has been seen or not. *)

Case b = 1 and y 6∈ Lα but y has been seen in the input so far or x 6= # and x 6∈ Lα: The new
memory of the learner is (z′, α′, ε, 0), where z′ is the length-lexicographically largest datum
seen so far; if α 6= ε, then α′ is length-lexicographic predecessor of α, otherwise α′ is the
length-lexicographically largest index of length at most |z′| + c; conjecture of the learner is
irrelevant in this case. (* Here the learner has seen a datum not belonging to Lα, and thus
tries the next possible α. *)

Neither of the two cases above: The new memory of the learner is (z′, α, pred(y), 1), where z′

is the the length-lexicographically largest datum seen so far; conjecture of the learner is Lα.

Suppose the input text is for a target language Lγ. If Lα 6= Lγ, then any memory of the form
(·, α, ·, ·), will eventually be updated with changed value of α as either the input does not contain
the tell-tale set for Lα or the input contains an element not in Lα. Also, as length of γ is at
most |z|+ c, for the longest element z in the input, eventually it will be the case that the learner
has a memory of the form (z, α, ε, 0), where Lα = Lγ and the input seen already contains all
the elements in {x ∈ Lα : |x| ≤ |α| + c}. But this implies that the learner will eventually have
memory (z′, α, y = z′, 1), where z′ is the longest datum seen up to that time (this happens when
the learner has verified that all the elements of the above tell-tale set for Lα are present in the
input). From then on the value of y decreases (until its value reaches ε) in each stage, and the
learner always conjectures Lα. Thus, the learner learns the target language Lγ. 2

Thus, the learners considered in the above result are as general as recursive learners (see Propo-
sition 1). Therefore, the next results compare various more restrictive models of learning with
feedback and limitations on the long term memory. First, it is shown that there are cases where
feedback queries are more important than any form of long term memory.

Theorem 11. There is a class L satisfying the following two statements:

(a) An automatic learner without any long term memory, but using one-feedback query per round,
can learn L;

(b) No automatic learner learns L.
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Proof. Let Lε = {0, 1}+ and, for all x ∈ {0, 1}+, let Lx = {y ∈ {0, 1}∗ : |y| ≤ |x|, y 6= x}∪{y2n :
|y| = |x|, n > 0}. Let L = {Ly : y ∈ {0, 1}∗}.

(a) L can be learnt by an automatic learner using 1 feedback query. On inputs from {0, 1}∗,
query if ε belongs to the input seen — if not, then output Lε; otherwise, output ?. On inputs of
the form x2n, n > 0, query whether x belongs to the input seen — if not, then output Lx else
output ?. It is easy to verify that the above learner learns L.

(b) Suppose by way of contradiction that M is automatic and learns L. Without loss of
generality assume that M always outputs a hypothesis.

Let m be so large that there are two sequences σ1 and σ2, each containing m elements of
{0, 1}m, such that content(σ1) 6= content(σ2) and M has the same memory and hypothesis after
processing either σ1 or σ2. As M is automatic, such m, σ1 and σ2 exist (as the memory of
M can be of size at most a constant times m after seeing such σ1 or σ2, and there are (2m

m )
different subsets of {0, 1}m of size m). Let x1 be in content(σ1) − content(σ2) and x2 be in
content(σ2) − content(σ1). Let T be a text for {y : |y| ≤ m, y 6= x1, y 6= x2} ∪ {y2n : |y| = m}.
Then, M on σ1 ◦ T and σ2 ◦ T converges to the same hypothesis, though these are respectively
texts for Lx2 and Lx1 . 2

Theorem 12. There is a class L with the following properties:

(a) L can be learnt by an automatic learner with 1-bounded example memory;
(b) L can be learnt by an automatic learner using two feedback queries per round, along with a

long term memory bounded by the size of the hypothesis;
(c) L cannot be learnt by an automatic iterative learner using feedback queries.

Proof. Let L consist of L0 = {0}+ and Lconv(x,y) = {x, y} ∪ {0n+1 : x(n) = 1}, where x ∈
{0, 1}∗ · {1} and y ∈ {0}|x| · {0}∗.

(a) The learner using the bounded example memory, on every input z and long term memory
A, takes the first case below which applies:

1. z = #: The learner outputs ? to signal the absence of a new conjecture and A remains
unchanged.

2. A = ∅ and z ∈ 0∗: The learner conjectures L0 and A is updated to {z}.
3. A = {0n} and z = y for some y ∈ {0}∗: The learner conjectures L0 and A is updated to
{0max {n,|y|}}.

4. A = ∅ and z = x for some x ∈ {0, 1}∗ · {1}: The learner conjectures Lx,0|x| and A is updated
to {x}.

5. A = {0n} and z = x for some x ∈ {0, 1}∗ ·{1} and n < |x|: The learner conjectures Lconv(x,0|x|)

and A is updated to {x}.
6. A = {0n} and z = x for some x ∈ {0, 1}∗ · {1} and n ≥ |x|: The learner conjectures Lconv(x,0n)

and A is updated to {x}.
7. A = {x} with x ∈ {0, 1}∗ · {1} and z = y for y ∈ {0}∗ with |y| > |x|: The learner conjectures

Lconv(x,y) and A remains unchanged.
8. A = {x} with x ∈ {0, 1}∗ · {1} and (z = x or z = y for y ∈ {0}∗ with |y| ≤ |x|): The learner

outputs ? to signal that there is no new conjecture and A remains unchanged.
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It is easy to see that the learner above is automatic. Clearly, the learner succeeds to learn L0, as
the learner conjectures L0 when the first datum appears in the input and then never changes its
mind. Furthermore, when learning Lconv(x,0|x|), the learner will issue this hypothesis on receipt
of the datum x and from then on abstain from conjecturing a new hypotheses. When learning
Lconv(x,y) with y ∈ {0}∗ and |y| > |x|, there are two cases: If the learner receives the datum y at
least one time after receiving x, then the learner will conjecture conv(x, y) on the receipt of this
y; as y is the only word in {0}∗∩Lconv(x,y) which is longer than x, this is the only case when such
a hypothesis is issued; thus the learner learns Lconv(x,y). Otherwise the learner receives y before
x and thus A = {y} when x is received by the learner as input for the first time — at which
point the learner will issue the hypothesis Lconv(x,y) and output ? from then onwards. Thus the
learner learns Lconv(x,y) as well.

(b) The automatic learner using feedback queries and hypothesis size memory first conjectures
L0 and keeps one bit of information which tells whether an even or an odd number of distinct
data items that have been seen so far — this can be determined by making a feedback query on
the current datum.

If and when the learner sees x 6∈ 0∗ in the input, the parity bit is used in order to determine
whether the parity of the number of examples observed coincides with the number of the elements
in Lconv(x,0|x|). If so, then the learner conjectures Lconv(x,0|x|). Otherwise, the learner searches, using
its second feedback query in each round, for an n > |x| such that 0n appears in the input (this
can be done by using hypotheses (which can be stored in memory) of the form conv(x, 0r), and
correspondingly querying 0r in the next round, where r = |x|+ 1, |x|+ 2, |x|+ 3, . . .).

Note that, during the above process, if a new datum, not previously seen, is observed by the
learner, then the parity of the number of observed data becomes consistent with Lconv(x,0|x|) and
the algorithm above switches back to outputting Lconv(x,0|x|).

(c) For an automatic iterative learner M using feedback queries, there is a locking sequence
for M on Lε, that is, there exists a σ such that the conjecture of M does not change beyond
σ on any text for Lε which starts with σ (see [5, 28]). Without loss of generality assume that σ
contains at least one string. Let x be such that Lx,0|x| = {x} ∪ content(σ). While processing the
text T = σ ◦ x ◦ x ◦ x . . ., M asks only finitely many different feedback queries. Let n be such
that n > |x|, n is greater than length of any element in σ and 0n is not queried by M on the
text T . Then M converges on the texts σ ◦ 0n ◦ x ◦ x ◦ x ◦ x . . . and σ ◦ x ◦ x ◦ x ◦ x ◦ x . . . to
the same hypothesis although these two texts are for two different languages, namely Lx,0|x| and
Lx,0n . 2

The following theorem gives the advantages of bounded example memory over feedback.

Theorem 13. Let i, j ≥ 1. Let L = {F : |F | = i + 1}. Then,

(a) Some automatic learner can learn L using i-bounded example memory.

(b) No learner with i− 1-bounded example memory and j-feedback can learn L.

Proof. (a) The automatic learner memorises the first i distinct elements in the input. If the
learner has already memorised i elements and sees a datum not in the memory, then it conjectures
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the corresponding set of i+1 elements, else it outputs ?. It is easy to verify that the above learner
learns L.

(b) Suppose by way of contradiction a learner M learns L using (i − 1)-bounded example
memory and j-feedback. Then, consider x0, x1, . . . , xi ∈ {0, 1}k with k > i such that these strings
are distinct and in lexicographic ascending order and C(x0x1 . . . xi) ≥ (i + 1) · k − c where C is
the (plain) Kolmogorov complexity [27] and c is a constant depending on i but not on k such
that (2k

i+1) ≥ 2(i+1)·k−c for all k > i; note that there are at least (2k

i+1) many ascendingly ordered
tuples of distinct i+1 binary strings of length k whenever k > i. At each time where M makes a
correct conjecture on a text for {x0, x1, . . . , xi}, one can compute x0x1 . . . xi from the hypothesis
of the learner, which depends only on M ’s current memory and M ’s current datum and the
answers to the feedback queries. Up to an additive constant independent of k: the memory has
Kolmogorov complexity at most (i−1)·k; the current datum has Kolmogorov complexity at most
k; the feedback answers have the Kolmogorov complexity at most j. It follows that x0x1 . . . xi

has Kolmogorov complexity at most i · k + j + d where d is a constant which depends on i, j but
not on k; this implies (i + 1) · k − c ≤ i · k + j + d and k ≤ j + c + d, a contradiction to the fact
that k can be arbitrary large. 2

The following theorem gives the advantages of feedback over bounded example memory.

Theorem 14. For w ∈ {0, 1}n, let Lw = {{0, 1}n · 2 · 0∗}−{w · 2}. Let L = {Lw : w ∈ {0, 1}+}.
Then, L can be learnt using 1 feedback query. However, L cannot be learnt by any automatic
learner.

Proof. (a) Consider a learner which works as follows:

– On all inputs not of the form w20+, the learner outputs ?;
– On input w20+, the learner queries w2 — if the answer is no, then the learner conjectures

Lw, else the learner outputs ?.

When learning Lw the learner will see infinitely often an input of the form w20+ and conjecture
Lw infinitely often. For other strings v ∈ {0, 1}|w|, the learner conjectures Lv only finitely often,
as eventually the datum v2 is observed in the input and from then on the corresponding feedback
query is answered negatively. Furthermore, if |v| 6= |w| then no input of the form v20+ is observed
and therefore Lv is never conjectured. Hence there are only finitely many wrong conjectures and
infinitely many correct conjectures and thus the learner learns L using one feedback query.

(b) Suppose by way of contradiction that M is an automatic learner which learns L. Then, for
large enough m, there exist σ, σ′ such that (i) each of σ, σ′ is of length m and contains m distinct
strings from {0, 1}m2, (ii) content(σ) 6= content(σ′) and (iii) M(σ) = M(σ′). Note that there
exist such σ, σ′ for large enough m as there are (2m

m ) possibilities for the sequences of length m
(with distinct content) containing exactly m elements from {0, 1}m, but the size of the hypothesis
and memory of M after seeing such sequences can be of length at most cm, for some constant
c [18]. Let y2 and y′2 respectively be in content(σ)− content(σ′) and content(σ′)− content(σ).
Let T be a text Ly ∩ Ly′ . Then, M on σT and σ′T converges to the same index or diverges on
both. Thus, M does not learn L. 2
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The following gives a class which can be learnt using either bounded example memory or feedback
of size k but not of smaller size.

Theorem 15. Let k ≥ 1. Let L = {F : ∃n [∅ ⊆ F ⊆ {0m : (k + 1)n ≤ m < (k + 1)(n + 1)}]}.
Then the following statements hold:

(a) Some automatic learner can learn L using k-bounded example memory;
(b) Some automatic learner without any long term memory can learn L using k feedback queries;
(c) L cannot be learnt by any automatic learner using only k − 1 bounded example memory

(where the learner does not have any memory besides the examples memorised);
(d) An automatic learner without any long term memory cannot learn L using only k−1 feedback

queries.

Proof. (a) The automatic learner memorises its inputs as long as it sees at most k elements.
If the input element is in the memory or #, then the learner outputs ?. Otherwise (the input
element is not in the memory), the learner outputs a conjecture for the set of memorised elements
plus the new element seen. It is easy to verify that the above learner learns L.

(b) On input 0m such that (k + 1)n ≤ m < (k + 1)(n + 1), the automatic learner can query
the rest of the elements in {0` : (k +1)n ≤ ` < (k +1)(n+1), ` 6= m}, and output the conjecture
corresponding to the elements found to be present in the input.

(c) Suppose by way of contradiction that the automatic learner learns L using at most k− 1
memory elements. Let F be of minimal cardinality such that, for some input segment σ with
content(σ) = F , the memory of the learner after seeing σ is a proper subset of F , where F ∈ L.
Suppose SF is the memory. Let x be such that x 6∈ F and F ∪{x} ∈ L. Now, the learner cannot
distinguish between input being σ ◦ x ◦ x ◦ x ◦ x . . . and τ ◦ x ◦ x ◦ x ◦ x . . ., where τ is some
segment with content(τ) = SF .

(d) Suppose by way of contradiction otherwise. Let x ∈ {0}∗ be such that the learner on
empty input does not conjecture a language containing x. Suppose n is such that (k + 1)n ≤
|x| < (k + 1)(n + 1). Let y be such that, (k + 1)n ≤ |y| < (k + 1)(n + 1), y 6= x and the learner
does not query y on input x. Then, both {x} and {x, y} are in L, but the learner fails on at least
one of the texts y ◦x ◦x ◦x ◦x ◦ . . . and x ◦x ◦x ◦x ◦ . . . to learn the corresponding language. 2

Parts (a) and (b) of the above theorem can be generalised to show that the class L can be learnt
by an automatic learner which uses, for given r ∈ {0, 1, . . . , k}, a bounded example memory of
size r and k − r feedback queries.

5 Learning using a Marked Memory Space

An automatic learner using a marked memory space of type 1 is a generalization of a learner
using feedback queries. Hence it follows from Theorem 10 that every class satisfying Angluin’s
tell-tale condition can be learnt by a learner with marked memory space of type 1 and a long
term memory bounded by the size of the largest example seen so far plus a constant. Hence,
the explorations in this section target at more restricted limitations of the long term memory
combined with the usage of a marked memory space.
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Theorem 16. Every automatic family satisfying Angluin’s tell-tale condition has an automatic
learner, with long term memory bounded by hypothesis size plus a constant, using in addition a
marked memory space of type 2.

Proof. The aim of the learner is to search for an α such that a tell-tale set for Lα is contained in
the input, and the input language is contained in Lα. The idea of the proof is similar to that of
Theorem 10. However a marked memory space is used instead of feedback queries. Furthermore,
the long term memory needs will be less than that used in Theorem 10.

In the algorithm for the learner, one uses a marked memory space consisting of entries of the
form (hypothesis, 0), (hypothesis, 1) and (datum, 2). The algorithm has two variables, α ranging
over the indices and y ranging over possible words. Let succ(α) denote the length-lexicographic
successor of index α and succ(y) denote the length-lexicographic successor of datum y within
the respective domains. Without loss of generality, suppose ε is the length-lexicographically least
possible values for both indices and data.

The long term memory holds the hypothesis α and the pointer y. Note that y is only used
to test whether all elements of a tell-tale set are there in the input seen so far. Recall from
Proposition 1 that there is a constant c such that the strings in Lα of length at most |α| + c
forms a tell-tale set for Lα. Hence, the size of the long term memory conv(α, y) is bounded by
the size of the hypothesis α plus a constant. Furthermore, x refers to the current datum, but x
will not be memorised in the long term memory and discarded when reading the next datum.
The initial values of α and y are ε. Memory of the form (z, 2) is used for just marking the data
seen so far. Marking of (α, 1) is used to denote that Lα does not contain some input string seen
so far (thus the main remaining job of the algorithm is to check whether the tell-tale set for
Lα is contained in the input seen so far). Marking of (α, 0) is used to denote that hypothesis
length-lexicographically smaller than α have been considered earlier. This allows us to consider
each possible hypothesis arbitrarily often until a correct hypothesis is found. In each stage of
the algorithm the following is done:

1. Beginning of the stage.
Current input is x and current memory is conv(α, y).
Query whether (α, 0), (α, 1) and (y, 2) are marked in the memory space.

2. If (α, 0) is not marked,
then mark (α, 0), let α = ε, let y = ε and go to step 6.

3. If (α, 1) is marked or x 6= # and x /∈ Lα,
then let α = succ(α), let y = ε and go to step 6.

4. If y ∈ Lα and (y, 2) is not yet marked and y 6= x,
then let α = succ(α), let y = ε and go to step 6.

5. If |succ(y)| ≤ |α|+ c,
then let y = succ(y) and go to step 6.

6. Mark (x, 2). If x 6= #, then mark (β, 1) for all β where x /∈ Lβ.
7. Output the hypothesis α.
8. The new memory is the new value of conv(α, y).

End of the stage.
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Note that the above steps are done in each stage when processing a new datum x, starting at step
1 and going up to step 8. All markings are made after the queries on old markings had been done
and the updates might depend on the old markings. The algorithm can be realised by automatic
functions using the answers to the queries given and the queries can also be determined by
automatic functions.

Now it remains to show that the algorithm learns the class L. For this, assume, without loss
of generality, that every language in the class has exactly one index. Suppose that Lγ is the
language to be learnt. Further suppose all elements of Lγ which are of length at most |γ| + c
have already shown up in the input. If the current index α is not equal to γ, then either during
the inference process some x /∈ Lα shows up, causing (α, 1) to be marked, and thus causing α to
be updated to succ(α) in step 3, or there exists a z ∈ Lα−Lγ with |z| ≤ |α|+ c (due to tell-tale
set property). In the later case, eventually the variable y will take the value z and then α will
be updated to succ(α) by step 4, as z will never be observed and, therefore, (z, 2) will never be
marked. Furthermore, when α takes a new value not taken before, step 2 will reset α to ε and
α will cycle to all the values again until it eventually reaches the value of γ. Then steps 2 and
3 will not apply. Furthermore, as all the members of Lγ of length at most |γ| + c have already
been observed, step 4 will also not apply. Therefore, the value of α will no longer change and y
will eventually stabilise. So the algorithm would converge to α = γ and will conjecture Lγ from
that point of time onwards. Thus, Lγ is learnt by the algorithm. 2

One might ask whether it is necessary to have a marked memory space of type 2 in the above
result. The next result shows that in some cases this is indeed needed and a marked memory
space of type 1 is not enough.

Theorem 17. Let L be the class consisting of {0}+ and all finite sets F with {ε} ⊆ F ⊆ {0}∗.
L has an automatic learner. However, if an automatic learner is permitted to use only long term
memory bounded by the size of its current hypothesis plus a marked memory space of type 1,
then L is not learnable.

Proof. Jain, Luo and Stephan [18] showed that the class L can be learnt by an automatic
learner, as it is a class over the unary alphabet and satisfies Angluin’s tell-tale condition.

Now consider any automatic learner where the memory is bounded by the hypothesis size.
Using standard locking sequence methods [5, 28], one can show that, when learning the language
{0}+, there is a sequence σ and a constant c such that the learner, on any text for {0}+ starting
with σ, does not change the conjecture after having processed σ and never takes a long term
memory value of length longer than c. Furthermore, there is a constant c′ such that, when reading
an input 0n, the learner marks or queries only strings of length up to c′ or of length between
n− c′ and n + c′.

Now consider the learner on input σ◦0n1 ◦0n2 ◦ . . ., where ni+1 > ni +2c′ and n1 > a+2c′+m
for a being the length of the longest string in σ and m being the length of the longest string
marked by the learner while reading σ. Note that, on input σ ◦ 0n1 ◦ 0n2 ◦ . . ., there is a long
term memory value which is repeated infinitely often in the above run of the learner. Let this
long term memory value be mem. Let k be large enough such that memory of the learner after
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seeing σ ◦ 0n1 ◦ 0n2 ◦ . . . ◦ 0nk is mem, and any string of length at most c′ which is ever marked
(on input text σ ◦ 0n1 ◦ 0n2 ◦ . . .), gets marked by the time the learner sees σ ◦ 0n1 ◦ 0n2 ◦ . . . ◦ 0nk .
Now consider the behaviour of the learner on input σ ◦ 0n1 ◦ 0n2 ◦ . . . ◦ 0nk ◦ ε∞. As this input
is in L, the learner converges on this input text to some conjecture (say β) and does not query
or mark any string of length larger than a number d (as the learner receives only finitely many
strings in input).

Let r and r′ > r be such that, nr > nk + d + 2c′ and memory of the learner is mem after
having seen σ ◦ 0n1 ◦ 0n2 ◦ . . . ◦ 0nk ◦ 0nk+1 ◦ . . . ◦ 0nr−1 and also after having seen σ ◦ 0n1 ◦ 0n2 ◦
. . . ◦ 0nk ◦ 0nk+1 ◦ . . . ◦ 0nr−1 ◦ 0nr ◦ . . . ◦ 0nr′ . Note that there exist such r and r′, as the learner has
memory mem infinitely often on the input σ ◦ 0n1 ◦ 0n2 ◦ . . .; thus, the memory of the learner is
also mem after having seen σ ◦ 0n1 ◦ 0n2 ◦ . . . ◦ 0nk ◦ 0nr ◦ 0nr+1 ◦ . . . ◦ 0nr′ as the learner’s outputs
only depend on its memory and the answer to the queries asked.

Thus, the learner also converges to β on the input σ◦0n1◦0n2◦. . .◦0nk◦0nr◦0nr+1◦. . .◦0nr′ ◦ε∞.
It follows that the learner converges to the same conjecture on the two different languages given
by the texts σ ◦ 0n1 ◦ 0n2 ◦ . . . ◦ 0nk ◦ ε∞ and σ ◦ 0n1 ◦ 0n2 ◦ . . . ◦ 0nk ◦ 0nr ◦ 0nr+1 ◦ . . . ◦ 0nr′ ◦ ε∞.
Thus, the learner fails to learn L. 2

It is open whether an automatic learner, with the memory bounded by the hypothesis size, can
be made iterative [18]. Theorem 18 deals with the counterpart of this problem when a marked
memory space of type 1 is also permitted.

Theorem 18. If a class L has an automatic learner with its long term memory bounded by
hypothesis size and not using any marked memory space, then L also has an automatic iterative
learner using hypothesis queries and a new underlying automatic family as hypothesis space.

Proof. Assume that automatic learner M is learning L = {Li : i ∈ I} using a memory over Γ ∗.
Without loss of generality assume that initial hypothesis of M is not ?. Let Hconv(i,g) = Li for
all i ∈ I and g ∈ Γ ∗. For a current datum x and memory g and hypothesis i, let

F (conv(i, g), x) =


conv(i, h), if M on input x and memory g

conjectures ? and takes new memory h;
conv(j, h), if M on input x and memory g

conjectures j and takes new memory h.

The function F is automatic. Note that F can be considered as a learner which starts with initial
hypothesis conv(inithyp, initmem), where initmem is the initial memory of M and inithyp is
the initial hypothesis of M . Then, for any input segment σ, F (σ) = conv(i, g), where i is the
most recent hypothesis of M after reading input σ and g is the memory of M after reading
input σ.

Now one builds a new automatic iterative learner N , which uses hypothesis space {Hconv(i,g) :
i ∈ I, g ∈ Γ ∗} and which tries to follow M and F as closely as possible, but which does not return
to a hypotheses it has once abandoned. N starts with the same initial hypothesis as F that is with
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conv(inithyp, initmem). Then the update function of N is the following one:

N(conv(i, g), x) =


F (conv(i, g), x), if F (conv(i, g), x) had not been

conjectured previously;
conv(i, g), if F (conv(i, g), x) had been

conjectured previously.

Note that N can find out using a hypothesis query whether F (conv(i, g), x) had been conjectured
previously. As F is automatic, so is N . Furthermore, assume that N(x0◦x1◦. . .◦xn) = conv(in, gn)
for some text x0 ◦ x1 ◦ . . . for some language in L. Then there are sequences τ0, τ1, . . . (with τn

containing elements from {x0, x1, . . . , xn}) such that F after processing x0◦τ0◦x1◦τ1◦ . . .◦xn◦τn

has the hypothesis (in, gn). One can show this by induction on n. It is clearly true for n = 0, as
one can choose τ0 = ε. Assume n > 0 and assume the statement to be true for values smaller
than n. If N(conv(in−1, gn−1), xn) is defined via the first clause in its definition, then one can
choose τn to be empty sequence. If N(conv(in−1, gn−1), xn) is defined via the second clause in
its definition, then suppose F (conv(in−1, gn−1), xn) = conv(im, gm), which was conjectured by
N after x0 ◦ x1 ◦ . . . ◦ xm (here m could be −1 and F (conv(in−1, gn−1), xn) is then the initial
hypothesis of N). One then chooses τn to be xm+1 ◦ τm+1 ◦ xm+2 ◦ τm+2 ◦ . . . ◦ xn−1 ◦ τn−1. It is
easy to verify that N(x0 ◦ x1 ◦ . . . ◦ xn) = F (x0 ◦ τ0 ◦ x1 ◦ τ1 ◦ . . . ◦ xn ◦ τn).

Suppose that the sequence of hypothesis of M converges on the text x0 ◦ τ0 ◦x1 ◦ τ1 ◦ . . . to i.
Then, for almost all n, in as defined above is i. Furthermore, |gn| ≤ |i| + c for some constant
c and all n. As N does not return to old abandoned hypotheses, the sequence of (in, gn) also
converges to a pair conv(i, g); here the first component must be i as almost all in are i. It follows
from Hconv(i,g) = Li that N learns the input language. 2
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