This course material is now made available for public usage.
Special acknowledgement to School of Computing, National University of Singapore
for allowing Steven to prepare and distribute these teaching materials.

acm International Collegiate
Programming Contest

CS3233 IEM. |t
Competitive Programming

Dr. Steven Halim

Week 12 — Harder Stuffs

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Jan-Apr 2012

Outline

Mini Contest #10 (the last one) + Discussion + Break
CLASS PHOTO!!

Admins

Last Lecture (let’s not get too ambitious):
— Problem Decomposition (Section 8.2)
— Meet in the Middle/Bidirectional Search

The harder ones

(you have seen some of these before; now, let’s demistify some of them)

Soft skills needed:
Ability to spot the individual components and break them apart!

This is based on what | know from ~ 1422 UVa problems

PROBLEM DECOMPOSITION

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Problem Decomposition (1)

Binary Search the Answers + X

We have seen this form earlier (Chapter 3.3)

But the “X” component of this ‘classical’ combination
can be “many thing”, not just simulation problem

So far, | have seen that X can be:

— Greedy algorithm: UVa 714, 11516
— MCBM: UVa 10804, 11262

1 VI Wil Vie - W A wlin W S L] e obs Gos W G

— SSSP: UVa 10186
— Max Flow: UVa 10983

Tips to spot this type: If you guess the answer,
will the problem turn into a True/False problem?

Problem Decomposition (2)
Involving DP 1D Range Sum/Max/Min

This one can be easily decomposed

Tips to spot this type:
The problem ask you for static range queries

— Especially the 1D one
— Usually range sum, but can also be max/min queries, how?*

Range Sum Query: Pre-process the answers in O(n)
— dp[0] = ans[0]

— dpli] = dpli-1] + ans|i] Vi e[1..n-1]

So that each RSQ can be answered in O(1)

— rsq(i, j) =dp[j] ifi==0, or dp|[j] -dp[i-1]ifj>0

Problem Decomposition (3)

SSSP/APSP/SCC contraction + DP/Something else

Another ‘classical’ combination is to use shortest path (or SCC contraction)
as one sub problem to transform the original problem into a shortest path
table (or a DAG) and then pass this table (or DAG) to a DP/other solution

BFS/Dijsktra’s to build shortest path matrix - DP-TSP
(UVa 10937, 10944, 10405, 11813, NOI 2011)

Run Dijkstra’s algorithm = build DAG from SP information =
Counting paths on DAG (UVa 10917)

Run Floyd Warshall’s algorithm = do something else
(UVa 1233, 10793, 11463)

Run Tarjan’s SCC algorithm to contract SCC = Longest Path in DAG
(UVa 11324)

Tips to spot this type: Shortest path (or SCC) is
one of the component, but not the only one...

Problem Decomposition (4)
X+Y

e Here, X is the “main issue”

— But that problem is written in Y flavour

e Tips to spot this type: Usually,

— X is either: BFS, Complete Search, Binary Search,
(mostly Chapter 3 stuffs), and

— Y is either: Graph, Mathematics, or Geometry
(mostly Chapter 4-5-7 stuffs)

e Example: UVa 11730

— Actually a BFS (SSSP on unweighted graph) problem
— But the graph is implicitly derived via Mathematical rules

Problem Decomposition (5)
Involving (Advanced) Data Structures/DS

Tips to spot this type: If you got a problem “AC”
but very slow (TLE)

Consider the possibility that some operations in your
algorithm can be optimized by using a better DS

— This better DS are usually harder to implement though

These DSes are usually:

— Balanced BST: map/set,
or the self-coded one due to the need to augment data

— Binary Indexed (Fenwick) Tree
— Segment Tree, etc

Problem Decomposition (6)

Three (or More?) Components

e UVa 1079 — A Careful Approach

— http://uva.onlinejudge.org/external/10/1079.html
— ACM ICPC World Finals 2009 problem

e Solution:

— Complete Search + Binary Search the Answer + Greedy :0O

w e w
-+ 3 " e N
0 5 10 15 0 5 10 15 20 0 5 10 15
Answer: 7:30 Answer: 20:00 Answer: 7:30

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Problem Decomposition (7)

There are many other possible combinations...

Note: If there are X basic types of contest problems...
— There can be ,C, possible pairs of combinations

— And there can be ,C; triples...

You will get more familiar to spot the individual
components as you master them

— All the best

a.k.a. Bidirectional Search

MEET IN THE MIDDLE

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

*

UVa 11212 - Editing a Book

Rujia Liu’s Problem

Given n equal-length paragraphs numbered from 1 to n
Arrange them in the orderof 1, 2, ..., n

With the help of a clipboard,

you can press Ctrl-X (cut) and Ctrl-V (paste) several times

— You cannot cut twice before pasting, but you can cut several contiguous
paragraphs at the same time - they'll be pasted in order

The question: What is the minimum number of steps required?

Example 1: In order to make {2, 4, (1), 5, 3, 6} sorted,
you can cut 1 and paste it before 2 2 {1, 2, 4, 5, (3), 6}
then cut 3 and paste before 4 2 {1, 2, 3,4, 5, 6} =2 done \

Example 2: In order to make {(3, 4, 5), 1, 2} sorted,
you can cut {3, 4, 5} and paste it after {1, 2} =2 {1, 2, 3, 4, 5} \
or cut {1, 2} and paste it before {3, 4,5} =2 {1, 2, 3, 4, 5} \

Loose Upper Bound

e Answer: k-1

— Where k is the number of paragraph in the wrong position

e Trivial but wrong algorithm:
— Cut a paragraph that is in the wrong position
— Paste that paragraph in the correct position
— After k-1 such cut-paste, we will have a sorted paragraph

* The last wrong position will be in the correct position at this stage

— But this may not be the shortest way

e Examples:
— {(3),2,1} 2> {(2), 1,3} 2 {1, 2, 3} 2> 2 steps

— {(5)1 41 3; 2; 1} 9 {(4)1 3; 2; 1) 5} 9 {(3)1 2; 11 ﬂr 5} 9 {(2)1 1) él 4) 5} %
{1, 2, 3, 4, 5} = 4 steps

The Actual Answers

{3, 2,1}

— Answer: 2 steps, e.g.
* {(3),2,1}2{(2),1,3}>{1,2 3} or
* {3,2,(1)}=>1{1,(3),2}>({1, 23}

{5,4,3,2,1}

— Answer: Only 3 steps, e.g.
e {54,(3,2),1}2>{3,(2,5),4,1}> {3,4,(1, 2,5} > {1, 2, 3, 4, 5}

How about {5, 4,9, 8,7,3, 2,1, 6}?

— Answer: 4, but very hard to compute manually

How about {9, 8, 7, 6, 5, 4, 3, 2, 1}?

— Answer: 5, but very hard to compute manually

Some Analysis

There are at most n! permutations of paragraphs
— With maximum n =9, this is 9! or 362880
— The number of vertices is not that big actually

Given a permutation of length n (a vertex)

— There are C, possible cutting points (index i, j € [1..n])
— There are n possible pasting points (index k € [1..(n-(j-i+1))])
— Therefore, for each vertex, there are about O(n3) branches

The worst case behavior if we run single BFS on this search
space graph: O(V+E) = O(n! + n!*n3) = O(n!*n3)
— Withn =09, thisis 9! * 93 = 264539520 ~ 265 M, TLE (or maybe MLE...)

|AII other details are hidden for NUS ACM ICPC/Singapore 10l teams only :)|

dcssh
Text Box
All other details are hidden for NUS ACM ICPC/Singapore IOI teams only :)

Actually we will still meet again next week for final contest :D

SOME PARTING WORDS

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

*

What You Have Been Exposed To
(as of Tonight, Wed 04 Apr 2012)

Competitive Coding Style
Extensive usage of libraries
Bitmask

BIT/FT

Iterative BF Techniques:
Subset, Permutation

Recursive backtracking
Some classical Greedy problems
Binary Search the Answer

The thinking process to get DP states and
transitions

Graph DS, Traversal: DFS/BFS, MST
(briefly), SSSP: Dijkstra’s, Bellman Ford’s,
APSP: Floyd Warshall’s

Tarjan’s SCC algorithm

More DP techniques
Network Flow: Edmonds Karps’
Bipartite Graph: MCBM++

Mathematics-related problems: Log
techniques, Big Integer, Prime Factor
techniques, Modulo arithmetic

Various string processing skills

Suffix Tree/Array: String Matching, Longest
Repeated Substring,
Longest Common Substring

Basic geometry routines

Algorithms on polygon

Problem decomposition

Meet in the middle/bidirectional search

What You Have NOT Been Exposed To

(as of Tonight, Wed 04 Apr 2012)

Many more cool and exotic algorithms out there :0O
Maybe read CP3 in the future ©

Or join NUS ACM ICPC trainings

Or do self study

*

