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Outline

Mini Contest #10 (the last one) + Discussion + Break
CLASS PHOTO!!

Admins

Last Lecture (let’s not get too ambitious):
— Problem Decomposition (Section 8.2)
— Meet in the Middle/Bidirectional Search




The harder ones

(you have seen some of these before; now, let’s demistify some of them)

Soft skills needed:
Ability to spot the individual components and break them apart!

This is based on what | know from ~ 1422 UVa problems

PROBLEM DECOMPOSITION
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Problem Decomposition (1)

Binary Search the Answers + X

We have seen this form earlier (Chapter 3.3)

But the “X” component of this ‘classical’ combination
can be “many thing”, not just simulation problem

So far, | have seen that X can be:

— Greedy algorithm: UVa 714, 11516
— MCBM: UVa 10804, 11262
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— SSSP: UVa 10186
— Max Flow: UVa 10983

Tips to spot this type: If you guess the answer,
will the problem turn into a True/False problem?



Problem Decomposition (2)
Involving DP 1D Range Sum/Max/Min

This one can be easily decomposed

Tips to spot this type:
The problem ask you for static range queries

— Especially the 1D one
— Usually range sum, but can also be max/min queries, how?*

Range Sum Query: Pre-process the answers in O(n)
— dp[0] = ans[0]

— dpli] = dpli-1] + ans|i] Vi e[1..n-1]

So that each RSQ can be answered in O(1)

— rsq(i, j) =dp[j] ifi==0, or dp|[j] -dp[i-1]ifj>0



Problem Decomposition (3)

SSSP/APSP/SCC contraction + DP/Something else

Another ‘classical’ combination is to use shortest path (or SCC contraction)
as one sub problem to transform the original problem into a shortest path
table (or a DAG) and then pass this table (or DAG) to a DP/other solution

BFS/Dijsktra’s to build shortest path matrix - DP-TSP
(UVa 10937, 10944, 10405, 11813, NOI 2011)

Run Dijkstra’s algorithm = build DAG from SP information =
Counting paths on DAG (UVa 10917)

Run Floyd Warshall’s algorithm = do something else
(UVa 1233, 10793, 11463)

Run Tarjan’s SCC algorithm to contract SCC = Longest Path in DAG
(UVa 11324)

Tips to spot this type: Shortest path (or SCC) is
one of the component, but not the only one...



Problem Decomposition (4)
X+Y

e Here, X is the “main issue”

— But that problem is written in Y flavour

e Tips to spot this type: Usually,

— X is either: BFS, Complete Search, Binary Search,
(mostly Chapter 3 stuffs), and

— Y is either: Graph, Mathematics, or Geometry
(mostly Chapter 4-5-7 stuffs)

e Example: UVa 11730

— Actually a BFS (SSSP on unweighted graph) problem
— But the graph is implicitly derived via Mathematical rules



Problem Decomposition (5)
Involving (Advanced) Data Structures/DS

Tips to spot this type: If you got a problem “AC”
but very slow (TLE)

Consider the possibility that some operations in your
algorithm can be optimized by using a better DS

— This better DS are usually harder to implement though

These DSes are usually:

— Balanced BST: map/set,
or the self-coded one due to the need to augment data

— Binary Indexed (Fenwick) Tree
— Segment Tree, etc



Problem Decomposition (6)

Three (or More?) Components

e UVa 1079 — A Careful Approach

— http://uva.onlinejudge.org/external/10/1079.html
— ACM ICPC World Finals 2009 problem

e Solution:

— Complete Search + Binary Search the Answer + Greedy :0O
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Problem Decomposition (7)

There are many other possible combinations...

Note: If there are X basic types of contest problems...
— There can be ,C, possible pairs of combinations

— And there can be ,C; triples...

You will get more familiar to spot the individual
components as you master them

— All the best



a.k.a. Bidirectional Search

MEET IN THE MIDDLE
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UVa 11212 - Editing a Book

Rujia Liu’s Problem

Given n equal-length paragraphs numbered from 1 to n
Arrange them in the orderof 1, 2, ..., n

With the help of a clipboard,

you can press Ctrl-X (cut) and Ctrl-V (paste) several times

— You cannot cut twice before pasting, but you can cut several contiguous
paragraphs at the same time - they'll be pasted in order

The question: What is the minimum number of steps required?

Example 1: In order to make {2, 4, (1), 5, 3, 6} sorted,
you can cut 1 and paste it before 2 2 {1, 2, 4, 5, (3), 6}
then cut 3 and paste before 4 2 {1, 2, 3,4, 5, 6} =2 done \

Example 2: In order to make {(3, 4, 5), 1, 2} sorted,
you can cut {3, 4, 5} and paste it after {1, 2} =2 {1, 2, 3, 4, 5} \
or cut {1, 2} and paste it before {3, 4,5} =2 {1, 2, 3, 4, 5} \



Loose Upper Bound

e Answer: k-1

— Where k is the number of paragraph in the wrong position

e Trivial but wrong algorithm:
— Cut a paragraph that is in the wrong position
— Paste that paragraph in the correct position
— After k-1 such cut-paste, we will have a sorted paragraph

* The last wrong position will be in the correct position at this stage

— But this may not be the shortest way

e Examples:
— {(3),2,1} 2> {(2), 1,3} 2 {1, 2, 3} 2> 2 steps

— {(5)1 41 3; 2; 1} 9 {(4)1 3; 2; 1) 5} 9 {(3)1 2; 11 ﬂr 5} 9 {(2)1 1) él 4) 5} %
{1, 2, 3, 4, 5} = 4 steps



The Actual Answers

{3, 2,1}

— Answer: 2 steps, e.g.
* {(3),2,1}2{(2),1,3}>{1,2 3} or
* {3,2,(1)}=>1{1,(3),2}>({1, 23}

{5,4,3,2,1}

— Answer: Only 3 steps, e.g.
e {54,(3,2),1}2>{3,(2,5),4,1}> {3,4,(1, 2,5} > {1, 2, 3, 4, 5}

How about {5, 4,9, 8,7,3, 2,1, 6}?

— Answer: 4, but very hard to compute manually

How about {9, 8, 7, 6, 5, 4, 3, 2, 1}?

— Answer: 5, but very hard to compute manually




Some Analysis

There are at most n! permutations of paragraphs
— With maximum n =9, this is 9! or 362880
— The number of vertices is not that big actually

Given a permutation of length n (a vertex)

— There are C, possible cutting points (index i, j € [1..n])
— There are n possible pasting points (index k € [1..(n-(j-i+1))])
— Therefore, for each vertex, there are about O(n3) branches

The worst case behavior if we run single BFS on this search
space graph: O(V+E) = O(n! + n!*n3) = O(n!*n3)
— Withn =09, thisis 9! * 93 = 264539520 ~ 265 M, TLE (or maybe MLE...)

|AII other details are hidden for NUS ACM ICPC/Singapore 10l teams only :)|



dcssh
Text Box
All other details are hidden for NUS ACM ICPC/Singapore IOI teams only :)


Actually we will still meet again next week for final contest :D

SOME PARTING WORDS
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What You Have Been Exposed To
(as of Tonight, Wed 04 Apr 2012)

Competitive Coding Style
Extensive usage of libraries
Bitmask

BIT/FT

Iterative BF Techniques:
Subset, Permutation

Recursive backtracking
Some classical Greedy problems
Binary Search the Answer

The thinking process to get DP states and
transitions

Graph DS, Traversal: DFS/BFS, MST
(briefly), SSSP: Dijkstra’s, Bellman Ford’s,
APSP: Floyd Warshall’s

Tarjan’s SCC algorithm

More DP techniques
Network Flow: Edmonds Karps’
Bipartite Graph: MCBM++

Mathematics-related problems: Log
techniques, Big Integer, Prime Factor
techniques, Modulo arithmetic

Various string processing skills

Suffix Tree/Array: String Matching, Longest
Repeated Substring,
Longest Common Substring

Basic geometry routines

Algorithms on polygon

Problem decomposition

Meet in the middle/bidirectional search



What You Have NOT Been Exposed To

(as of Tonight, Wed 04 Apr 2012)

Many more cool and exotic algorithms out there :0O
Maybe read CP3 in the future ©

Or join NUS ACM ICPC trainings

Or do self study

*






