Available online at www.sciencedirect.com

) SGIENCE@DIHEGT’ Informa.tion
e Processing
e Letters
ELSEVIE Information Processing Letters 96 (2005) 167-174

www.elsevier.com/locate/ipl

A bivalency proof of the lower bound for uniform consensus

Xianbing Wang*, Yong Meng Te@?, Jiannong Cab

2 Singapore-Massachusetts Institute of Technology Alliance, 117576 Singapore
b Department of Computer Science, National University of Singapore, 117543 Singapore
¢ Department of Computing, Hong Kong Polytechnic University, Hong Kong

Received 22 June 2004; received in revised form 26 July 2005
Available online 30 August 2005
Communicated by M. Yamashita

Abstract

Bivalency argument is a widely-used technique that employs forward induction to show impossibility results and lower
bounds related to consensus. However, for a synchronous distributed systemrooésses with up topotential andf actual
crash failures, applying bivalency argument to prove the lower bound for reaching uniform consensus is still an open problem.
In this paper, we address this problem by presenting a bivalency proof that the lower bound for reaching uniform consensus is
(f + 2)-rounds where & f <t —2.
0 2005 Elsevier B.V. All rights reserved.

Keywords:Uniform consensus; Bivalency argument; Synchronous distributed systems; Distributed computing

1. Introduction lower bound for uniform consensus. We assume the
crash failure model that is considered to prove lower
Consensus is one of the fundamental problems in bounds for both consensus and uniform consensus [1—
distributed computing theory and practice. Assum- 10]. When a process crashes, it permanently stops
ing that a distributed system consists of a set:of its activity [8]. A process behaves correctly until it

processes{pi, p2, ..., pa}, €ach procesg; initially crashes. A process that does not crash is calleat-a
proposes a value;, and all non-faulty processes need rect process. Otherwise, it is faulty process. More

to decide on one common valuein the set of pro- precisely, the consensus problem is defined by the fol-
posed valuesV = {vi|i=1,...,n}. Without los- |0wing three properties:

ing generality, in this paper, we consider the con-
sensus problem with’ = {0, 1} when proving the (1) Termination Every correct process eventually de-
cides on a value.
"* Corresponding author. (2) Validity: If a process decides an thenv has been
E-mail addresswangxb@comp.nus.edu.sg (X. Wang). proposed by some processes.

0020-0190/$ — see front mattét 2005 Elsevier B.V. All rights reserved.
doi:10.1016/}.ipl.2005.08.002

168 X. Wang et al. / Information Processing Letters 96 (2005) 167-174

(3) AgreementNo two correct processes decide dif- protocols in synchronous distributed system has also
ferently. been proven [3,8,9].
Recently,forward inductionproofs for consensus
The agreement property applies only to correct impossibilities and lower bounds have received atten-
processes. Thus, itis possible that a process decides oriion. For a number of years, only backward induction
a distinct value just before crashindniform consen- proofs were known for the synchronous model [4].
susprevents such a possibility. It replaces the agree- Forward induction proofs are simpler and unify var-
ment property with the following: ious models (synchronous, asynchronous, partially
synchronous, etc.) [6Bivalency argumenis a tech-
(3) Uniform AgreementNo two processes (corrector nique that uses forward induction to show impos-
not) decide differently. sibility results and lower bounds that are related to
consensus. The underlying principle is that there ex-
Synchronous consensus protocols are based on thasts a state, called tHaivalent state from which two
notion ofround In a synchronous distributed system, different executions lead to different decisions. The bi-
every execution of the consensus protocol consists of valency technique was first introduced in [5] and used
a sequence abunds While in roundr, each process in[2]to show the lower bound for achieving consensus
executes sequentially the following steps: in synchronous distributed systems with crash failures.
The proofis simpler and more intuitive than traditional
(1) sendr-round messages to the other processes, ones. However, as mentioned in [10], it is not imme-
(2) wait forr-round messages from the other process- diately clear how to extend the proof in [2] to the case

es, and of uniform consensus. Keidar and Rajsbaum showed
(3) execute local computations. that bivalency argument, as used extensively in the lit-
erature, cannot show thg + 2)-rounds lower bound
All processes start and finish the samand syn- for uniform consensus because, in essence, it relies on

chronously. Both message delays and relative processa validity property which is too weak [7].

speeds are bounded and these bounds are known. In this paper, we apply the bivalency argument to
When a process crashes in a round, it sends a subset o§how that for every & f <t — 2, there exists an exe-
the messages that it intends to send in that round, andcution of any uniform consensus algorithm with actual
does not execute any subsequent round [8]. The under-f failures that takes at leagt+ 2 rounds for all the
lying communication system is assumed to be failure- correct processes to decide on a common value. For
free: there is no creation, no alteration, no loss nor du- f =t — 1, the lower bound of f + 1)-rounds for
plication of messages. If a protocol allows processes to reaching uniform consensus has been proven [3] and is
reachconsensuwhere at most (r < n — 1) processes not considered in this paper. Our contributions include
can crash, the protocol is said to toleratiults, and anewproof for the early deciding uniform consensus
is called az-resilient consensus protocol. It has been lower bound, and a new approach of using the FLP bi-
provenin [1,2,4,8,9] that the lower bound on the num- valency argument [5].

ber of rounds is + 1 for any synchronous consensus

protocol tolerating up ta crash failures. If a pro-

tocol can achieve consensus astdpsbefore round 2. Related works

t + 1 when there are actually (f < ¢) faults, we call

it an early stoppingprotocol. The well-known lower Charron-Bost and Schiper [3] proved the complete
bound, miriz + 1, f + 2) rounds, for early stopping lower bound, in the case whefeis less than — 1, that
consensus protocols in synchronous distributed sys- early-deciding uniform consensus protocols require at
tems has been proven [4]. If we consider only the leastf + 2 rounds whereas early-deciding consensus
time at which processes decide, protocols in which protocols require only + 1 rounds. Forf =t — 1 or

all processes decide before roungt 1 with actual f f =1t, they showed that both consensus and uniform
faults are calledearly-deciding protocolsThe lower consensus requirg+ 1 rounds. In particular, they pre-
bound,(f + 1)-rounds, for early deciding consensus sented a protocol which can achieve uniform consen-

X. Wang et al. / Information Processing Letters 96 (2005) 167-174

169

Function Counter_Examplex)

Round 1: Send a message to all the processes (incluging

let S1 be the set of processes from which Round 1 messages have been received.

if |S1| =n thenreturn (1) fi

Round 2: Send a message to all the processes.

let S be the set of processes from which Round 2 messages have been received.
if |S2] < |S1| then init < 1 elseinit «<— Ofi

return Uniform_Consensus(it).

Fig. 1. The counter-example algorithm for bivalent validity in [7].

sus by the end of rounfl + 1 whenf =¢ — 1. Keidar
and Rajsbaum [7] took a different approach to prove
the same lower bound for synchronous early-deciding
uniform consensus protocols, and showed that far 1

t < n, every t-resilient uniform consensus protocol
must perform two rounds in failure-free execution be-
fore all processes decide. In [10], a novel oracle ar-
gument is introduced to prove both lower bounds for

example, illustrated in Fig. 1, to so&BV uniform
consensus. In Fig. 1, the Uniform_Consensus() algo-
rithm solves the uniform consensus problem, and the
Counter_Example() algorithm solves tBBVuniform
consensus problem. In particular, all processes de-
cide on 1 by the end of one round in all failure-free
executions. Because fof = 0, the counter-example
achievessBVuniform consensus with only one round,

synchronous consensus and uniform consensus. Thehey concluded that the bivalency argument as used

underlying idea is as follows: given a consensus algo-
rithm A that can toleratef faults and only executes
f rounds of message exchange, another algorithim
can be constructed to tolerafe— 1 faults within only

f — 1 rounds.A’ does so by making “oracle calls”
to A. Repeating this process, an algorithm that only

extensively in the literature cannot show the+ 2)-
rounds lower bound proven in their paper. Their reason
is that, in essence, the bivalent argument relies on a va-
lidity property that is too weak.

However, when all processes propose 0, they decide
on 1 in the failure-free execution. This is accepted by

needs 0 rounds for O faults can be constructed, which theSBVbivalent validity but violates the validity prop-

is easily proven impossible.

None of the proofs mentioned above consider the
bivalency argument. The proof in [3] proceeds by
backward inductiorand is therefore difficult to fol-
low. The oracle-based proof is fundamentally different
from bivalency-based proofs [10]. Keidar and Rajs-
baum presented a proof in [7] using a differdot-
ward inductiontechnique called layering [9], which
introducepotence connectivitip denote connectivity

among states in executions of a consensus protocol.

They pointed out that “Since all bivalency proofs we
know of use the validity property only in order to
show that an initial bivalent state exists, such proofs
also hold for theSBV version of their problems” [7].
Here, SBV refers tobivalent validity with respect to
systemsS where at most one process fails in each
round. It is a weaker validity property stating that
there is an initial state which is bivalent with respect
to S. Then SBV consensus is defined as the prob-
lem that satisfies agreement, termination 8&Y/, but
not the validity property. They presented a counter

erty. In this paper, we present a bivalency proof for
the lower bound of synchronous uniform consensus.
For the case of & f <t — 2, the validity property of
consensus is only used to show initial bivalent config-
uration. But forf = 0, we use the validity property in
the bivalency proof of this paper.

3. Thebivalency argument proof

Bivalency argument proofs are based on the ob-
servation that a state in which some processes have
decided cannot be bivalent. These proofs proceed by
contradiction. For any synchronous consensus algo-
rithm with » processes to tolerate up tccrash fail-
ures, contradiction can be reached in a synchronous
round-based systeiwith at most one process crash-
ing in each round [2,9]. Sincéd is just a subset of
executions of a consensus algorithm for synchronous
distributed systems and represents the worst case sce-
nario, a lower bound for achieving consensus or uni-

170

form consensus i also holds in synchronous distrib-
uted systems.

The following notations are introduced for the sys-
tem S and used in the bivalency argument proofs.

configuration a configuration of the systemiis

a collection of states, one for each process, at the
end of each round,;

0-valent a configurationC is O-valentif starting
from C the only possible decision value that cor-
rect processes can make is 0O;

1-valent a configurationC is 1-+valentif starting
from C the only possible decision value that cor-
rect processes can make is 1;

univalent a configuratiorC is univalent if it is ei-
ther O-valent or 1-valent;

bivalent a configurationC is bivalent if it is not
univalent;

k-round partial run r, denotes an execution of a
consensus algorithm up to the end of round

Considering the configuratiod’;, at the end of
roundk of partial runry, we say thaty is O-valent,
1-valent, univalent, or bivalent ifC; is 0-valent,
1-valent, univalent, or bivalent, respectively.

e homovalenttwo partial runs ardhomovalentif
both are either 1-valent or 0-valent. This means
both partial runs are univalent and have the same
valence;

indistinguishable two partial runsare indistin-
guishableif the configurations at the end of the
last rounds of both partial runs are the same; they

X. Wang et al. / Information Processing Letters 96 (2005) 167-174

Theorem 1. Consider a synchronous round-based sys-
tem S with n processes and at mostcrash failures
where at most one process crashes in each round. If
n >t + 1 then there is no algorithm that solves con-
sensus it rounds inS.

The proof proceeds by contradiction. Suppose there
is an algorithmA that solves consensus inrounds
in S. Without loss of generality, every process is sup-
posed to send a message to every other process at each
round. The following three lemmas have been proven
in [2].

Lemma 1. Any (+ — 1)-round partial runr;_1 is uni-
valent.

Lemma 2. There is a bivalent initial configuration.

Lemma 3. There is a bivalent{r — 1)-round partial
runr,_1.

Lemma 3 contradicts Lemma 1 and thus completes
the proof of the theorem. The last two lemmas also
appear in other papers, e.g., Lemma 2 is proven by the
same method in both [5,9].

3.2. Bivalency proof of uniform consensus lower
bound

The main result of this section is Theorem 2, which
proves the uniform consensus lower bound that for
every 0< f <t — 2, there exists an execution of any
uniform consensus algorithm that takes at least 2

have the same non-crashed processes and eacfiounds for all the correct processes to decide. Proof of

non-crashed process maintains the same informa-
tion in both partial runs. Thus, the two partial runs
cannot be distinguished.

We say thah partial runr;, decides orv if all cor-
rect processes decide oty the end of round of ry.

3.1. Bivalency argument of Aguilera and Toueg [2]

Our bivalency proof extends the proof of Aguil-
era and Toueg [2]. The following theorem and lemmas
have been reproduced from [2] and will be used in our
proof later.

Theorem 2 is by contradiction, assuming that there is
a protocolA that solves uniform consensus fi+ 1
rounds inS. It considers two cases according to the
value of f: (1) O0< f <t —2;and (2)f =0. In the
first case, we introduce another synchronous distrib-
uted systens’, which consists of the sameprocesses

as in systens, but only with up tof potential crash
failures where at most one process crashes in each
round. We will prove that all executions extended from
a(f — 1-round bivalent partial runs_, in systems’
decide on the same value. This meaps; is univa-
lent in systemS” which contradicts the fact tha_;

is bivalent. In case (2), we can get two initial config-
urations ofA in systemsS, C’ and C”, that differ by

X. Wang et al. / Information Processing Letters 96 (2005) 167-174

the initial value of only one process, such that the
1-round partial runs extended fro@tf andC” without
failure,r1* andr;*, decide differently. Then, a contra-
diction can be reached from this point.

We first introduce several lemmas. Lemmas 4 and 5
are about the properties of the systémLemmas 6

and 7 are based on the assumption made in Theorem 2.

Lemma 4 is proven as the induction step of Lem-
ma 3.

Lemmad. In the systens, every bivalent-round par-
tial run (0 < k <t — 2), 1, can be extended by one
round into a bivalentk + 1)-round partial run.

Proof. The proof is by contradiction. Assume that
every one-round extension gf is univalent.

Letr;,, be a one-round extension of partial ryn
such that no crash occurs in roubé 1.7, is univa-
lent by assumption. Without loss of generality, assume
itis 1-valent. Sincey, is bivalent, and every one-round
extension ofy is univalent, there is at least one single-
round extensiom,?Jrl of r; that is 0-valent.

Note thatr},; andr?, ; must differ in roundk + 1.
Since round + 1 of ;7 , is failure-free, there must be
exactly one procesg that crashes in rountl + 1 of
r,? 1 because in syster§) at most one process crashes
per round, and < ¢t — 2. Sincep crashes in round
k+ 1 of ’19+1' it may fail to send a message to some
processes, sadyj1, g2, ..., qm}, Where 0< m < n.
Starting fromr,9+l, we now define(k + 1)-round

partial runsrkH,.. .7y, as follows. For every, 1<

Jj <m, r{, is identical tOrkJrl except thatp sends a
message tqg; before it crashes in round+ 1. Note

that for everyj, 0< j <m, r,{H is univalent. There
are two possible cases:

1. Forallj,0< j <m,r{,, isO-valent. So}", , and
i1 are O-valent and 1-valent respectively. The
only difference between” , and r,jH is that p
crashes at the end of rourtd+ 1 in /", ; while
p is correct up to and including round+ 1 in
ri41- Consider the following runst extending
ri41 by crashing procesp at the beginning of
roundk +2, andr’ extending_; without failure.
Thenr andr’ are indistinguishable. Howeverjs
1-valentand’is O-valent becausg , is 1-valent
andry, , is O-valent—contradiction.

171

2. There is onej, 1 < j < m, such thatr,{J:ll is

j—1
d;,, and

r,ﬁH into partial runs,» andr’, respectively, by

crashing procesg; at the beginning of round

k + 2. Because in systerfi, at most one process

crashes per round, and< ¢+ — 2, there is one

process which may crash in roud+ 2. Then
r andr’ are indistinguishable. However, is O-

valent and-’ is 1-valent becausqu is 0-valent
andrk 41 is 1-valent—contradiction. O

O-valent Whiler,{ 41 is 1-valent. Exten

Lemma 5. By the uniform agreement property, no
process(correct or no) can decide in any bivalent
partial runin S.

Proof. It is obvious that the lemma should be true.
Otherwise, assume processlecides in a bivalent par-
tial run» in S. Without loss of generality, assume
decides on 1. According to the definition of the biva-
lent partial run, there is a O-valent partial run extended
from partial rurv. However,p has decided on 1, which
violates the uniform agreement propertya

Lemmas 6 and 7 are based on the assumption that
there is a protocol that solves uniform consensus in
f +1roundsinS. Thatis, in any execution of with
f (0< f <t — 2) actual crash failures, all the correct
processes must decide by the end of royind 1.

Lemma 6. Any partial runry, (O<k < f+1) of A
without failure during roundt in S is a univalent par-
tial run.

Proof. This lemma is similar to Lemma 6.6 in [9],
which consider fast-resilient consensus protocols.
A protocol is calledastif consensus is always reached
in at mostr + 1 rounds [9].

Assume the contrary, there exists a bivalent partial
runr, (0<k < f+ 1) of A without failure during
roundk in S. Then we can prove that cannot solve
uniform consensus witlf actual failures by the end of
round f + 1.

Casel: Considerk = f + 1. Becausey, is biva-
lent, by Lemma 5, no process can decide by the end of
round f 4+ 1—contradiction.

Case2: Considek < f + 1. According to the defi-
nition of S, there is at most one process crashed in each

172 X. Wang et al. / Information Processing Letters 96 (2005) 167-174

round from round 1 to round + 1 except round. Be- We introduce another synchronous distributed sys-
causery is bivalent andf <t — 2, by Lemma 4, we tem S’, which consists of the sameprocesses as in
can construct new bivalent partial runs as extensions the systemS, but only with up to f potential crash
from r by crashing one process in each round from failures that at most one process crashes in each round.

roundk + 1 to roundf + 1. Finally, we get a bivalent
(f + D-round partial run. In this case, by Lemma 5,
no process can decide by the end of royfd- 1—
contradiction. O

Lemma 7. When extending from a bivalerft-round
partial run, r¢, all (f 4+ 1)-round partial runs ofA

in S, in which at least one process receives all pre-
scribed messages in round+ 1, are homovalent.

Proof. First, consider the f + 1)-round partial run
extended fronr; without failures;% ;. By Lemma 6,
r;‘:+1 is univalent. Becausd solves uniform consen-
sus inf + 1 rounds inS, all processes will decide in
round f + 1. Now consider anotheff + 1)-round
partial run extended from; with one crashy s,

in which procesy; receives all prescribed messages
in round f + 1. p; cannot distinguish whether it is
in ryp1 orry . It also decides invyyg. If rpig
is bivalent, by Lemma 5p; cannot decide in round
f + 1—contradiction.

Thus,rr41 is univalent. Without losing generality,
assumer}‘:H is 1-valent and all processesﬂ?+1 de-
cide on 1. Therp; also decides on 1 in rounfl + 1
of ry41. Thus,r 41 must be 1-valent, otherwise it vi-
olates the uniform agreement property

Theorem 2. Consider a synchronous round-based sys-

temS of n processes with up topotential andf ac-

Now we considerA for both systems. By Lemmas 2
and 4, there is aiif — 1)-round bivalent partial run
rr—1 of AinsystemS’. Clearly,ry_1 is also an(f —
1)-round bivalent partial run in systeh Because in
both systems at most one process can crash in a round,
then by Lemma 64 — 1 processes crash before round
f. We will prove that all executions extended from
rr—1in systemsS’ decide on the same value.

In the following, consider s_ in systemS and ex-
tend it to roundyf. Considerrj, extended fronry_;
without failure occurring in round’, by Lemma 6, it
is univalent. Without losing generality, assurrgels

1-valent. Let-X's be those one-round extensions of par-
tial runrs_1 in which k processes do not receive the
message from the crashed process in rogindhere

0 < k <n— f (because there arg — 1 processes
crashed before roungd), andrerl denote one-round

extension of partial runr" without failures in round
f+1. By Lemma 6, all those ‘1S are univalent.

Basis: ConS|derrf. Those partlal runs are indistin-
guishable from;‘; except that one procesg, crashes

at the end of round in r?. There are two cases:

(1) Some processes in botl? and r;’i decide in
round f, by Lemma 7,9 should be 1-valent.

(2) No such process exists. Then extend bﬁthnd
rf to round f + 1, rfJrl andrHl, simply by crash-

ing p at the beginning of round + 1 in rerl Then

tual crash failures, where at most one process crashes tWo exten5|onsrf+1 and rf+1 are indistinguishable,

in each round. If <n and0 < f <t — 2, then there
is no early deciding protocol that solves uniform con-
sensus inf + 1 rounds inS.

Proof. Proof of Theorem 2 is by contradiction, as-
suming that there is a protocdl that solves uniform
consensus irf + 1 rounds inS. That is, in any execu-
tion of A with f (0< f <t — 2) actual crash failures,

all the correct processes must decide by the end of
round f + 1. The proof considers two cases according

tothe value off: (1) 0< f <t—2;and (2)f =0.

Casel: 0<fgt—-2

because’; is 1-valent,r*
onl eventually
Thus, aIIr 118 decide on 1.

Hypotheas Suppose K k <n — f, all rf+1S de-
cideon 1.
Induction step: Consider any’;**, where 0< k <

n — f, there must exist a partial rum;i, which dif-

fers from r5*1 by only one processp;. p; receives
the message sent by the crashed process in rgund

i1 is 1-valent and decides

of r" but does not receive it in rounfl of rk+l By
k+1x% kx
Lemma 6,r5%) andr;L 7" are univalent ana;ff+1 is

1-valent by’ hypotheS|s

X. Wang et al. / Information Processing Letters 96 (2005) 167-174

: -’ k+1 e ks k+1/
Consider extending’. andr tore,y andrerl

respectively by crashing; such that onlyp; receives
the message sent fropy in both partial runs. Thus,
ks indistinguishable from.’;.jrl exceptp;. By

f+1
andrktl

Lemma 7?’];#1 711 are univalent becauge; re-

ceives all messages in rourfd- 1 andr;ijrl is 1-valent

because’* , is 1-valent.

If some process other thary decides in the round
f+1Lofrf,,, andit will does so iy, thenr 1Y/
is 1-valent too by the uniform agreement property.

Otherwise, onlyp; decides in both partial runs, ex-
tending bothrk’ ; andr{ 7’ to round f + 2 (because
f <t — 2, there exist extended executions in which

crashes occur in round + 1 and roundf + 2), r’}ﬁrz

andr%t3’, by crashingp; at the beginning of round
f+2 (for f =t — 1, we cannot do this because

processes have already crashed before rotind2,
and no crash occurs in rournd+ 2. This is the reason
why our proof does not work fof =+ — 1). Then,

rk’, and ri*3 are indistinguishable and both are

univalent.r, , is 1-valent because}, is 1-valent.
Thus,r_’;.ilz’ is 1-valent ag’ ,, meaning thatﬁ.ill/ is
also 1-valent. By Lemma Yrji:[ll* must be 1-valent
and decide on 1 too.

By induction, all (f + 1)-round partial runs, ex-
tended fromr;_1, without failure in roundf + 1
decide on 1. Becausé is univalent, then al{ / + 1)-
round partial runs extended from it are 1-valent.

Now consider systens’. BecauseS’ only has up
to f crash failures, and there aré — 1 processes
crashed before roung’, then when extended from
rr—1, only one process can crash in roufier round
f+1in . Thus, all(f + 1)-round partial run ex-
tensions fromr;_1 in S’ are the same as discussed
before in systens. However, all those extensions are
homovalent and eventually decide on the same value
by the end of round’ + 1. Thus, they_1 in systems’
must be univalent—contradiction.

Case2:f=0

Considering initial configurations® andC* where
all processes propose 0 @ and all processes pro-
pose 1 inCL. According to the validity property of
consensug;'! is 1-valent and? is O-valent. Then all
one-round partial runs extended fra are 0-valent
and all one-round partial runs extended frath are

173

1-valent. Clearly, there are two initial configurations,
C’ and(C”, that differ by the initial value of only one
processp, such that the one-round partial runs ex-
tended fromC’ and C” without failure,r;* andr;*,
decide differently. Otherwise, boti® andC* are the
samev-valent, wherev is 0 or 1, and this violates the
validity property of consensus. Without losing gener-
ality, assume that;* is 1-valent and;* is O-valent.

Now consider one-round partial rung,andr;, ex-
tended fromC’ andC” respectively by crashing, and
only one procesg receives the message sent frprim
round 1. Them; andr; differ only byq. By Lemma 7,
both ; andr] are univalenty; is 1-valent, and-
is O-valent. If some process other thandecides in
round 1 ofrj, it decides inr{ too. It cannot distin-
guishr; andr; but decides differently—contradiction.
Otherwise, extending bottj andr}’ to two-round par-
tial runs,r, andr;, by crashing; at the beginning of
round 2. Thenr, andr; are indistinguishable. How-
ever,r; is 1-valent and-j is O-valent because] is
1-valent and is O-valent—contradiction.

Thus, Theorem 2 must be true

4. Conclusions

Bivalency argumenis a technique that uses for-
ward induction to show impossibility results and lower
bounds that are related to consensus. The proofs are
simpler and more intuitive than the traditional ones. In
this paper, for a synchronous distributed system of
processes with up topotential andf actual crash fail-
ures, we apply the bivalency argument to show that for
every 0< f <t — 2, there exists an execution of any
uniform consensus algorithm that takes at lefst 2
rounds for all the correct processes to decide. Previ-
ously, finding a bivalency proof for the lower bound
of synchronous uniform consensus had been an open
problem.

Acknowledgement

This work is partially supported by the Hong
Kong UGC under the CERG grant B-Q567 (PolyU
5075/02E) and the National University of Singapore
under Academic Research Fund R-252-000-180-112.
We wish to thank anonymous referees for their helpful
suggestions and comments.

174

References

[1] H. Attiya, J. Welch, Distributed Computing: Fundamentals,
Simulations and Advanced Topics, McGraw-Hill, New York,
1998, 451 p.

[2] M.K. Aguilera, S. Toueg, A simple bivalency proof that
t-resilient consensus requirest+ 1 rounds, Inform. Process.
Lett. 71 (3—4) (1999) 155-158.

[3] B. Charron-Bost, A. Schiper, Uniform consensus harder than
consensus, J. Algorithms 51 (1) (2004) 15-37.

[4] D. Dolev, R. Reischuk, R. Strong, Early stopping in Byzantine
agreement, J. ACM 37 (4) (1990) 720-741.

[5] M. Fischer, N. Lynch, M. Paterson, Impossibility of distributed

consensus with one faulty process, J. ACM 32 (2) (1985) 374—

382.
[6] M. Herlihy, S. Rajsbaum, M.R. Tuttle, Unifying synchronous

and asynchronous message-passing models, In: Proc. 17th

X. Wang et al. / Information Processing Letters 96 (2005) 167-174

ACM Symp. on Principles of Distributed Computing (PODC),
June 1998, pp. 133-142.

[7] I. Keidar, S. Rajsbaum, A simple proof of the uniform con-
sensus synchronous lower bound, Inform. Process. Lett. 85 (1)
(2003) 47-52.

[8] N. Lynch, Distributed Algorithms, Morgan Kaufmann, Los Al-
tos, CA, 1996.

[9] Y. Moses, S. Rajsbaum, A layered analysis of consensus,
SIAM J. Comput. 31 (4) (2002) 989-1021. Previous version
in: PODC 1998.

[10] J. Xu, A unified proof of minimum time complexity for reach-

ing consensus and uniform consensus—an Oracle-based ap-
proach, in: IEEE 21st Symp. on Reliable Distributed Systems
(SRDS 2002), Osaka, Japan, October 2002.

