
l

d lower

problem.
sensus is
Information Processing Letters 96 (2005) 167–174

www.elsevier.com/locate/ip

A bivalency proof of the lower bound for uniform consensus

Xianbing Wanga,∗, Yong Meng Teoa,b, Jiannong Caoc

a Singapore-Massachusetts Institute of Technology Alliance, 117576 Singapore
b Department of Computer Science, National University of Singapore, 117543 Singapore

c Department of Computing, Hong Kong Polytechnic University, Hong Kong

Received 22 June 2004; received in revised form 26 July 2005

Available online 30 August 2005

Communicated by M. Yamashita

Abstract

Bivalency argument is a widely-used technique that employs forward induction to show impossibility results an
bounds related to consensus. However, for a synchronous distributed system ofn processes with up tot potential andf actual
crash failures, applying bivalency argument to prove the lower bound for reaching uniform consensus is still an open
In this paper, we address this problem by presenting a bivalency proof that the lower bound for reaching uniform con
(f + 2)-rounds where 0� f � t − 2.
 2005 Elsevier B.V. All rights reserved.

Keywords:Uniform consensus; Bivalency argument; Synchronous distributed systems; Distributed computing
s in
m-
f

ed

n-

the
er
[1–

tops
it

fol-

e-
1. Introduction

Consensus is one of the fundamental problem
distributed computing theory and practice. Assu
ing that a distributed system consists of a set on

processes,{p1,p2, . . . , pn}, each processpi initially
proposes a valuevi , and all non-faulty processes ne
to decide on one common valuev in the set of pro-
posed valuesV = {vi | i = 1, . . . , n}. Without los-
ing generality, in this paper, we consider the co
sensus problem withV = {0,1} when proving the

* Corresponding author.
E-mail address:wangxb@comp.nus.edu.sg (X. Wang).
0020-0190/$ – see front matter 2005 Elsevier B.V. All rights reserved
doi:10.1016/j.ipl.2005.08.002
lower bound for uniform consensus. We assume
crash failure model that is considered to prove low
bounds for both consensus and uniform consensus
10]. When a process crashes, it permanently s
its activity [8]. A process behaves correctly until
crashes. A process that does not crash is called acor-
rect process. Otherwise, it is afaulty process. More
precisely, the consensus problem is defined by the
lowing three properties:

(1) Termination: Every correct process eventually d
cides on a value.

(2) Validity: If a process decides onv, thenv has been
proposed by some processes.
.

168 X. Wang et al. / Information Processing Letters 96 (2005) 167–174

if-

ect
es o

ee-

r

n the
m,
s of
s

,
ss-

cess
own
et o
and
der-
re-
du-
s to

en
m-
us
-

r

sys-
the
ich

us

also

s
en-
ion
4].
r-

ally

s-
to

ex-

bi-
ed
us

res.
al
e-
se
ed
lit-

s on

to
-

ual

For

d is
de
us
bi-

ete

e at
sus

rm
-
en-
(3) Agreement: No two correct processes decide d
ferently.

The agreement property applies only to corr
processes. Thus, it is possible that a process decid
a distinct value just before crashing.Uniform consen-
susprevents such a possibility. It replaces the agr
ment property with the following:

(3′) Uniform Agreement: No two processes (correct o
not) decide differently.

Synchronous consensus protocols are based o
notion of round. In a synchronous distributed syste
every execution of the consensus protocol consist
a sequence ofrounds. While in roundr , each proces
executes sequentially the following steps:

(1) sendr-round messages to the other processes
(2) wait for r-round messages from the other proce

es, and
(3) execute local computations.

All processes start and finish the sameround syn-
chronously. Both message delays and relative pro
speeds are bounded and these bounds are kn
When a process crashes in a round, it sends a subs
the messages that it intends to send in that round,
does not execute any subsequent round [8]. The un
lying communication system is assumed to be failu
free: there is no creation, no alteration, no loss nor
plication of messages. If a protocol allows processe
reachconsensuswhere at mostt (t < n−1) processes
can crash, the protocol is said to toleratet faults, and
is called at-resilient consensus protocol. It has be
proven in [1,2,4,8,9] that the lower bound on the nu
ber of rounds ist + 1 for any synchronous consens
protocol tolerating up tot crash failures. If a pro
tocol can achieve consensus andstopsbefore round
t + 1 when there are actuallyf (f � t) faults, we call
it an early stoppingprotocol. The well-known lowe
bound, min(t + 1, f + 2) rounds, for early stopping
consensus protocols in synchronous distributed
tems has been proven [4]. If we consider only
time at which processes decide, protocols in wh
all processes decide before roundt + 1 with actualf
faults are calledearly-deciding protocols. The lower
bound,(f + 1)-rounds, for early deciding consens
n

.
f

protocols in synchronous distributed system has
been proven [3,8,9].

Recently,forward inductionproofs for consensu
impossibilities and lower bounds have received att
tion. For a number of years, only backward induct
proofs were known for the synchronous model [
Forward induction proofs are simpler and unify va
ious models (synchronous, asynchronous, parti
synchronous, etc.) [6].Bivalency argumentis a tech-
nique that uses forward induction to show impo
sibility results and lower bounds that are related
consensus. The underlying principle is that there
ists a state, called thebivalent state, from which two
different executions lead to different decisions. The
valency technique was first introduced in [5] and us
in [2] to show the lower bound for achieving consens
in synchronous distributed systems with crash failu
The proof is simpler and more intuitive than tradition
ones. However, as mentioned in [10], it is not imm
diately clear how to extend the proof in [2] to the ca
of uniform consensus. Keidar and Rajsbaum show
that bivalency argument, as used extensively in the
erature, cannot show the(f + 2)-rounds lower bound
for uniform consensus because, in essence, it relie
a validity property which is too weak [7].

In this paper, we apply the bivalency argument
show that for every 0� f � t − 2, there exists an exe
cution of any uniform consensus algorithm with act
f failures that takes at leastf + 2 rounds for all the
correct processes to decide on a common value.
f = t − 1, the lower bound of(f + 1)-rounds for
reaching uniform consensus has been proven [3] an
not considered in this paper. Our contributions inclu
a newproof for the early deciding uniform consens
lower bound, and a new approach of using the FLP
valency argument [5].

2. Related works

Charron-Bost and Schiper [3] proved the compl
lower bound, in the case wheref is less thant −1, that
early-deciding uniform consensus protocols requir
leastf + 2 rounds whereas early-deciding consen
protocols require onlyf + 1 rounds. Forf = t − 1 or
f = t , they showed that both consensus and unifo
consensus requiref +1 rounds. In particular, they pre
sented a protocol which can achieve uniform cons

X. Wang et al. / Information Processing Letters 96 (2005) 167–174 169
Function Counter_Example(vi)
Round 1: Send a message to all the processes (includingpi).

let S1 be the set of processes from which Round 1 messages have been received.
if |S1| = n then return (1) fi

Round 2: Send a message to all the processes.

let S2 be the set of processes from which Round 2 messages have been received.
if |S2| < |S1| then init ← 1 else init ← 0 fi
return Uniform_Consensus(init).

Fig. 1. The counter-example algorithm for bivalent validity in [7].
ve
ing
1
ol
e-
ar-
for
The

lgo-
s

”
nly
ich

the
by

ent
js-

h

col.
e

to
ofs
.

ch
at
ct
b-

ter

lgo-
the

de-
ee
e
d,
sed

son
va-

cide
by
-
for
us.

fig-
n

ob-
have
d by
lgo-

ous
h-
f
ous
sce-
ni-
sus by the end of roundf + 1 whenf = t − 1. Keidar
and Rajsbaum [7] took a different approach to pro
the same lower bound for synchronous early-decid
uniform consensus protocols, and showed that for<

t < n, every t-resilient uniform consensus protoc
must perform two rounds in failure-free execution b
fore all processes decide. In [10], a novel oracle
gument is introduced to prove both lower bounds
synchronous consensus and uniform consensus.
underlying idea is as follows: given a consensus a
rithm A that can toleratef faults and only execute
f rounds of message exchange, another algorithmA′
can be constructed to toleratef − 1 faults within only
f − 1 rounds.A′ does so by making “oracle calls
to A. Repeating this process, an algorithm that o
needs 0 rounds for 0 faults can be constructed, wh
is easily proven impossible.

None of the proofs mentioned above consider
bivalency argument. The proof in [3] proceeds
backward inductionand is therefore difficult to fol-
low. The oracle-based proof is fundamentally differ
from bivalency-based proofs [10]. Keidar and Ra
baum presented a proof in [7] using a differentfor-
ward inductiontechnique called layering [9], whic
introducepotence connectivityto denote connectivity
among states in executions of a consensus proto
They pointed out that “Since all bivalency proofs w
know of use the validity property only in order
show that an initial bivalent state exists, such pro
also hold for theSBVversion of their problems” [7]
Here,SBV refers tobivalent validity with respect to
systemS where at most one process fails in ea
round. It is a weaker validity property stating th
there is an initial state which is bivalent with respe
to S. Then SBV consensus is defined as the pro
lem that satisfies agreement, termination andSBV, but
not the validity property. They presented a coun
example, illustrated in Fig. 1, to solveSBV uniform
consensus. In Fig. 1, the Uniform_Consensus() a
rithm solves the uniform consensus problem, and
Counter_Example() algorithm solves theSBVuniform
consensus problem. In particular, all processes
cide on 1 by the end of one round in all failure-fr
executions. Because forf = 0, the counter-exampl
achievesSBVuniform consensus with only one roun
they concluded that the bivalency argument as u
extensively in the literature cannot show the(f + 2)-
rounds lower bound proven in their paper. Their rea
is that, in essence, the bivalent argument relies on a
lidity property that is too weak.

However, when all processes propose 0, they de
on 1 in the failure-free execution. This is accepted
theSBVbivalent validity but violates the validity prop
erty. In this paper, we present a bivalency proof
the lower bound of synchronous uniform consens
For the case of 0< f � t − 2, the validity property of
consensus is only used to show initial bivalent con
uration. But forf = 0, we use the validity property i
the bivalency proof of this paper.

3. The bivalency argument proof

Bivalency argument proofs are based on the
servation that a state in which some processes
decided cannot be bivalent. These proofs procee
contradiction. For any synchronous consensus a
rithm with n processes to tolerate up tot crash fail-
ures, contradiction can be reached in a synchron
round-based systemS with at most one process cras
ing in each round [2,9]. SinceS is just a subset o
executions of a consensus algorithm for synchron
distributed systems and represents the worst case
nario, a lower bound for achieving consensus or u

170 X. Wang et al. / Information Processing Letters 96 (2005) 167–174

-

s-

the

r-

r-

a

ns
me

e
hey
eac
ma-
ns

il-
as

our

ys-

d. If
n-

ere

p-
t each
ven

tes
lso
the

ich
for

ny

f of
e is

he

rib-

ach
m

g-
form consensus inS also holds in synchronous distrib
uted systems.

The following notations are introduced for the sy
temS and used in the bivalency argument proofs.

• configuration, a configuration of the systemS is
a collection of states, one for each process, at
end of each round;

• 0-valent, a configurationC is 0-valent if starting
from C the only possible decision value that co
rect processes can make is 0;

• 1-valent, a configurationC is 1-valent if starting
from C the only possible decision value that co
rect processes can make is 1;

• univalent, a configurationC is univalent if it is ei-
ther 0-valent or 1-valent;

• bivalent, a configurationC is bivalent if it is not
univalent;

• k-round partial run, rk , denotes an execution of
consensus algorithm up to the end of roundk.

Considering the configurationCk at the end of
round k of partial runrk , we say thatrk is 0-valent,
1-valent, univalent, or bivalent ifCk is 0-valent,
1-valent, univalent, or bivalent, respectively.

• homovalent, two partial runs arehomovalentif
both are either 1-valent or 0-valent. This mea
both partial runs are univalent and have the sa
valence;

• indistinguishable, two partial runsare indistin-
guishableif the configurations at the end of th
last rounds of both partial runs are the same; t
have the same non-crashed processes and
non-crashed process maintains the same infor
tion in both partial runs. Thus, the two partial ru
cannot be distinguished.

We say thata partial run rk decides onv if all cor-
rect processes decide onv by the end of roundk of rk .

3.1. Bivalency argument of Aguilera and Toueg [2]

Our bivalency proof extends the proof of Agu
era and Toueg [2]. The following theorem and lemm
have been reproduced from [2] and will be used in
proof later.
h

Theorem 1. Consider a synchronous round-based s
temS with n processes and at mostt crash failures
where at most one process crashes in each roun
n > t + 1 then there is no algorithm that solves co
sensus int rounds inS.

The proof proceeds by contradiction. Suppose th
is an algorithmA that solves consensus int rounds
in S. Without loss of generality, every process is su
posed to send a message to every other process a
round. The following three lemmas have been pro
in [2].

Lemma 1. Any (t − 1)-round partial runrt−1 is uni-
valent.

Lemma 2. There is a bivalent initial configuration.

Lemma 3. There is a bivalent(t − 1)-round partial
run rt−1.

Lemma 3 contradicts Lemma 1 and thus comple
the proof of the theorem. The last two lemmas a
appear in other papers, e.g., Lemma 2 is proven by
same method in both [5,9].

3.2. Bivalency proof of uniform consensus lower
bound

The main result of this section is Theorem 2, wh
proves the uniform consensus lower bound that
every 0� f � t − 2, there exists an execution of a
uniform consensus algorithm that takes at leastf + 2
rounds for all the correct processes to decide. Proo
Theorem 2 is by contradiction, assuming that ther
a protocolA that solves uniform consensus inf + 1
rounds inS. It considers two cases according to t
value off : (1) 0< f � t − 2; and (2)f = 0. In the
first case, we introduce another synchronous dist
uted systemS′, which consists of the samen processes
as in systemS, but only with up tof potential crash
failures where at most one process crashes in e
round. We will prove that all executions extended fro
a (f − 1)-round bivalent partial runrf −1 in systemS′
decide on the same value. This meansrf −1 is univa-
lent in systemS′ which contradicts the fact thatrf −1
is bivalent. In case (2), we can get two initial confi
urations ofA in systemS,C′ andC′′, that differ by

X. Wang et al. / Information Processing Letters 96 (2005) 167–174 171

-

d 5

m 2
m-

e

at

me
d
le-

e

es

e

he

f

s

o
t

e.
-

a-
ed

h

that
in

ct

],
ls.
ed

rtial

f

d of

-
ach
the initial value of only one processp, such that the
1-round partial runs extended fromC′ andC′′ without
failure,r ′ ∗

1 andr ′′ ∗
1 , decide differently. Then, a contra

diction can be reached from this point.
We first introduce several lemmas. Lemmas 4 an

are about the properties of the systemS. Lemmas 6
and 7 are based on the assumption made in Theore

Lemma 4 is proven as the induction step of Le
ma 3.

Lemma 4. In the systemS, every bivalentk-round par-
tial run (0 � k � t − 2), rk , can be extended by on
round into a bivalent(k + 1)-round partial run.

Proof. The proof is by contradiction. Assume th
every one-round extension ofrk is univalent.

Let r∗
k+1 be a one-round extension of partial runrk

such that no crash occurs in roundk +1. r∗
k+1 is univa-

lent by assumption. Without loss of generality, assu
it is 1-valent. Sincerk is bivalent, and every one-roun
extension ofrk is univalent, there is at least one sing
round extensionr0

k+1 of rk that is 0-valent.
Note thatr∗

k+1 andr0
k+1 must differ in roundk + 1.

Since roundk +1 of r∗
k+1 is failure-free, there must b

exactly one processp that crashes in roundk + 1 of
r0
k+1 because in systemS, at most one process crash

per round, andk � t − 2. Sincep crashes in round
k + 1 of r0

k+1, it may fail to send a message to som
processes, say{q1, q2, . . . , qm}, where 0� m � n.

Starting fromr0
k+1, we now define(k + 1)-round

partial runsr1
k+1, . . . , r

m
k+1 as follows. For everyj , 1�

j � m, r
j

k+1 is identical tor
j−1
k+1 except thatp sends a

message toqj before it crashes in roundk + 1. Note

that for everyj , 0 � j � m, r
j

k+1 is univalent. There
are two possible cases:

1. For allj , 0� j � m, rj

k+1 is 0-valent. Sorm
k+1 and

r∗
k+1 are 0-valent and 1-valent respectively. T

only difference betweenrm
k+1 and r∗

k+1 is thatp
crashes at the end of roundk + 1 in rm

k+1 while
p is correct up to and including roundk + 1 in
r∗
k+1. Consider the following runs:r extending

r∗
k+1 by crashing processp at the beginning o

roundk+2, andr ′ extendingrm
k+1 without failure.

Thenr andr ′ are indistinguishable. However,r is
1-valent andr ′ is 0-valent becauser∗

k+1 is 1-valent
andrm is 0-valent—contradiction.
k+1
.

2. There is onej , 1 � j � m, such thatrj−1
k+1 is

0-valent whiler
j

k+1 is 1-valent. Extendrj−1
k+1 and

r
j

k+1 into partial runs,r and r ′, respectively, by
crashing processqj at the beginning of round
k + 2. Because in systemS, at most one proces
crashes per round, andk � t − 2, there is one
process which may crash in roundk + 2. Then
r and r ′ are indistinguishable. However,r is 0-
valent andr ′ is 1-valent becauserj−1

k+1 is 0-valent

andr
j

k+1 is 1-valent—contradiction. �
Lemma 5. By the uniform agreement property, n
process(correct or not) can decide in any bivalen
partial run in S.

Proof. It is obvious that the lemma should be tru
Otherwise, assume processp decides in a bivalent par
tial run r in S. Without loss of generality, assumep
decides on 1. According to the definition of the biv
lent partial run, there is a 0-valent partial run extend
from partial runr . However,p has decided on 1, whic
violates the uniform agreement property.�

Lemmas 6 and 7 are based on the assumption
there is a protocolA that solves uniform consensus
f + 1 rounds inS. That is, in any execution ofA with
f (0 � f � t − 2) actual crash failures, all the corre
processes must decide by the end of roundf + 1.

Lemma 6. Any partial run rk (0 < k � f + 1) of A

without failure during roundk in S is a univalent par-
tial run.

Proof. This lemma is similar to Lemma 6.6 in [9
which consider fastt-resilient consensus protoco
A protocol is calledfastif consensus is always reach
in at mostt + 1 rounds [9].

Assume the contrary, there exists a bivalent pa
run rk (0 < k � f + 1) of A without failure during
roundk in S. Then we can prove thatA cannot solve
uniform consensus withf actual failures by the end o
roundf + 1.

Case1: Considerk = f + 1. Becauserk is biva-
lent, by Lemma 5, no process can decide by the en
roundf + 1—contradiction.

Case2: Considerk < f + 1. According to the defi
nition ofS, there is at most one process crashed in e

172 X. Wang et al. / Information Processing Letters 96 (2005) 167–174

ions
om
t
5,

re-

-
n

es
s

d

,

i-

ys-

hes

n-

s-

-
,
d of
ing

ys-
n

und.
2

und,
nd
m

ar-
he

-

,
s

nd
round from round 1 to roundf +1 except roundk. Be-
causerk is bivalent andf � t − 2, by Lemma 4, we
can construct new bivalent partial runs as extens
from rk by crashing one process in each round fr
roundk + 1 to roundf + 1. Finally, we get a bivalen
(f + 1)-round partial run. In this case, by Lemma
no process can decide by the end of roundf + 1—
contradiction. �
Lemma 7. When extending from a bivalentf -round
partial run, rf , all (f + 1)-round partial runs ofA
in S, in which at least one process receives all p
scribed messages in roundf + 1, are homovalent.

Proof. First, consider the(f + 1)-round partial run
extended fromrf without failures,r∗

f +1. By Lemma 6,
r∗
f +1 is univalent. BecauseA solves uniform consen

sus inf + 1 rounds inS, all processes will decide i
round f + 1. Now consider another(f + 1)-round
partial run extended fromrf with one crash,rf +1,
in which processpi receives all prescribed messag
in round f + 1. pi cannot distinguish whether it i
in rf +1 or r∗

f +1. It also decides inrf +1. If rf +1

is bivalent, by Lemma 5,pi cannot decide in roun
f + 1—contradiction.

Thus,rf +1 is univalent. Without losing generality
assumer∗

f +1 is 1-valent and all processes inr∗
f +1 de-

cide on 1. Thenpi also decides on 1 in roundf + 1
of rf +1. Thus,rf +1 must be 1-valent, otherwise it v
olates the uniform agreement property.�
Theorem 2. Consider a synchronous round-based s
temS of n processes with up tot potential andf ac-
tual crash failures, where at most one process cras
in each round. Ift < n and0 � f � t − 2, then there
is no early deciding protocol that solves uniform co
sensus inf + 1 rounds inS.

Proof. Proof of Theorem 2 is by contradiction, a
suming that there is a protocolA that solves uniform
consensus inf + 1 rounds inS. That is, in any execu
tion of A with f (0� f � t − 2) actual crash failures
all the correct processes must decide by the en
roundf + 1. The proof considers two cases accord
to the value off : (1) 0< f � t − 2; and (2)f = 0.

Case 1: 0 < f � t − 2
We introduce another synchronous distributed s
tem S′, which consists of the samen processes as i
the systemS, but only with up tof potential crash
failures that at most one process crashes in each ro
Now we considerA for both systems. By Lemmas
and 4, there is an(f − 1)-round bivalent partial run
rf −1 of A in systemS′. Clearly,rf −1 is also an(f −
1)-round bivalent partial run in systemS. Because in
both systems at most one process can crash in a ro
then by Lemma 6,f − 1 processes crash before rou
f . We will prove that all executions extended fro
rf −1 in systemS′ decide on the same value.

In the following, considerrf −1 in systemS and ex-
tend it to roundf . Considerr∗

f extended fromrf −1

without failure occurring in roundf , by Lemma 6, it
is univalent. Without losing generality, assumer∗

f is

1-valent. Letrk
f s be those one-round extensions of p

tial run rf −1 in which k processes do not receive t
message from the crashed process in roundf where
0 � k � n − f (because there aref − 1 processes
crashed before roundf), andrk ∗

f +1 denote one-round

extension of partial runrk
f without failures in round

f + 1. By Lemma 6, all thoserk ∗
f +1s are univalent.

Basis: Considerr0
f . Those partial runs are indistin

guishable fromr∗
f except that one process,p, crashes

at the end of roundf in r0
f . There are two cases:

(1) Some processes in bothr0
f and r∗

f decide in

roundf , by Lemma 7,r0
f should be 1-valent.

(2) No such process exists. Then extend bothr0
f and

r∗
f to roundf + 1, r0∗

f +1 andr∗
f +1, simply by crash-

ing p at the beginning of roundf + 1 in r∗
f +1. Then

two extensionsr0∗
f +1 and r∗

f +1 are indistinguishable
becauser∗

f is 1-valent,r∗
f +1 is 1-valent and decide

on 1 eventually.
Thus, allr0∗

f +1s decide on 1.

Hypothesis: Suppose 0� k < n − f , all rk ∗
f +1s de-

cide on 1.
Induction step: Consider anyrk+1

f , where 0� k <

n − f , there must exist a partial run,rk
f , which dif-

fers from rk+1
f by only one process,pi . pi receives

the message sent by the crashed process in rouf

of rk
f , but does not receive it in roundf of rk+1

f . By

Lemma 6,rk ∗
f +1 and rk+1∗

f +1 are univalent andrk ∗
f +1 is

1-valent by hypothesis.

X. Wang et al. / Information Processing Letters 96 (2005) 167–174 173

,

rty.
-

ich

re

t

-

ed
re
alue

-
f
l

s,
e
x-

e
er-

.

f
-

r-
er
are

. In
f

for
ny

evi-
d
pen

g
U
re
12.
ful
Consider extendingrk
f andrk+1

f to rk ′
f +1 andrk+1′

f +1
respectively by crashingpi such that onlypj receives
the message sent frompi in both partial runs. Thus
rk+1′
f +1 is indistinguishable fromrk ′

f +1 exceptpj . By

Lemma 7,rk ′
f +1 andrk+1′

f +1 are univalent becausepj re-

ceives all messages in roundf +1 andrk ′
f +1 is 1-valent

becauserk ∗
f +1 is 1-valent.

If some process other thanpj decides in the round
f + 1 of rk ′

f +1, and it will does so inrk+1′
f +1 , thenrk+1′

f +1
is 1-valent too by the uniform agreement prope
Otherwise, onlypj decides in both partial runs, ex
tending bothrk ′

f +1 andrk+1′
f +1 to roundf + 2 (because

f � t − 2, there exist extended executions in wh
crashes occur in roundf + 1 and roundf + 2), rk ′

f +2

and rk+1′
f +2 , by crashingpj at the beginning of round

f + 2 (for f = t − 1, we cannot do this becauset
processes have already crashed before roundf + 2,
and no crash occurs in roundf + 2. This is the reason
why our proof does not work forf = t − 1). Then,
rk ′
f +2 and rk+1′

f +2 are indistinguishable and both a

univalent.rk ′
f +2 is 1-valent becauserk ′

f +1 is 1-valent.

Thus,rk+1′
f +2 is 1-valent asrk ′

f +2, meaning thatrk+1′
f +1 is

also 1-valent. By Lemma 7,rk+1∗
f +1 must be 1-valen

and decide on 1 too.
By induction, all (f + 1)-round partial runs, ex

tended fromrf −1, without failure in roundf + 1
decide on 1. Becauser∗

f is univalent, then all(f + 1)-
round partial runs extended from it are 1-valent.

Now consider systemS′. BecauseS′ only has up
to f crash failures, and there aref − 1 processes
crashed before roundf , then when extended from
rf −1, only one process can crash in roundf or round
f + 1 in S′. Thus, all(f + 1)-round partial run ex-
tensions fromrf −1 in S′ are the same as discuss
before in systemS. However, all those extensions a
homovalent and eventually decide on the same v
by the end of roundf +1. Thus, therf −1 in systemS′
must be univalent—contradiction.

Case 2: f = 0

Considering initial configurationsC0 andC1 where
all processes propose 0 inC0 and all processes pro
pose 1 inC1. According to the validity property o
consensus,C1 is 1-valent andC0 is 0-valent. Then al
one-round partial runs extended fromC0 are 0-valent
and all one-round partial runs extended fromC1 are
1-valent. Clearly, there are two initial configuration
C′ andC′′, that differ by the initial value of only on
processp, such that the one-round partial runs e
tended fromC′ andC′′ without failure,r ′ ∗

1 and r ′′ ∗
1 ,

decide differently. Otherwise, bothC0 andC1 are the
samev-valent, wherev is 0 or 1, and this violates th
validity property of consensus. Without losing gen
ality, assume thatr ′ ∗

1 is 1-valent andr ′′ ∗
1 is 0-valent.

Now consider one-round partial runs,r ′
1 andr ′′

1 , ex-
tended fromC′ andC′′ respectively by crashingp, and
only one processq receives the message sent fromp in
round 1. Thenr ′

1 andr ′′
1 differ only byq. By Lemma 7,

both r ′
1 and r ′′

1 are univalent,r ′
1 is 1-valent, andr ′′

1
is 0-valent. If some process other thanq decides in
round 1 ofr ′

1, it decides inr ′′
1 too. It cannot distin-

guishr ′
1 andr ′′

1 but decides differently—contradiction
Otherwise, extending bothr ′

1 andr ′′
1 to two-round par-

tial runs,r ′
2 andr ′′

2 , by crashingq at the beginning o
round 2. Thenr ′

2 and r ′′
2 are indistinguishable. How

ever, r ′
2 is 1-valent andr ′′

2 is 0-valent becauser ′
1 is

1-valent andr ′′
1 is 0-valent—contradiction.

Thus, Theorem 2 must be true.�
4. Conclusions

Bivalency argumentis a technique that uses fo
ward induction to show impossibility results and low
bounds that are related to consensus. The proofs
simpler and more intuitive than the traditional ones
this paper, for a synchronous distributed system on

processes with up tot potential andf actual crash fail-
ures, we apply the bivalency argument to show that
every 0� f � t − 2, there exists an execution of a
uniform consensus algorithm that takes at leastf + 2
rounds for all the correct processes to decide. Pr
ously, finding a bivalency proof for the lower boun
of synchronous uniform consensus had been an o
problem.

Acknowledgement

This work is partially supported by the Hon
Kong UGC under the CERG grant B-Q567 (Poly
5075/02E) and the National University of Singapo
under Academic Research Fund R-252-000-180-1
We wish to thank anonymous referees for their help
suggestions and comments.

174 X. Wang et al. / Information Processing Letters 96 (2005) 167–174

ls,
k,

at
.

han

ine

d
74–

us
17th

),

n-
5 (1)

l-

sus,
ion

-
d ap-
ms
References

[1] H. Attiya, J. Welch, Distributed Computing: Fundamenta
Simulations and Advanced Topics, McGraw-Hill, New Yor
1998, 451 p.

[2] M.K. Aguilera, S. Toueg, A simple bivalency proof th
t -resilient consensus requirest + 1 rounds, Inform. Process
Lett. 71 (3–4) (1999) 155–158.

[3] B. Charron-Bost, A. Schiper, Uniform consensus harder t
consensus, J. Algorithms 51 (1) (2004) 15–37.

[4] D. Dolev, R. Reischuk, R. Strong, Early stopping in Byzant
agreement, J. ACM 37 (4) (1990) 720–741.

[5] M. Fischer, N. Lynch, M. Paterson, Impossibility of distribute
consensus with one faulty process, J. ACM 32 (2) (1985) 3
382.

[6] M. Herlihy, S. Rajsbaum, M.R. Tuttle, Unifying synchrono
and asynchronous message-passing models, In: Proc.
ACM Symp. on Principles of Distributed Computing (PODC
June 1998, pp. 133–142.

[7] I. Keidar, S. Rajsbaum, A simple proof of the uniform co
sensus synchronous lower bound, Inform. Process. Lett. 8
(2003) 47–52.

[8] N. Lynch, Distributed Algorithms, Morgan Kaufmann, Los A
tos, CA, 1996.

[9] Y. Moses, S. Rajsbaum, A layered analysis of consen
SIAM J. Comput. 31 (4) (2002) 989–1021. Previous vers
in: PODC 1998.

[10] J. Xu, A unified proof of minimum time complexity for reach
ing consensus and uniform consensus—an Oracle-base
proach, in: IEEE 21st Symp. on Reliable Distributed Syste
(SRDS 2002), Osaka, Japan, October 2002.

