Nominatedfor 2004IEEE/ACM PADS BestPaperAward

A Framework for Formalization and Strictness
Analysis of Simulation Event Orderings

Y. M. Teo

Singapore—Massachusetts Institute of Technology Alliance

Singapore 117576

Department of Computer Science
National University of Singapore
Singapore 117543
teoym@comp.nus.edu.sg

B.S. S. Onggo

Department of Computer Science
National University of Singapore
Singapore 117543

This article advocates the use of a formal framewo

rk for analyzing simulation performance. Simulation

performance is characterized based on the three simulation development process boundaries: phys-

ical system, simulation model, and simulator impl

ementation. First, the authors formalize simulation

event ordering using partially ordered set theory. A simulator implements a simulation event ordering

and incurs implementation overheads when enfor

cing event ordering at runtime. Second, they apply

their formalism to extract and formalize the simulation event orderings of both sequential and parallel
simulations. Third, they propose the relation stricter and a measure called strictness for compar-
ing and quantifying the degree of event dependency of simulation event orderings, respectively. In
contrast to the event parallelism measure, strictness is independent of time.

Keywords: Parallel and distributed simulation, fo
dered set

1. Introduction

rmalization, event ordering, strictness, partially or-

protocols [1]. Moreover, the performance metrics and
benchmarks used vary among the different studies. A se-

Asthe size and complexity of simulations grow, the compy- rioys drawback is the lack of performance comparison

tational demand required is fast becoming a limited fact

in solving large and complex real-world problems. Consg¢

quently, understanding simulation performance becom
increasingly important. Parallel simulation speeds up sin
ulation execution by distributing the simulation across
number of processors. In parallel simulation, a physic
system is viewed as a number of physical processes t
interact in some fashion [1]. In the virtual time simulatio
modeling paradigm, each physical process is modeled b
logical process (LP) [2]. The interactions between physic
processes are modeled by exchanging time-stamped eve
between the corresponding logical processes. Paralleli
is exploited by simulating LPs concurrently.

Research in parallel simulation in the past decade h

resulted in a number of synchronization protocols [1].

These protocols, introduced in an algorithm fashion, a
frequently evaluated by comparing its performance amo

SIMULATION, Vol. 81, Issue 4, April 2005 325-335
©2005 The Society for Modeling and Simulation International

DI framework. We proposed a time and space performance
evaluation framework based on the concept of event or-
€S dering [3, 4]. Event ordering in simulation refers to a set
N- of rules that is used to order a set of events. The frame-
@ work characterizes simulation performance along the three
Bl natural boundaries in simulation modeling and analysis
Nal(see Table 1) [3]. Thehysical system layer corresponds

to real-world systems, themulation model layer corre-

¥ dsponds to different simulation event orderings that can be
2l used to simulate a real-world system, and straulator
2NtFayer corresponds to the simulator implemented to enforce
5Ma simulation event ordering. The layered approach pro-
vides a framework to study the factors affecting simula-
@S tion performance from the physical system to its simulator
implementation.

€ Event ordering (or message ordering) has been studied
9 in the time management component of High Level Archi-
tecture (HLA) [1]. The simulation of a physical system in
HLA is distributed into a number of federates. Message
ordering in HLA time management dictates the ordering
of messages within each federate. Fujimoto [5] introduces

DOI: 10.1177/0037549705054930

Downloaded from sim.sagepub.com at NATI

five message orderings that form a spectrum of orderings

IONAL UNIV SINGAPORE on August 21, 2014

http://sim.sagepub.com/
dcsteoym
Typewritten Text
Nominated for 2004 IEEE/ACM PADS Best Paper Award

Teo and Onggo

Table 1. Layered simulation performance framework

Types of Event
Layer Event Ordering
Physical system Real events One
Simulation model Real events Many
Simulator Real events One or more
+ Overhead implementations

for a given event
ordering

where at one extreme, messages are not ordered, an
the other extreme, messages are totally ordered based
their time stamp. To exploit the temporal uncertainty i
a simulation model, Fujimoto [6] proposed approximat
time (AT) and approximate time causal (ATC) orders. Re
cently, Zhou et al. [7] investigated the causality issue
distributed simulation and proposed the causal receive
dering. In parallel simulation, event ordering dictates th
ordering of events within each LP and across LPs. To pr
duce a correct simulation result, events in an LP are €
ecuted in nondecreasing time-stamp order [1]. This co
straint is referred to as the local causality constraint (Ica
Different synchronization algorithms impose different or
dering rules in executing events. Different runtime eve
execution schedules produce the same simulation res
but with differing execution performance [8, 9].

A particularly vexing problem with event ordering hap

The memory consistency model recognizes a number of
memory operation orderings such as the sequential consis-
tency model [15]. The sequential consistency model can be
implemented in various ways [16-19]. Similarly, broadcast
communication services recognize a number of message
orderings such as causal order [13, 14]. Many algorithms
have been proposed to implement causal order [20-24].
Our work is different from critical path analysis (CPA),
which is also used to analyze the performance of parallel
simulation [20]. CPA uses an event dependency graph that
is based orhappened before event ordering [25]. Hence,
CPA is a subset of our event ordering analysis.
d at The restof this article is organized as follows. Section 2
oriormalizes the concept of simulation event ordering. We
n apply this formalism to extract and formalize simulation
e event orderings in both sequential and parallel simulation.
»- In section 3, we propose tis&Ficter relation and apply this
n concept to analyze a number of event orderings. We show
or- the empirical result in section 4. Our concluding remark is
e insection 5.
0_
X- 2. Formalization of Event Orderings
n_
). Event ordering is an important concept in discrete event
simulation. Inthis section, we propose to formalize simula-
nt tion event ordering based on a partially ordered set (poset).
[tsResearch in poset theory was triggered by Dushnik and
Miller's [26] publication in 1941. They proposed the defi-
nition of partial order, as given in definition 1.

pens when an LP receives a number of distinct events| at

exactly the same simulation time. Wieland [10] studied th
problem, noting that the results of the simulation are se
sitive to the particular ordering assigned to simultaneo
events. He proposed that the problem be handled sta|
tically: a sampling of all possible simultaneous event o
derings is executed, and the resulting distribution wou
be more meaningful than a single-point estimate derivg
from an arbitrary temporal tie-breaking mechanism.
This article discusses the formalization of simulatio
eventorderings based on a partially ordered set (poset). 1
formalization provides a theoretical foundation for carry
ing out performance analysis of simulation. If events wit
the same time stamp are grouped as an ordered set of
multaneous events, there will be only one event ordering
a physical system. This article shows that a simulator in
plementation implements a specific event ordering. Tw
major benefits may be derived from the separation of sin
ulation event ordering from its implementation. First, thi
facilitates the understanding of the relationship of differe
event orderings. We propose the relatabricter to com-

pare different event orderings. Second, the performance o
different event orderings can be evaluated independent o

implementation overheads [3, 4]. The separation betwe
event ordering and its implementation is motivated by re¢
search on memory operation orderings in memory cons
tency models [11, 12] and message ordering in broadc

DEFINITION 1. An orderR over S (whereS is a set) is

n- called a partial order iR is antireflexive (i.e.(x, x) ¢ R),

s antisymmetric (i.e., eithefr, y) € R or (y,x) € R), and
lis-transitive.

- For example, an order “descendant of” for a given set of
d Peopleis of partial order. However, an order “friend of” for
»d @ given set of people may not be a partial order depending
on the given set of people. This leads to the concept of a
L partially ordered set [26].

7]

heperinTION 2. A partially ordered set (poset) is a tuple

~ (S, R),whereS is asetan is a partial order on the s§t

h . Based on the definition of poset, we formalize simula-

Shtion event ordering (referred to as event ordering in short)

IN"in definition 3. Just as a poset has two components, an

- event ordering also comprises two main components: a set

O of eventsk and an event ordeR. An event orderR refers

- to a set of rules that is used to order events. A pair of events

5 (x,y) € S denotes that eventis ordered before event

't in event orderR. Two eventsy and y, arecomparable if
either(x, y) € S; or (v, x) € Si; otherwisex andy are

fnoncomparable (azoncurrent).

en DEFINITION 3. A simulation event ordering (or event or-

p- dering in short) is atupléE, Si) wherekE is a set of events

s- andS; is a set of comparable events based on event order
ast R. Event ordeR must be antireflexive, antisymmetric, and

communication services in distributed systems [13, 14

326 SIMULATION Volume 81, Number 4

Downloaded from sim.sagepub.com at NAT!

]. transitive.

IONAL UNIV SINGAPORE on August 21, 2014

http://sim.sagepub.com/

FORMALIZATION AND STRICTNESS ANALYSIS OF SIMULATION EVENT ORDERINGS

2.1 Physical System

An event order in the physical system corresponds to hg
events in the physical system are ordered. Based on

physical time, there is only one event order for any phys
cal system; that is, an event with a smaller physical time

ordered before an event with a larger physical time (defini

tion 4). The definitiongpredecessor andantecedent (defi-
nition 5 and 6) will be used throughout this article.

DEFINITION4. Letx be aneventinaphysical systeman
x.ts the physical time when event happens. The event
order in any physical system dictates that for all evants
andy (wherex # y), x is ordered before if and only if
X.ts < y.ts.

Figure 1a shows a physical system with four service ce
ters, S, S», Ss, ands,. Figure 1b shows the corresponding
snapshot of event occurrences. Horizontal axis represe
physical time, and vertical axis represents service cente

The physical time in Figure 1b is expressed in time-stamp

units. Labek! represents thah arrival event and; repre-
sents the corresponding departure at tirdeshaded circle
represents an event arrival, and unshaded one represen
event departure. The snapshot shows that at time 0, jo
arrives ats;. SinceS; isidle, job 1 is processed until time 4.
Job 2 arrives af; at time 2. SinceS; is busy, this job must
wait until S; completes job 1 and so on. A dashed arro
from x to y shows thatx is the predecessor of, and a
solid arrow fromx to y shows that is the antecedent of.
The definition of the predecessor and antecedent is giv
in definitions 5 and 6, respectively. For example, in Fig
ure 1b, events; is the predecessor of evedft, and event
d? is the antecedent of evedmy.

DEFINITION 5. Eventx is the predecessor ¢f(denoted
by y.pred = x),if x andy occur at the same service cente
with x.ts < y.ts and there is no other evepthat is also
at the same service center such that < z.rs < y.ts.

DEFINITION 6. Eventx is the antecedent of (denoted
by y.ante = x), if x spawnsy.

2.2 Simulation Model

Based on the virtual time paradigm, a simulation mod

W
the

-y

s la e a4 A
- 5 S Q--»O---->Q---- »Q------- >
8 al\ & o al
3 S O-»O---»O>0O--
2
) I al d;
S O--------- »O-A------
S a;
0 2 4 6
n- Timestamp

ntsFigure 1. Snapshot of event occurrences in a physical system
IS.

san
D 1

Physical System Simulation M odel
Physical Processe————» Logical Process
(Physical) Event«————» (Modeled) Event

Physical time «—» Simulation time

Figure 2. Mapping between the physical system and the
simulation model
en

to these event orders as partial event order and total event
order, respectively (see definitions 7 and 8). The priority
function in total event order is used to decide which event
should be processed when two or more events have the
same time stamp. Based on interval order in poset [27],
we formalize the time-stamp event order and time-interval
event order [3, 4]. Their definitions are given in definitions

9 and 10, respectively.

DEFINITION 7. Partial event order imposes that event
is ordered before eventif (y.pred = x) or (y.ante = x).

&

emulates a physical system and the interaction amo
physical processes in the physical system (see Fig. 2). E
physical process in the physical system is mapped onto
LP in the simulation model. Each event in the simulatio
model models an event in the physical system. The si

lation time of an event in the simulation model models the

physical time of the corresponding event in the physic
system. The event ordering in a physical system can
modeled and simulated using different event orderings
exploit different degrees of event parallelism.

Lamport [25] definedhappened beforepartial order and
total order and proved that both orders are antireflexiv
antisymmetric, and transitive, which match our definitio
of simulation event order (definition 3). Hence, we ref

ng DEFINITION 8. Total event order imposes that everis
chordered before event iff (x.ts < y.ts) or (x.ts = y.ts
anandpriority(x) < priority(y)).

u- DEFINITION 9. Time-stamp event ordering imposes that
eventx is ordered before eventiff x.ts < y.rs.

| DEFINITION 10. Time-interval event ordering imposes
e that eventx is ordered before eventiff (y.pred = x) or
to (y.ante = x)or (x.ts+ W < y.ts), whereW is a constant
window size.
To produce the correct simulation result, it is sufficient
that each LP executes events in nondecreasing time-stamp
order [1]. This constraint, commonly referred to as the Icc,

r is formalized in definition 11.

Volume 81, Number 4 SIMULATION 327

Downloaded from sim.sagepub.com at NATIONAL UNIV SINGAPORE on August 21, 2014

http://sim.sagepub.com/

Teo and Onggo

SEQUENTIAL SIMULATION

1 initialize

2 while (~stop) {

3 e « f(FEL)

4. local clock <« e.timestamp
5 FEL « FEL - {e}

6 E <« execute (e)

7 FEL <« FEL U E

8. stop <« g()

9. }

10.

11. £(L) :event {

12. x <« head (L)

13. M« {y | VyelL e y.timestamp
14. if (M =) return x

15. else return {z |

16. }

Figure 3. Algorithm of sequential simulation

DEerINITION 11. The local causality constraint impose
that if, for any two distinct events, y € E andy.pred =
x, thenx is ordered before.

2.3 Simulator

A simulator, written as a sequential program or a parallgl
program, is an implementation of a simulation model. |
parallel simulation, a synchronization algorithm (or si
ulation protocol) is required for maintaining correct event

ordering across processors. Enforcing event ordering|at

runtime incurs implementation overhead such as null mes-
sages in the Chandy Misra Bryant (CMB) protocol an
rollback in time warp protocol that results in performanc
loss.

To show that each simulator implements a certain evgnt
order, we extract and formalize the ordering rules of anu
ber of simulatorimplementations. These include sequentjal
simulation and parallel simulation protocols such as CM
[28], bounded lag [8], time warp [2], and bounded tim
warp [9].

2.3.1 Sequential Simulation

The sequential simulation algorithm is presented in Fig-
ure 3. Events in sequential simulation are totally ordered
(only one eventis executed at any time). To enforce this or-
dering, sequential simulation maintains a future event list
(FEL) where events are sorted in chronological time-sta
order. In line 3, the functiory returns the event with the

smallest time stamp in the future event list. FEL enables

X.timestamp}

VyeM J!zeM e priority(z)>priority(y)}

LEMMA 1. Sequential simulation implements a total
event order.

Proof. Sequential simulation employs a global event list
that is sorted by the smallest time stamp first. This guar-
antees that event is ordered before eventif and only

if x.ts < y.ts. The use of a priority function when more
than one event has the smallest time stamp guarantees that
if x.ts = y.ts, eventx is ordered before eventif and only

if priority(x) < priority(y). a

The algorithm presented in Figure 3 does not use LPs.
If LPs are used, the priority function only provides a to-
tal ordering per LP. Therefore, the priority function could
return equal priority for two events from different LPs. In
that case, the ordering would depend on the implementa-
tion of the event list and the order that the initial events
were generated.

2.3.2 CMB Protocol

The algorithm of the CMB protocol [28] is given in Fig-
ure 4. Each LP maintains a list of LPs that may send events
toit (for LP x, itis denoted bySENDER(x)). The ordering
rule of the CMB protocol imposes that only a safe event
can be executed. An event in LPis safe for execution

if no other LPe SENDER(x) will send any event with a

p smaller time stamp to LR. Therefore, to maintain this

ordering, LPx must wait for other LRe SENDER(x) to
send their events (see line 5). This could lead to deadlock

sequential simulation to execute an event with the smallest as all LPs are blocked. To avoid deadlock, null messages

time stamp (line 12). In case of a tie (.84, # @ in line

14), an event with the highest priority will be chosenir{(z
line 15). Issues and examples on implementing the priority
function have been studied [10, 29]. Lemma 1 formalizes
the event ordering in sequential simulation.

328 SIMULATION Volume 81, Number 4

are introduced. Each null message is stamped with a time
stampts, whichis equal to LP’s local simulation clock plus

a lookahead value (line 13) to indicate that the sending LP
will never transmit any events with a smaller time stamp
thants.

Downloaded from sim.sagepub.com at NATIONAL UNIV SINGAPORE on August 21, 2014

http://sim.sagepub.com/

FORMALIZATION AND STRICTNESS ANALYSIS OF SIMULATION EVENT ORDERINGS

CMB PROTOCOL
1. initialization
2. run all LPs

LOGICAL PROCESS

3. while (~stop) {

4. while (3i IB[i] = J) {}

5. L <« EL U {Vi IB[i]}

6. e « f(L)

7. if (Jdi eeIB[i]) IB[i] <« IB[i]-{e}

else EL « EL-{e}

8. local clock <« e.ts

9. {IE, EE} <« execute (e)

10. EL « EL U IE

11. Vi OB[i] <« OB[i] U {z|z€EE e z.lp=i}

12. nullMsg.ts <« local clock + lookahead

13. Vi if (OB[i] =) OB[i] <« OB[i] U
{nullMsg}

14. Vi send (OB[1])

15. stop <« g{()

16.}

Figure 4. Algorithm of the CMB protocol

Each LP maintains an event list (EL), a set of inpy
buffers (IB), and a set of output buffers (OB). IB[i] of an LP
x stores the incoming message from; L& SENDER(x).
OB]Ji] stores the messages that will schedule events jn L
An LP is blocked if at least one of its IBs is empty (line 4)
Function fin line 6 is the same function that is used in th
sequential simulation (see Figure 3). The function choos
an event with the smallest time stamp from the IBs an
EL for execution. Line 7 removes the chosen event fro
the corresponding list (one of the IBs or EL). The loca
clock is updated in line 8. In line 9, an event executio
may schedule a set of internal events (IE) and a set
external events (EE). The internal events (i.e., schedul
to happen in the same LP) are saved to EL (line 10), a
external events (i.e., scheduled to happen in other LPSs)
saved to their respective OB (line 11). Line 12 sets a ny
message with a time stamp equal to the local clock plus
lookahead value. Line 13 adds a null message to any em

events in the same LP, if.pred = x, thenx is ordered
beforey. Furthermore, eventin LP; is executed only if it

has the smallest time stamp among the unprocessed events
of all LP € SENDER(LP;). Therefore, event in any LPe
SENDER(LP;) is ordered before eventonly if x.ts+ la

< y.ts, wherela is the lookahead value. O

Researchers have proposed various optimizations such
as the demand-driven protocol [30], the flushing protocol
[31], and the carrier null message protocol [32] to reduce
the nullmessage overhead. These optimizations do not alter
the event ordering in the original CMB protocol, but rather,
they can be seen as different implementations of the same
event order.

2.3.3 Bounded Lag Protocol

Lubachevsky [8] proposed the bounded lag (BL) protocol,
which combines two main rules: bounded lag restriction
and minimum propagation delay. Bounded lag restriction
imposes that events can be executed concurrently if they
are within the same time window. Minimum propagation
delay between LPs is used to determine whether an event
is safe to execute. The latter is similar to the rule in the
CMB protocol; however, in the implementation, the BL
protocol uses a distance matrix instead of using null mes-
sages. To maintain its ordering, the BL protocol uses bar-
rier synchronization because the global clock (forimposing
bounded lag restriction) and the minimum propagation de-
lay must be broadcast to all LPs. The algorithm is given in
Figure 5.
There are two main processes: the nomination of safe

€ events (lines 4-7) and the execution of safe events (lines 8-
€S 15). The lookahead between any two LPs is stored in a
d distance matrixJ. Based on the distance matrix, an LP
M (denoted byhisin Fig. 5) determinea, that s, the earliest

I time when its system state can be affected by the other
N LP (line 4). The barrier synchronization (line 5) ensures
of that all LPs calculate before continuing to the next line.
ed Each LP identifies its safe events based on this rule: events
nd with a time stamp less thanand within a time window of
Arew are safe to process (line @) is termed as BL size in

Il Lubachevsky [8]. Line 7 removes all safe events from EL
a for execution. The BL protocol retrieves a safe event with
Ptythe least time stamp in line 9 and removes it from the list

—

U

OB. Line 14 sends all the external events and null messagesg in line 10. In line 11, event execution may schedule a set

in OBs. Finally, line 16 checks the stopping condition.

LEMMA 2. The CMB protocolimplements an event orde
whereby event is ordered before eventif

1. y.pred = x, or
2. x.ts +1la < y.ts.
Proof. The conditional statement in line 4 (Fig. 4) ensure

that an LP has to wait until all LPs in its SENDER list have
sent their events. This ensures that an LP always execy

of IEs and a set of EEs. The internal events will be added
to the EL (line 13), and the external events will be sent to
their respective LPs (line 14). The barrier synchronization
in line 17 is used to ensure that all LPs have processed
their safe events before the time window is moved. Line 18
computes the global clock as the minimum of all LPs’local
clock. This process is repeated until the stopping condition
is met.

r

S

D

LEMMA 3. The BL protocol implements an event order

teswhereby event is ordered before eventif

events scheduled in it in time-stamp order. Hence, for &

all 1. y.pred = x, or

Volume 81, Number 4 SIMULATION 329

Downloaded from sim.sagepub.com at NATIONAL UNIV SINGAPORE on August 21, 2014

http://sim.sagepub.com/

Teo and Onggo

BL PROTOCOL
1. initialization
2. run all LPs

LOGICAL PROCESS
3. while (~stop) {

4. B < min{Vlp € LP, e=head(lp.EL) e e.timestamp+d(lp, this)}
Y < min{V1pelP,e=head(EL)ee.timestamp+d(this, 1p)+d(lp,this)}
o « min {B, vy}

5. barrier synchronization

6. E < {Ve € EL e e.timestamp < min(a, global clock+W)}
7. EL < EL - E

8. while (E # &) {

9. e < head(E)

10. E < E - {e}

11. {IE, EE} <« execute (e)

12. local clock <« e.timestamp

13. EL <« EL U IE

14. Send (EE)

15. }

16. stop <« g{()

17. barrier synchronization

18. global clock < min {Vlp € LP e lp.local clock}
19. barrier synchronization

20.}

Figure 5. Algorithm of a bounded lag protocol

2. x.ts +la < y.ts,or for execution. Line 6 checks if Icc is violated.#f is the
anti-message of, dual(x) returnsm, anddual(m) returns

3. Lxts/W] < Ly.ts/W]. x. Line 7 de?tects whegh)er rollback has to b(e éonm i6

an antimessage, line 9 will annihilate the associated event

that has to be cancelled; otherwise, it will addo a list

called the input queue (IQ). IQ is used to store the history of

all incoming messages (processed and unprocessed). Line

10 removesn from IB. Lines 12 to 15 retrieve an event

e, which has the smallest time stamp from the EL, and

choose the event with a smaller time stamp, between

ande. Line 17 executes the chosen event. This execution

may produce a set of IEs and a set of EEs. Line 18 updates

the local clock, and line 19 updates the EL. Line 20 saves

the state of an LP. The global clock is updated in line 21.

. Events with a time stamp less than the global clock will

2.3.4 Time Warp Protocol never be rollbacked. These events are catlesimitted

Jefferson [2] proposed the Time Warp (TW) protoco|, €vents. Hence, memory allocated to committed events can
which implements a rule that if eventcauses event, be reclaimed with the fossil collection process in line 22.
then the execution of event must be completed before Line 23 sgnds out't.he external events. Last, line 24 checks
the execution of event starts. The definition of “causes | the stopping condition.
y" follows the relationhappened before in Lamport [25]. | | emma 4. The time warp protocol implements a partial
To implement this ordering, the TW protocol uses what eyent order.
is called the local control mechanism (rollback and state
saving) and the global control mechanism (global clogk Proof. The rollback process ensures that all events in the
calculation and fossil collection). The algorithm is given same LP are executed in time-stamp order. This implies
in Figure 6. that eventx is ordered before eventif y.pred = x. The
Each LP stores all incoming events in an input buffer insertion of internal events to EL and the transmission of
(IB), which is sorted based on the time stamp of the in- external events are done after the eventexecutioninline 17.
coming events. Lines 4 to 11 find the first real event | Thisensures that events ordered before eveptif y .ante
Line 5 retrieves an evemt with the smallest time stamp! = x. O

Proof. In line 4, a returns the smallest time stamp of an
unprocessed event(plus lookahead) that may be sent to
a particular LP (Fig. 5). Line 6 shows that if evenin LP,
can be executed in parallel with evenfrom another LP,
theny.ts < a (i.e., x.ts + la), and bothx andy must be
in the same time window of siz& . Therefore, event is
executed before eventonly if x.ts+ la < y.tsor eventse
andy are in two different time windows of siz® is true
(of course, the time window of should be earlier than the
time window ofy).]

=~

=

330 SIMULATION Volume 81, Number 4

Downloaded from sim.sagepub.com at NATIONAL UNIV SINGAPORE on August 21, 2014

http://sim.sagepub.com/

FORMALIZATION AND STRICTNESS ANALYSIS OF SIMULATION EVENT ORDERINGS

TIME WARP PROTOCOL
1. initialize LPs
2. run all LPs

LOGICAL PROCESS

3. while (~stop) {
4. do {
5. m < head (IB)
6. if (m.ts < local clock) {
7. if (((m # anti message) and dual (m) ¢ IQ) or
((m = anti message) and dual (m) € IQ)) RollBack()
8. }
9. if (dual(m) € IQ) Annihilate(m) else IQ <« IQ U {m}
10. IB « IB - {m}
11. } while ((m = anti message) and (IB # ¢))
12. if (m = anti message) e <« head(EL)
13. else {
14. if (m.ts < head(EL).ts) e <« m
15. else {e <« head(FEL); EL « EL - (e}; EL « EL U {m}}
16. }
17. {IE, EE} <« execute (e)
18. local clock « e.ts
19. EL < EL U IE
20. StateSaving()
21. Update(global clock)
22. FossilCollection()
23. Send(EE)
24. stop <« g()
25.}

Figure 6. Algorithm of the time warp protocol

2.3.5 Bounded Time Warp Protocol

The Bounded Time Warp (BTW) protocol [9] is propose
to limit the degree of optimism in the Time Warp protoco
by setting a bound on how far an LP can advance ahead

other LPs. This is accomplished by setting a time window

(W). All LPs are allowed to optimistically process event
ahead of the global clock (G V)ibut are bounded by the
time windowGVT + W. No LP can advance beyot@VT

+ W before all LPs have reached this boundary.

LEMMA 5. The BTW protocol imposes that eventis
ordered before eventif

1. y.pred = x, or

2. y.ante = x, Or

3. x.ts/ W] < |y.ts/W].
Proof. Without the time window, the BTW protocol is the
same as the Time Warp protocol; hence, the ordering ru
ofthe partial eventorder hold (i.e., evaris ordered before

eventy if y.pred = x or y.ante = x). The additional time
window synchronization imposes that the partial event o

time window. Consequently, only events within the same
time window can potentially be executed in parallel. There-
fore, if eventx occurs within a time window that is earlier
than the time window of event, eventx will be executed
before eveny. O

We summarize the formalization of the discussed event
orderings in Figure 7. The ordering rules of each event
order are shown in the following form:is ordered before
(denoted by = y) ifalist of conditions hold. A simulator
implements a certain event order. An arrow from an event
orderingR in the simulation model to simulatsrdenotes
thatS implementsR.

)}

of

D

3. Strictness of Event Orderings

To compare the degree of event dependencies among dif-
ferent event orders, we propose arelatiwitter. The term
dtricter is borrowed from the memory consistency model
[12]. In memory consistency, the stricter relation is used to
compare different models by considering the set of possi-
esble outcomes that is allowed by each model for a given set
of instructions. In simulation event ordering, we consider
the set of events that have to be executed one after another
r- due to the ordering rules imposed by an event order for a

der is applied to a set of events that occur within the san

Downloaded from sim.sagepub.com at NATI

ne given set of events.

Volume 81, Number 4 SIMULATION 331

IONAL UNIV SINGAPORE on August 21, 2014

http://sim.sagepub.com/

Teo and Onggo

(Lxtsiw) <Ly.tsd)

(Ixtsw] < Ly.tsl)

N J

Physical Simulation Model Simulator
System
o x =y, iff (X.ts < y.ts) or (x.ts = y.ts and— » Sequential
priority(x) < priority(y)) (Total)
X =y, iff o x =y, iff X.ts < y.ts (Timestamp) » TW Protocol
=Y e x=vy,if (y.pred = x) or (y.ante = x) or (x.ts/+
x.ts <y.ts W <);/_ts()y('rl)'ime-int29rva(l¥ yor(» BTW Protocol

e x =y, if (y.pred = x) or (y.ante = x) (Part
o x=vy,if (y.pred = x) or (y.ante = x) or

e x=y,if (y.pred = x) or (x.ts + la < y.ts)
e x=y,if (y.pred = x) or (x.ts + la < y.ts)

» CMB Protocol

i7/)
J

» BL Protocol

Figure 7. Summary on simulation event ordering formalization

DEFINITION 12. An event orderR; is stricter than event
order R, if, for any set of event#, Sz, C Sg;. An event
orderR; is incomparable to event ordé& if we can find
two sets of event&,; and E,, such thatSz, C Sk, is true
for E; but Sz, C Sk1 is not true forkE,.

LEMMA 6. Two properties o a stricter relation are

1. if R, is stricter thanR, and R, is stricter thank,,
thenR; = R, (antisymmetric);

2. if R, is stricter thanR, and R, is stricter thanRs,
thenR, is stricter thank; (transitive).

Proof. From definition 12, the fact that event ordgy
is stricter than event ordeR, shows thatSz, < Si;.
Therefore, if event ordeR; is stricter than event order
R,, and R, is stricter thanR,, it meansSi, < Sk and
Srz2 C Sii are true. Consequentl§z, = Sk1, Which im-
plies R, = R, (definition 3). Similarly, if event ordeR;
is stricter than event ordek,, and R, is stricter thanRs,
it meansSz, C Sp1 andSzs C Si, are true. Consequently,
Sz € Ski is true for any set of eventg, which implies
that R, is stricter thanR; (definition 12). O

Two events are concurrent in an event order if the eve
order does notimpose any ordering on them. Definition]
implies that a stricter event order produces fewer co
current events than a less strict event order (or, at mo
the same number of concurrent events). Since concurr
events can be executed in parallel, a stricter event or¢
produces less event parallelism. To quantify the degree
event dependency, we propose the measustrimtness.
Since relation stricter is built based on set inclusion, th
strictness of event ordet is quantified based on the num-
ber of elements ¥, as shown in definition 13.

DEFINITION 13. The strictness of an event ordRr(cx)
is defined as|Sk|1/11S.:||, where||Sk|| and||S,,|] is the
size of the set of comparable (or nonconcurrent) ever

nt
|2
n-
St,

of

e

ordered byR and the total event order, respectively.

332 SIMULATION Volume 81, Number 4

Since total event order is the strictest event order, we
normalize the number of elementsSpwith the number of
comparable elements in the total event ordey X.$Hence,
the strictness of an event order ranges from zero when
Sz = ¥ and 1 wherR is the total event order. To measure
[|Sk|| for a given set of events, we have to determine for
any two eventsy andy € E, whether (x y) € S based
on the ordering rules of the event order. This process is
computationally expensive, especially for a large number
of events. Since (xy) € Sk implies that eveny cannot
be executed before the execution of evegbmpletes, in
our experiments, we measure the number of events that are
ready for execution but cannot be executed because of the
ordering rules imposed by the event order.

3.1 Strictness Analysis

Event orderR, is stricter than event ordek,, which im-
plies that for any two distinct eventsandy, if x is ordered
beforey in Ry, thenx is also ordered beforgin R, but not
vice versa. Therefore, to prove whether an event order is
stricter than another event order, we show that the ordering
rule of one event order is a subset of the other event order.
If the ordering rule of event ordeR; is a subset of event
orderR,, then definitely ifx is ordered before in Ry, then

x is also ordered beforgin R,. Using this approach, in the
following theorems, we establish the relationships of var-
ious simulation event orderings. The spectrum of various

sntSimulation event orderings and its strictness is summarized
jerin Figure 8.

THEOREM 1.

1. Total event order is stricter than the TS event order.

2. The event order of the BL protocol is stricter than

the event order of the CMB protocol.

. The event order of the BTW protocol is stricter than
the partial event order.

Downloaded from sim.sagepub.com at NATIONAL UNIV SINGAPORE on August 21, 2014

http://sim.sagepub.com/

FORMALIZATION AND STRICTNESS ANALYSIS OF SIMULATION EVENT ORDERINGS

CMB
{
BL \
o—r> 00— [J
Total Timestamp / Partial
o
BTW
Time-interval |
Sequential
Smulation \ g

Y
Parallel Smulation

Figure 8. Spectrum of simulation event orders and its
strictness

Proof. The proofs are derived by comparing their proper-

ties in Figure 7. If the property of an event ordey is a
subset of the property of event ordey, thenR; is stricter
thanR;. O

THEOREM 2. The TS event order is stricter than the BL
event order.

Proof. In the TS event ordex = vy, iff x.ts < y.ts. On
the other hand, inthe BL protocal,= y, if (y.pred = x)
or(x.ts +1la < y.ts)or (|x.ts/W]| < |y.ts/W]). These
rules canonly be trueif.ts < y.ts. Therefore, ift = yin
the BL protocol, therx = y is true in the TS event order,
but not the converse. Hence, the time-stamp event orde
stricter than the event order of the BL protocol. O

LEMMA 7. Vx,y € E, {y.ante = x} C {x.ts +la <
y.ts andx.lp € SENDER(y.lp)}.

Proof. From the definition of th€ENDER list and looka-
head, ify.ante = x, thenx./p must be in th&SENDER list
(i.e.,x.Ilp € SENDER(y.lp)), and the time-stamp differ-
ence between andy must be greater than the lookahea
la (i.e., x.ts + la < y.ts). However, it is possible that
x.Ip € SENDER(y.lp) andx.ts 4+ la < y.ts is true, but
y.ante # x. [

THEOREM 3. The event order of the CMB protocol is
stricter than the partial event order.

Proof. Both have two ordering rules (Fig. 8). The first rulg
is the same; that is; = y if y.pred = x. In the second
rule, the partial event order imposes= y if y.ante= x,
whereas the CMB protocol imposes thats y if x.rs +

la < y.ts. Lemma 7 shows that the second rule of th
partial event order is a subset of the second rule of the CM
protocol; therefore, the event order of the CMB protocg
is stricter than the partial event order. O

THEOREM 4. The event order of the BL protocol is

a) LPIPE(3, p) b) CPIPE (3, m)

~IO-Io-Io> Lapo-o-o]
d) PHOLD (3%3, m)

¢) MIN (3x3, p) — — —

— O~ L.]]]]i)ﬁ]]]éﬁ]]@J

- bt

— O I—*EKE*]]D%*]]D%J

Figure 9. Benchmarks

Proof. Both have three ordering rules (Fig. 8), and two
of them are the same; that is, = y if y.pred = x or
lx.ts/W]| < |y.ts/W]. The other rule is different: the
BTW protocol imposes = y if y.ante = x, whereas the
BL protocol imposes that = yif x.ts+1la < y.ts. Based
onlemma 7, the BL protocol imposes a stricter event order
than the BTW protocol for the same window side [

Figure 8 shows the spectrum of event orders based on
our proposed stricter relation. BL, BTW, and CMB refer to
the event ordering of the BL protocol, BTW protocol, and
CMB protocaol, respectively. An arrow from event ordeyr
to event ordeiR, denotes thar; is stricter thank,. The
stricter relation is transitive, and the arrows can be traversed
r istransitively as well. Sequential simulation implements total
event order, and the remaining event orders belong mainly
to parallel and distributed simulation.

Depending on its window size, the relative position of
the Tl event order can be anywhere between the time-stamp
event order and the partial event order. If the Tl event or-
dering uses a window size of zero, then it becomes a time-
stamp event ordering. Similarly, there is a constastich
y that 0< ¢ < W, where the time-interval event ordering
becomes the partial event ordering {$¥the window size),
as shown in theorem 5. This property is useful in strictness
analysis because we can create different points (represent-
ing different event orderings) between time-stamp event
ordering and partial event ordering by changing the value
of W.

THEOREM 5. For a given set of events, there is a con-
stantc such that O< ¢ < W, where a Tl event order will
become a partial event order.

Proof. To prove this, we show that if & ¢ < W, the

g third rule of the time-interval event order (i.e.rs + W <

| y.ts) is redundant. Let andb be two distinct events in
E, whereb.pred # a andb.ante # a andb.ts —a.ts = ¢

is the largest. IfW > ¢, then the rulex.ts + W < y.ts

will produce an empty set. Hence, only the first two rules

[¢)

stricter than the event order of the BTW protocol.

(y.pred = x andy.ante = x) determine the ordering,

Volume 81, Number 4 SIMULATION 333

Downloaded from sim.sagepub.com at NATIONAL UNIV SINGAPORE on August 21, 2014

http://sim.sagepub.com/

Teo and Onggo

MIN (nxp, 0.8)

1.0

0.8

0.6

Strictness

0.4

0.2

0.0 4

4x4 6x4

Problem Size

Figure 10. Strictness of event orderings

resulting in a Tl event order with¥ > ¢ and a partial
event order producing the same event ordering. [

4. Empirical Result

We measure the strictness of five event orders (i.e. tot
time stamp, time interval, CMB, and partial) using fou
benchmarks:

1. Linear pipeline (LPIPE) represents a simptipen
system. It is parameterized by the number of servic
centers (nand traffic intensity (p), which is the ratio
between the arrival rate (3and the service rate ().

. Circular pipeline (CPIPE) represents a simple
closed system. It is parameterized by the number of
service centers (rand job density (i), which is the
average number of jobs in a service center.

. Multistage interconnected network (MIN) repre-

sents a more complex open system with multiple
r

fork and merge structures [31]. The jobs in any se
vice center (except at the last column) will be ser
to one of the two neighbors with equal probability,

(n x p) and traffic intensity (p).

. Parallel hold (PHOLD) represents a closed systen
with multiple feedbacks [5]. A job in any server can
move to one of the four neighbors with an equal prok;
ability. Initially, jobs are distributed equally among
the service centers. Itis parameterized by the numh
of service centers (x p) and job density (m).

We measure the strictness of the event orderings us
a time and space analyzer (TSA) that we have develop
[3]. The simulation duration is set at 100,000 time-starm
units. Figure 10 shows the strictness of event orderin
as problem size increases. First, the result shows that
strictness value is between 0 and 1, where total event or
is the strictest event order. Second, the figure reveals t

a)

Itis parameterized by the number of service centefrs

N

the partial event order, the event order of the CMB protocd

334 SIMULATION Volume 81, Number 4

PHOLD (nxp, 4)

X\x\‘\x
e

2x4

1.0

0.8

0.6

Strictness

0.4

0.2

0.0 4

4x4 6x4

Problem Size

8x4

the time-stamp event order, and the total event order are
in the order of increasing strictness. This confirms their
positions on the spectrum of event orders in Figure 8. The
time-interval event order with time windows of 1 and 2
are used to represent two event orderings with different

al, degrees of strictness. As we reduce the window size, the
r curve for the time-interval event order moves toward the

time-stamp event order, and conversely, when we increase
the window size, it moves toward the partial event order.
As the problem size increases and, consequently, the
number of events, strictness reduces. This is due to the
higher probability of concurrent (noncomparable) eventsin
the benchmarks. The strictness measure shown also reflects
that the degree of event dependency in the closed system
is higher than in the open system. Misra [33] reported that
the CMB protocol can achieve optimum performance for
a tandem topology and any acyclic topology. Our result
confirms this; thatis, the strictness of the CMB (and partial)
protocols for the open MIN (ix p, 0.8) system is lower
than in the closed PHOLD (x p, 4) system with multiple
- feedbacks.

t 5. Conclusions

The main contribution of this article is the formalization
of simulation event ordering based on partially ordered set
theory, as well as the strictness analysis of various simu-
lation event orderings. First, we characterized simulation
performance along the three natural boundaries in simula-
- tion modeling and analysis—namely, thleysical system,
thessimulation model, and thesimulator—and formalized

er the event orderings in each of the layers. Events in a physi-

cal system are ordered based on their time of occurrences.
In simulation, different event orderings can be used to sim-

ngulate the physical system. In the implementation, the sim-
edulator ensures that the chosen event ordering is maintained
p throughout a simulation run. We extract and formalize the
gs event orderings of both sequential and parallel simulation.
theTo compare the event dependency among different event
lerorderings, we propose tis&icter relation, and to quantify
hatthe degree of event dependency, a rsavetness measure

|, is proposed.

Downloaded from sim.sagepub.com at NATIONAL UNIV SINGAPORE on August 21, 2014

http://sim.sagepub.com/

FORMALIZATION AND STRICTNESS ANALYSIS OF SIMULATION EVENT ORDERINGS

6. References

[1] Fujimoto, R. M. 2000.Parallel and distributed simulation systems.
New York: John Wiley.

[2] Jefferson, D. A. 1985. Virtual timeACM Transactions on Program-
ming Language System 7 (3):404-25.

[3] Onggo, B. S. S., and Y. M. Teo. 2002. Performance trade-off in di
tributed simulation. IfProceedings of the 6th |EEE International
Workshop on Distributed Smulation and Real Time Applications,
77-84. IEEE Computer Society Press.

[4] Teo, Y. M., B. S. S. Onggo, and S. C. Tay. 2001. Effect of event
orderings on memory requirement in parallel simulatiorPio-
ceedings of the 9th I nternational Symposiumon Modeling, Analy-
sisand Smulation of Computer and Telecommunication Systems,
41-8. IEEE Computer Society Press.

[5] Fujimoto, R. M. 1990. Performance of time warp under synthetit
workloads.Proceedings of SCS Multiconference on Distributed
Simulation 22 (1): 23-8.

[6] Fujimoto, R. M. 1999. Exploiting temporal uncertainty in parallel ang
distributed simulations. IProceedings of the 13th Workshop on
Parallel and Distributed Smulation, pp. 46-53.

[7] Zhou, S. P., W. T. Cai, S. J. Turner, and B. S. Lee. 2002. Critic
causality in distributed environment. Rroceedings of the 16th
Workshop on Parallel and Distributed Smulation, pp. 53-9.

[8] Lubachevsky, B. D. 1989. Efficient distributed event-driven simula-
tions of multiple-loop networksCommunications of the ACM 32
(1): 111-23.

[9] Turner, S., and M. Xu. 1992. Performance evaluation of the boundéed
time warp algorithm. IProceedings of the 6th \Workshop on Par-
allel and Distributed Smulation, pp. 117-26.

[10] Wieland, F. 1997. The threshold of event simultaneityPtaceed-
ings of the 11th Workshop on Parallel and Distributed Smulation,
pp. 56-9.

[11] Culler, D. E., J. P. Singh, and A. Gupta. 19%8rallel computer
architecture: A hardware/software approach. New York: Morgan
Kaufmann.

[12] Gharachorloo, K. 1995. Memory consistency models for shareg-

memory multiprocessors. Research Report 95/9, Western Re-

search Laboratory.
[13] Attiya, H., and J. Welch. 199®istributed computing: Fundamen-
tals, simulations and advanced topics. New York: McGraw-Hill.

[14] Hadzilacos, V., and S. Toueg. 1993. Fault-tolerant broadcasts and

related problems. IDistributed systems, 2nd ed., edited by S.
Mullender. Reading, MA: Addison-Wesley.

[15] Lamport, L. 1979. How to make a multiprocessor that correctly ex-
ecutes multiprocess programEEE Transactions on Computers
28 (9): 690-1.

[16] Afek, Y., J. Brown, and M. Merritt. 1989. A lazy cache algorithm.
In Proceedings of the Symposium on Parallel Algorithmsand Ar-
chitectures, pp. 209-22.

[17] Gharachorloo, K., Gupta, A. and Hennesy, J. Two Techniques
Enhance the Performance of Memory Consistency Mdetek
ceedings of the International Conference on Parallel Processing,
pp. 355-364, 1991.

[18] Landin, A., E. Hagerstein, and S. Haridi. 1991. Race-free intercop-
nection networks and multiprocessor consistenciproteedings
of the 18th Annual International Symposium on Computer Archi-
tecture, pp. 27-30.

[19] Shasha, D., and M. Snir. 1988. Efficient and correct execution of
parallel programs that share memakZM Transactions on Pro-
gramming Languages and Operating Systems 10 (2): 282-312.

[20] Berry, O.,and D. Jefferson. 1985. Critical path analysis of distributed
simulation. InProceedingsof SCSMulticonferenceon Distributed
Smulation, pp. 57-60.

[21] Gambhire, P., and A. D. Kshemkalyani. 2000. Evaluation of the op-
timal causal message ordering algorithm Phoceedings of the
High Performance Computing, LNCS no. 1970, 83-95. New York:
Springer-Verlag.

[22] Raynal, M., A. Schiper, and S. Toueg. 1991. The causal ordering
abstraction and a simple way to implement ifformation Pro-
cessing Letter 39 (6): 343-50.

[23] Schiper, A., J. Eggli, and A. Sandoz. 1989. A new algorithm to im-
plement causal ordering. Proceedings of the 3rd International
Workshop on Distributed Algorithms, LNCS no. 392, 219-32. New
York: Springer-Verlag.

[24] Schwarz, R., and F. Mattern. 1994. Detecting causal relationships in
distributed computations: In search of the Holy Grailstributed
Computing 7 (3): 149-74.

[25] Lamport, L. 1978. Time, clocks, and the ordering of events in a
distributed systentCommunications of the ACM 21 (7): 558-65.

[26] Dushnik, B., and E. W. Miller. 1941. Partially ordered séserican
Journal of Mathematics 63:600-10.

[27] Fishburn, P. C. 1988. Interval orders and circle ord@rder 5:225-

34.

[28] Chandy, K. M., and J. Misra. 1979. Distributed simulation: A case
study in design and verification of distributed Prograh=EE
Transactions on Software Engineering 5 (5): 440-52.

[29] Ronngren, R.,and M. Lilienstam. 1999. On event ordering in parallel
discrete-event simulation. IRroceedings of the 13th Workshop
on Parallel and Distributed Smulation, pp. 38-45.

[30] Bain, W. L., and D. S. Scott. 1988. An algorithm for time synchro-
nization in distributed discrete-event simulation.Rroceedings
of SCSMulticonference on Distributed Smulation 19 (3): 30-3.

[31] Teo, Y. M., and S. C. Tay. 1994. Efficient algorithms for conserva-
tive parallel simulation of interconnection networks Aroceed-
ings of the International Symposium on Parallel Architectures,
Algorithms and Networks, 286-93. Japan: IEEE Computer Soci-
ety Press.

[32] Cai, W.,and S. J. Turner. 1990. An algorithm for distributed discrete-
event simulation: The carrier null message approacRrdoeed-
ings of the SCS Multiconference on Distributed Smulation, pp.

3-8.

[33] Misra, J. 1986. Distributed discrete-event simulatid@M Com-

puting Surveys 18 (1): 39-65.

ko Y- M. Teo is a fellow at the Singapore-Massachusetts Insti-
tute of Technology Alliance and an associate professor in the

Department of Computer Science at the National University of
Sngapore.

B. S. S. Onggo isa PhD student in the Department of Computer
Science at the National University of Sngapore.

Volume 81, Number 4 SIMULATION 335

Downloaded from sim.sagepub.com at NATIONAL UNIV SINGAPORE on August 21, 2014

http://sim.sagepub.com/

