
An analysis of the cost of validating semantic
composability
C Szabo1* and YM Teo2

1The University of Adelaide, Adelaide, Australia; 2National University of Singapore, Singapore

Validation of semantic composability is a non-trivial problem and a key step in component-based modelling and
simulation. Recent work in semantic composability validation promises to reduce verification, validation, and
accreditation efforts. However, the underlying cost of current validation approaches can undermine the promised bene-
fits, and the trade-off between validation accuracy and validation cost is not well understood. In this paper we present,
to the best of our knowledge, the first quantitative study on the cost of validating semantic composability. Our study
covers four representative validation approaches, including two DEVS-based methods, Petty and Weisel formal
validation, and deny-validity, and for simplicity, we use computation time as a measure of validation cost. For a
queueing model with 1000 components, there is significant trade-off between validation accuracy and cost, with the
time-based deny-validity costing seven times that of timeless Petty and Weisel formalism.
Journal of Simulation advance online publication, 29 June 2012; doi:10.1057/jos.2012.11

Keywords: validation; cost; composability

1. Introduction

In component-based simulation model development, com-

posed and validated simulation model components are

combined and re-combined to suit specific user require-

ments (Kasputis and Ng, 2000; Davis and Anderson,

2003). In the development process, the user ideally specifies

his requirements to an integrated component-based system

that builds the simulation in real time from a library of

simulation models that can be easily combined to produce

desired functionality (Kasputis and Ng, 2000). Syntactic

verification and semantic validation are two key steps in

component-based simulation model development (Petty

and Weisel, 2003a). In syntactic composability, compo-

nents have to be properly connected and must interope-

rate, which assumes common communication protocols,

data formats, as well as a common understanding of the

time management mechanisms employed. In semantic

composability, the composition must be meaningful for

all components involved, in terms of data exchange and

context. Furthermore, the composition must be valid

(Petty and Weisel, 2003a). Model Verification, Validation

and Accreditation (VV&A) is one of the most important

steps in the simulation life-cycle. Classical, that is, non

component-based, validation methods include various stages

and processes, and often result in a costly, time-consuming

process (Balci, 1997; Department of the Navy, 2004). The

validation cost is further aggravated in component-based

modelling and simulation where the complexity of the

models increases rapidly with size, and semantic composa-

bility validation remains a non-trivial problem (Davis and

Anderson, 2003; Petty and Weisel, 2003a; Banks et al, 2005;

Tolk, 2006).

Despite advances in simulation validation, the validation

of semantic composability remains a non-trivial problem

because of several issues. Firstly, composition is not a closed

operation with respect to validation since valid components

do not necessary form valid compositions (Balci, 1997).

Secondly, reused components are developed for different

purposes and when composed may result in emergent

properties (Gore and Reynolds, 2008). This implies that

the overall behaviour of the composed model cannot be

obtained as a union of the individual behaviours of its con-

stituents. Similarly, the context in which a reused component

was developed and validated might differ from the new

context of the composed model (Bartholet et al, 2004; Tolk,

2006), thus influencing the component interaction in

unspecified ways. Thirdly, there exist various validation

perspectives on the component interactions over time, for

example, model behaviour aspects such as deadlock, safety,

and liveness, temporal aspects, and formal measures of the

validity of compositions, also called ‘figures of merit’

(Kasputis and Ng, 2000). Lastly, the composed model must

be similar or close to the real system it abstracts (Balci,

1997). Very often, the implementation of an automated pro-

cess to evaluate this similarity is difficult, if not impossible

(Balci, 1997; Davis and Anderson, 2003; Tolk, 2006).

*Correspondence: C Szabo, Department of Computer Science, Faculty of
Engineering, Computer and Mathematical Sciences, University of
Adelaide, Room 4.17, Level 4, Innova21, North Terrace Campus,
Adelaide, South Australia 5000, Australia.
E-mail: claudia.szabo@adelaide.edu.au

Journal of Simulation (2012), 1–12 r 2012 Operational Research Society Ltd. All rights reserved. 1747-7778/12

www.palgrave-journals.com/jos/



In recent years, several automated approaches have been

proposed for the verification and validation of composed

simulation models, most of which target the validation of

semantic composability (Gustavson and Root, 1999; Wainer

et al, 2002; Petty and Weisel, 2003a; Traore, 2006; Trojet

et al, 2009). In this paper, we have selected for evaluation

a Z-based specification for validating Discrete Event System

Specification (DEVS) models (Traore, 2006), an automated

input/output transformation validation for CD++ and

DEVS models (Wainer et al, 2002), a formal theory of

composability (Petty and Weisel, 2003a), and our proposed

deny-validity approach (Szabo et al, 2009; Szabo and Teo,

2009). These approaches focus on various aspects of validity,

with several underlying assumptions and limitations that

influence their outcome and applicability. An important

issue remains their underlying computational cost, especially

since in the context of large-scale composed simulation

models this cost increases exponentially (Kennedy, 2003;

Szabo and Teo, 2009). This is because simulation com-

ponents are complex entities with a variety of attributes and

complex behaviour, and their composition often leads to

state space explosion. In particular, the validation of the

entire model space as proposed by model checking or theo-

rem proving approaches (Traore, 2006) becomes unfeasible

once a certain number of components, connections, and/or

interactions is achieved. Similarly, the cost of comparing

the composed model with a reference model grows exponen-

tially with the number of components and their attributes

and states. Besides problem size, other factors can influence

the computational cost of semantic composability. These

factors can be classified in two main categories: (i) simula-

tion problem characteristics (ie, number of components, the

composition structure, etc), and (ii) validation approach

characteristics (abstractions, validation steps etc). We discuss

these factors in detail in the following sections.

To distinguish between existing validation approaches

that can be employed in the simulation life-cycle, a common

metric to evaluate the cost of validation is needed (Pace,

2004). In this paper, we propose to quantify the computa-

tional cost of semantic composability validation. We first

analyse the validation cost of existing semantic validation

approaches in terms of simulation problem characteristics

such as the number of components and composition struc-

ture. We next analyse the scalability of existing approaches

using composed models with a large number of components.

Next, we evaluate and quantify the trade-off between valida-

tion accuracy and computational cost. Our main contri-

bution is a comprehensive, quantitative analysis on the

computational cost of semantic validation in terms of

problem characteristics and validation accuracy.

This paper is organised as follows. Section 2 presents an

analysis of the computational cost of semantic composability

validation. In Section 3 we evaluate current validation app-

roaches in terms of computational cost, number of compo-

nents, and validation accuracy. We compare and contrast

our work with existing evaluation studies in Section 4.

Section 5 concludes this paper and discusses future work.

2. Cost of semantic composability validation

The factors that influence the computational cost of

semantic composability validation can be classified in two

main categories: (i) simulation problem characteristics, and

(ii) validation approach. From a component-based pers-

pective, measurable simulation problem characteristics

include the number of components, the description of the

components, the composition structure, and the degree of

interaction between components. Validation approach cha-

racteristics include the validation techniques and abstrac-

tions employed. These factors are classified in Table 1.

The number of components in the composed model

describes the size of a component-based simulation model.

More fine-grained measures of the composition size are

determined by the way in which components are described,

in terms of the number of attributes, and the number of

states per component. A particular importance, depending

on the validation approach, has the number of time delay

attributes. The composition structure also influences the

computational cost of validation. If a component-port

paradigm is adopted, such as in DEVS (Zeigler et al,

2000), CoDES (Teo and Szabo, 2008), or OSA (Dalle,

2006), the composition structure is best described using the

number of connectors. A large number of connectors, in

particular those with complex semantics such as fork/join,

can lead to state-space explosion even for composed models

with a small number of components, when model checking

or theorem proving validation approaches are employed

(Szabo and Teo, 2009). This is also the case when com-

ponent interaction, expressed in terms of the number of

events per unit time, is frequent. Validation approach

characteristics that influence computational cost include

validation techniques and validation abstraction. The vali-

dation techniques employed can have a major influence on

the computational cost of validation. Classic examples are

model checking techniques, which are not feasible when

large models, in terms of size and complexity, are validated

(Kennedy, 2003). The type of abstraction employed by the

validation approach has the potential to reduce the

computational cost. For example, if time is not considered

in a timeless validation abstraction, the computational cost

can be reduced, as we will show in Section 3 for the Petty

and Weisel approach.

The validation of semantic composability includes a

comparison between the composed model and the reference

model, and an evaluation of the closeness between them.

The outcome of this evaluation depends on the formalism

used to abstract the two models to facilitate reasoning. In

this paper we analyse the influence of a time-based and

a timeless formalism on computational cost. Another factor

2 Journal of Simulation



that influences the comparison process is the validation

window size, defined as the interval during which the

comparison between the composed model and the reference

model is performed. Intuitively, given a single validation

window, a larger window size ensures that deviant behaviour

of the composed model from the reference model can be

identified. However, we have found that an increase in size

of the validation window beyond a certain knee value comes

at very high computational cost. This is similar with the rela-

tionship between accuracy and cost suggested in Sargent

(2000), in which after a certain knee value, increases in

accuracy come at disproportionately larger increases in cost.

3. Cost analysis

In this section we propose to evaluate the computational

cost of four validation approaches, namely, the CD++

DEVS-based validation approach (Wainer et al, 2002), the

DEVS-based Z specification validation approach (Traore,

2006), the Petty and Weisel formal validation approach

(Petty and Weisel, 2003a), and our deny-validity approach

(Szabo and Teo, 2009). Our selection was based strictly on

the availability of the implemented code, or in the case

whereby the code was not available, on the completeness of

the descriptions in the published papers to facilitate faithful

implementation. The Z specification language has been

proposed to formally validate models represented in the

DEVS formalism (Zeigler et al, 2000; Traore, 2006; Trojet

et al, 2009). The atomic DEVS model is represented in Z in

a time-less manner, and a theorem proving tool based on Z

such as Z/EVES (Saaltink, 1997) is used to verify the model

and prove certain properties. However, the Z specification

language limits the applicability of this approach to coupled

DEVS models. Wainer et al proposed an input/output

transformation validation tool that inputs certain data in the

DEVS coupled model and expects specific data through an

output point (Wainer et al, 2002). This lightweight approach

treats a DEVS coupled model as a blackbox and is easy to

use since it employs two well-known DEVS/CD++ con-

structs, that is, Generator to generate input, and Acceptor to

accept input. However, only a single output point can be

tested and only primitive data types such as real and integer

are considered. In the formal theory proposed by Petty and

Weisel a composed simulation model is modelled as the

composition of mathematical functions that represent com-

ponents over one-dimensional integer domains (Petty and

Weisel, 2003a). The simulation of the composed model is

represented as a Labelled Transition System (LTS), where

nodes are model states, edges are function executions, and

labels are model inputs. Using several metrics, the distance

between simulations of the composed model and a perfect

model is calculated. However, time is not modelled and the

approach is not feasible for compositions with feedback

loops and fork and join connectors.

In our previous work, we proposed a deny-validity app-

roach in which the composed model was subjected to a

battery of tests aimed at discarding it as semantically invalid1

(Szabo et al, 2009; Szabo and Teo, 2009). Informally, we

attempt first to eliminate models in which components

cannot communicate and coordinate meaningfully. While

properties such as communication and coordination fall into

the general definition of simulation verification (Balci, 1997),

they are included in the definition of semantic composability

(Petty and Weisel, 2003a; Tolk, 2006) and as such they are

validated in this layer. Next, models with invalid semantic

composability are also those that have valid model proper-

ties, but whose execution is not close to that of the real

Table 1 Factors that influence the computational cost of validation

Category Factor Comment

Simulation Problem Number of components Each composed model consists of several components.
n—number of components

Component description Metrics that describe components eg, number of attributes, number
of states
a—number of attributes; s—number of states/component

Composition structure Number of connectors of each type, ie, one-to-one, fork, join
c—total number of connectors

Degree of interaction The frequency of interaction between components
#events/unit time

Validation Approach Process Focus on overall model properties or on comparison between
composed model and reference model.

Abstraction How the components & composed model are abstracted, eg, using
time versus timeless

Techniques The validation techniques involved, eg, model checking, I/O
testing, visualisation, etc

1We ensured that models with invalid syntax were eliminated using an
approach based on compositional grammars expressed in EBNF (Teo
and Szabo, 2008).

C Szabo and YM Teo—Analysis of the cost of validating semantic composability 3



system the composed model abstracts (Balci, 1997). To

eliminate models that are not similar to the real system being

abstracted, we compare between the composed model and a

reference model. In contrast to current static perfect model

validation (Petty and Weisel, 2003a), our proposed time-

based formalism represents dynamic component behaviour,

can represent fork and join connectors, and is applicable to a

composed models with wide variety of topologies and inter-

actions. Furthermore, we are able to quantify the similarity

between the composed model execution and the reference

model execution using our defined semantic metric relation.

We divide our evaluation process in two stages. Firstly, we

evaluate the cost of validating general model properties.

Secondly, we evaluate the cost of comparing between the

composed model and a reference model. The factors that

influence the computational cost of validation form a com-

plex parameter space in which the influence of each

individual factor is difficult to identify. Thus for simplicity,

we employ a single-server queue model with a varying

number of components. A more complex example is

analysed in Section 3.4.

3.1. Evaluation methodology

To better understand the landscape of semantic composa-

bility validation, we summarise existing validation app-

roaches in Figure 1. An important observation is that most

component-based verification and validation approaches

focus on two main aspects, namely, on the validation of

general model properties, and on the comparison of the

composed and the reference models. General model proper-

ties are validated by the CD++ DEVS-based approach

(input/output transformations), the DEVS-based Z specifica-

tion approach (component coordination), and BOM-based

approaches (component communication and input/output

transformations). Comparison between the composed model

and a reference model is performed by the Petty and Weisel

approach. Lastly, our deny-validity approach targets both

validation stages.

For our study, we were able to obtain the code for the

CD++ DEVS-based approach. We implemented the second

DEVS-based approach following the complete descriptions

given in Traore (2006). However, the Z specification does

not permit the representation of coupled or connected

objects, and as such it cannot be used to specify compo-

nent-based models. Instead, we employed the Object-Z

formalism (Duke et al, 1991), which can be easily adapted

in a similar manner as that suggested in Traore (2006), to

cater for DEVS coupled models. However, model checking

based on Object-Z is still in its early stages. Nonetheless, we

were able to reach the outcome described in Traore (2006),

that is, syntax, type, and inconsistency checking by employ-

ing the Wizard checker for type and syntax checking on the

composed model (Smith, 2000). Ongoing work exists to

include the Object-Z specification into theorem proving tools

such as Isabelle/HOL (Smith et al, 2002), but these were

beyond the scope of our study. The advantage and major

improvement of our implementation is that it caters for

component-based models. We implemented the Petty and

Weisel approach following details from the published papers

(Petty and Weisel, 2003a, b; Petty et al, 2005). A fundamental

assumption in the Petty and Weisel approach is that a

simulation component can be transformed into a mathema-

tical function over integer domains. Nonetheless, no details

about how this transformation should be performed are

provided. This transformation is crucial when computing the

mathematical composability of the functions that represent

components, which by definition translates to verifying

integer domain inclusion. In our implementation, we

employed a brute-force transformation by mapping every

component output into an integer number (iteratively for

each output) and assuming that the functions are mathema-

tically composable. This is not a limitation in our study of

computational cost because checking for mathematical

composability is not a major component of the validation

cost in the Petty and Weisel approach.2

Our study follows the two main validation steps described

in Figure 1. Firstly, we evaluate the computational cost of

General
Model Properties

Comparison with
Reference Model

1. Component Communication

2. Component Coordination

3. Component Computation

DEVS
[2006, 2007]

Petty and Weisel
[2004] 

Deny-validity
[2009]

–

Z-based DEVS 

CD++-based DEVS 

–

–

–

T imeless Time-based

BOM
[2007, 2009]

–

––

STEPS APPROACHES

Event syntax

Rule engine

Semantic data
compatibility 

Timeless execution

Time-based execution

Figure 1 Landscape of recent validation approaches.

2In particular, provided that the transformation from the meta-model to
integers is sound, the algorithm to determine mathematical composa-
bility could employ a Radix sort algorithm (Knuth, 1997) to first sort
the integer values, followed by an inclusion check, resulting in O(kn)
steps, where n is the number of elements in the interval, and k is the
average element length.

4 Journal of Simulation



approaches that aim to validate general model properties,

namely, the CD++ DEVS-based validation approach

(Wainer et al, 2002), the DEVS-based Z specification

validation approach (Traore, 2006), and our deny-validity

approach (Szabo et al, 2009; Szabo and Teo, 2009). We

employ a simple queue model with varying number of service

unit components as shown in Figure 2. We have chosen this

queue model because of its relative simplicity with respect

to factors such as the number of attributes per component

and composition structure. Besides the need for simplicity,

we have also excluded these factors because they are not

considered by most validation approaches. Secondly, we

study two approaches that compare the composed model

with a reference model, namely, Petty and Weisel’s validation

approach (Petty and Weisel, 2003a) and our deny-validity

approach. We evaluate the variation of cost with model size

and analyse these approaches in terms of accuracy and cost.

We first show the impact of timeless abstractions, such as

that employed by Petty andWeisel, on the validation process.

Next, we evaluate the variation of cost with the validation

accuracy, expressed using the size of the validation window

during which the composed model is compared with the

reference model. All experiments were executed on a Dell

PowerEdge SC1430 Dual Quad Core Server, with Intel

Xeon, 1.83 GHz, and 4GB RAM. Because the validation

approaches are deterministic in their execution, variation in

execution time is caused by the operating system. As such, we

analyse 10 execution runs and present their minimum.

3.2. General model properties

The validation of general model properties focuses on three

main properties, namely, component communication (P1),

component coordination (P2), and component computation

(P3), in the composed model. The validation of component

communication aims to check data compatibility between

connected components in the composition. Current appro-

aches ensure that components follow a common reference

model (Tolk et al, 2008), verify syntax in terms of event

parameters and data types (Moradi et al, 2007), or validate

semantic compatibility using a component-based ontology

(Teo and Szabo, 2008). The validation of component coordi-

nation aims to check that interleaved executions of com-

ponents in the model are correct (Defense Modeling and

Simulation Office (DMSO), 1996). This is usually done

using model checkers, and in general by abstracting time in

instantaneous transitions (Kennedy, 2003; Szabo and Teo,

2009). Lastly, the validation of component computation

aims to check that the components can execute during

the composition run. For simplicity, the Z-specification

DEVS-based and the CD++ approach will be hereafter

referred to as DEVS1 and DEVS2 respectively.

Table 2 presents the variation of computational cost when

varying the number of components from 10 to 1000. While

the computational cost increases proportionally with the

composed model size, the increase is insignificant in the

DEVS1 and DEVS2 approaches, in which the computa-

tional cost approaches one second and 17 s for 1000

components respectively. In contrast, the deny-validity app-

roach takes close to 7min for the same model. The reason

for this discrepancy becomes evident when we look at the

cost components of the deny-validity approach, which is the

only approach that validates all general model properties.

The cost of validating property P1 is insignificant for this

model, but increases with the number of data types that a

component outputs. This is because P1 is validated by

establishing data compatibility between components using

our proposed ontology, which is queried for every pair of

connected components (Teo and Szabo, 2008). Space

constraints prevent us from showing these results here. The

validation of property P2 incurs the largest cost of the three

properties. The validation is done using the SPIN (Ben-Ari,

2008) model checker to validate a specification of the

composed model, and becomes highly unfeasible when the

composed model size increases beyond 250 components. As

such, flags that limit the search space are employed for

validation of models with 500 and 1000 components. In

particular, we use the ‘�w’ flag to reduce the depth of the

search tree, and ‘DMEMLIM’ to cap the amount of memory

used. Property P2, component coordination, is also vali-

dated by the DEVS1 approach. However, this approach

focuses only on type and syntax checking, and does not look

at all possible interleaved execution states, like the deny-

validity approach.

The validation of property P3 is performed in a similar

manner for DEVS2 and the deny-validity approach, by

checking several types of data at a connection point in the

composition. However, the DEVS2 approach can only pro-

cess a limited number of events and requires the user to input

the exact moment in time when the output is expected.

Moreover, the DEVS2 approach validates input at the last

connection point in the composition. Lastly, only primitive

Table 2 Computational cost of validating general model
properties

#Components Runtime (s)

DEVS1
P2

DEVS2
P3

Deny-validity

P1 P2 P3 Total

10 o0.1 0.2 o0.1 5.3 51.1 56.5
100 o0.1 0.5 0.2 146.6 43.5 190.3
500 0.2 4.5 0.3 193.6 67.0 260.9

1000 0.7 16.7 0.5 330.4 130.9 461.7

...C2C1 Cn

Figure 2 Simple queueing model.

C Szabo and YM Teo—Analysis of the cost of validating semantic composability 5



data types such as real or integer can be validated. In

contrast, in the deny-validity approach the user can specify

desired data of any type, including domain specific, at any

connection point in the composition. Additional liveness

properties are also validated (Szabo and Teo, 2009).

3.3. Comparison with reference model

Comparing the simulation model with a real or referent

system is a traditional validation approach (Balci, 1997).

This comparison is done in component-based simulation by

the Petty and Weisel (Petty et al, 2005) and the deny-validity

approaches (Szabo and Teo, 2009). These two approaches

follow a similar validation sequence, which can be separated

into three major steps: (i) transformation of components into

formalism; (ii) transformation of composition formalism

into an LTS (Srba, 2001); and (iii) comparison with reference

model. Both approaches rely on a formal comparison bet-

ween the simulation of the composed model and that of a

reference model. The major difference between the two

approaches lies in that Petty and Weisel employ a static for-

malism, in which a component is represented as a function

over integer domains, whereas the deny-validity approach

proposes a time-based formalism in which a component is

represented as a function over a three-coordinate domain

containing time, state, and input/output. The Petty and

Weisel approach offers a high level of abstraction, which

permits reasoning about closeness under composition and

has reduced computational cost as we will show below.

However, it is difficult to transform component representa-

tions into integer values automatically, and the approach

assumes that model properties, such as syntactic composa-

bility, safety, liveness, are validated beforehand. Moreover,

the comparison process orders the component functions

based on the location (left to right) of the components in the

composition, which does not permit the validation of

compositions with fork and join connectors and feedback

loops. This is because the functions representing components

on the fork/join branches need to be ordered during

execution, which is not possible using only integer value

domains. The same applies to feedback loops, where a

mathematical composability ordering based on the position

of the components cannot be deduced. Figure 3 highlights

the difference between timeless and time-based ordering. As

it can be seen, the LTS that represents the composed model

has an equal number of states in both approaches, but a

different sequence of function execution. The deny-validity

approach orders the functions based on the time moment

when the component interacts with its neighbours, resulting

in the sequence f1, f2, f3,y In contrast, the Petty and Weisel

approach orders the functions based on the position of the

components in the composition, resulting in the sequence

f1, f2, f3,y. Although there are instances where a position

ordering is useful, for example, when reasoning about

validation closeness under composition, the latter time-

based ordering paints a more realistic picture of the

execution of the composed model. However, the time-based

formalism employed in our deny-validity approach incurs an

additional validation overhead as we discuss below.

The computational cost of validation can also be divided

into three components, namely, (i) f, the formalism cost, as

the cost of transforming from the component representation

to the chosen formalism; (ii) p, the process cost, as the cost of

transforming the composed model into an LTS using the

chosen formalism; and (iii) c, the comparison cost, as the

cost of comparing between the two LTS, representing the

composed model and the reference model respectively. These

cost components can be further refined as functions of

various component and composition characteristics, as

shown in Table 3. An important point to highlight is that

the cost of obtaining or constructing the reference model is

not included. This is because the reference model is assumed

to exist a priori in the Petty and Weisel approach, whereas in

our approach the reference model is automatically derived

based on generic descriptions of reference components

(Szabo et al, 2009; Szabo and Teo, 2009).

s1 s4s3 s5 s6 s7 s8 s9 s10

f1 f2 f2f3 f3f1 f2 f3f1

f2 f3f1f2 f3f1f2 f3f1

Order based on
position

Order based on
time

Timeless
Composed model in

the Petty & Weisel approach

Time-based
Composed model in

the deny-validity approach

C1 C2 C3

s2

s1 s4s3 s5 s6 s7 s8 s9 s10s2

Figure 3 Execution order: Timeless versus time-based validation.

Table 3 Cost components

Cost component Petty and Weisel Deny-validity

Formalism—f at least f (n, t) f (n, s, t, t)
Process—p p(n, t) p(n, s, t, t)
Comparison—c c(n, t) c(n, t)þ ceps(n, a, t)

6 Journal of Simulation



Our results presented below show that the number of

components (n) drastically influences the computational

cost. This is because the fundamental unit of each validation

approach is the mathematical function, which represents a

component. Other parameters, such as the average number

of states per component (s) and the average number of

attributes per component (a), influence the cost of the deny-

validity approach but not the cost of the Petty and Weisel

approach. This is because the Petty and Weisel approach

deals only with integer representations. Nevertheless, the

influence of the number of states and attributes on the

computational cost in the Petty and Weisel approach should

be more evident in the formalism cost, f, because the

transformation from the component representation to

unique and meaningful integer values should consider states

and attributes as well. However, Petty and Weisel do not

discuss details about how this transformation is performed.

Another parameter that influences the computational cost

is t, the size of the validation window during which the

composed model is compared to the reference model. This

translates into the number of simulation steps in the Petty

and Weisel approach, and into the unfolding degree in our

deny-validity approach. For example, for the simple model

in Figure 3, t¼ 3, resulting in three simulation steps and 10

states for the LTS representing the composed model. The

parameter t can be seen as a measure of the accuracy of the

validation process if we agree that the longer the interval

under which the composition is observed as compared with

the reference model, the more accurate is the validation

result. We next evaluate the computational cost of semantic

validation with the composition size in terms of the number

of components, n and analyse the trade-off between the

computational cost and the validation window size t.

Results and analysis. We implemented the Petty and

Weisel approach based on its description (Petty and Weisel,

2003a, b; Petty et al, 2005). Since the details of mapping

each component into a function over integer domains are

not documented in Petty and Weisel approach, we used a

simple and fast heuristic as discussed in Section 3. Next, the

composed model LTS was created as shown in Figure 3.

Lastly, we implemented the comparison between the com-

posed model LTS and a reference model LTS using the

BISIMULATOR tool (Garavel et al, 2007), which is the

same one we employ in comparing between the LTS of

the composed model and reference model in the deny-

validity approach.

Table 4 presents the variation of computational cost

when varying the number of components from 10 to 1000,

with a validation window of size t¼ 3.

As it can be seen in Figure 4(a), the computational cost of

the Petty and Weisel approach is reduced, for example, to

less than 15 s for a simple queueing model with 1000

components. In contrast, our deny-validity approach has a

runtime of around 1min for the same model. This is because

in our approach, a larger number of components implies

that a larger number of component executions have to be

ordered towards achieving the time-based ordering pre-

sented in Figure 3. To evaluate the trade-offs between

computational cost and accuracy of the validation process,

we evaluate the runtime cost of validating a queueing model

with 1000 components while varying the values of the

validation window size t to 3, 10, 15, and 20. Our results are

presented in Figure 4(b).

The increase of the computational cost with the validation

window size t is insignificant for the Petty and Weisel

approach. As it can be seen in Figure 4(b), for t¼ 25, the

minimum runtime of the Petty and Weisel approach is on

35.5 s for an M/M/1 model with 1000 components. In

contrast, there is an evident trade-off in the deny-validity

approach. Specifically, the validation runtime increases from

around minimum 2.5min for t¼ 20, to around 18min for

t¼ 25. The explanation for this decrease in performance is

the following. Our validation process includes a time-

ordering module which orders all functions based on the

time moment in which components interact with neighbours.

This implies that a correct time ordering of components is

necessary. The computation of this ordering is a constraint

satisfaction problem, requiring a constraint solver to solve

several equations. For t¼ 25, the LTS of the composed

model has around 25000 states. This translates into 25 000

constraints over the entire positive integer domain (since

time values are integers) that have to be solved in order to

determine the time ordering of the function executions, as

required by our validation process. This operation has to be

performed twice, for the composed and the reference model

respectively. In solving these constraints, we employ the

Choco constraint solver (Choco Constraint Programming

System, retrieved January 2010), which for our constraint

types has a theoretical complexity of 0(c3), where c is the

number of constraints. This problem does not appear in the

Petty and Weisel approach, because time is not modelled

and as such a time-based ordering is not necessary. For the

curve in Figure 4(b), we have calculated the knee values

beyond which increases in validation window size come at

disproportionate increases in validation cost. For the deny-

validity approach, for models with 500 components, we have

calculated the knee value as tknee¼ 15.42E15. For models

with 1000 components, tknee¼ 19.59E20.

Table 4 Comparison with reference model

#Components Runtime (s)

Petty and Weisel Deny-validity

10 1.40 3.18
100 3.30 14.34
500 8.42 33.67

1000 13.40 75.70

C Szabo and YM Teo—Analysis of the cost of validating semantic composability 7



3.4. Further insight

In the above, we limited our evaluation study to only two

factors, namely, the number of components n and the

validation window size t. Another important factor that

influences the cost of validation is the composition structure,

described by the number of one-to-one, fork, and join

connectors. Existing validation approaches cannot validate

models with fork and join connectors. However, this is

possible in our deny-validity approach. We analyse the cost

of validating composed models that contain fork and join

connectors as shown in Figure 5.

Figure 4 presents a breakdown of the validation cost for

composed models that contain only one-to-one connectors.

Figure 4(b) presents a breakdown of the validation cost for

composed models that contain a ratio r¼ 10% of fork and

join connectors, for example, for 1000 components there are

10 fork and 10 join connectors.

As expected, for a composed model with n¼ 1000 and

t¼ 20, the total validation time increases from 10min for the

simple composition in Figure 4(a) to around 17min for the

composed model with a more complex structure in

Figure 4(b). Moreover, the percentage of validation cost

also changes. In the composed model without fork and join

connectors, the percentage of validation cost was distributed

as 50:19:31% for component coordination, component

computation, and validation by comparison with reference

model respectively. In contrast, the presence of fork and

join connectors leads to a 40:15:45% cost distribution,

suggesting that as the number and complexity of connectors

increase, the penalty incurred by the comparison with

a reference model also increases. However, the cost of

verifying component coordination becomes unfeasible as

suggested before (Kennedy, 2003) and is capped as discussed

in Section 3.2. An important point to highlight is that

the total execution cost for an SSF implementation (Cowie,

1999) of the simple composed model with n¼ 1000 is a mini-

mum of 49.57 s, and the cost of validating it is a minimum of

11.28min. However, because of the layered nature of the

validation approach, the cost incrementally increases and

the user can stop at any validation layer as desired. The

validation of component communication and coordination

incurs an initial overhead of 5.5min. The meta-simulation

layer incurs and additional 2.14min overhead. Finally, the

comparison with a reference model incurs a final cost of

3.64min. This increase in the cost of the validation by

comparison with a reference model is due to the increase

in the number of states in the LTS. For n¼ 1000 and t¼ 3,

the total number of states for the model in Figure 5 is 19 000.

The number of states increases to 39 960 when n¼ l000 and

t¼ 20 (Figure 6).

The validation cost is also influenced by the complexity of

the composition structure. Our next experiments analyse the

variation of the validation cost when r, the percentage of

fork connectors in the composition, increases from 10 to

30%. We analyse various problem and validation window

sizes, (n; t), and the problem size, in terms of (n; t), increases
from (1000; 3) to (1000; 20) as before. The results shown in

Table 5 represent the minimum of five runs.

Table 5 shows the variation of the cost of validating

general model properties and the cost of comparing with

a reference model when the complexity of the composi-

tion structure in terms of the ratio of fork and join

connectors to the total number of connectors increases from

r¼ 10% to r¼ 30%. As it can be seen, once r increases

beyond 15%, the dominant cost becomes that of comparing

with a reference model. This is because an increase in

the number of fork and join increases the cost of computing

0

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800 900 1000

R
un

tim
e 

(s
)

Number of components

Deny-validity
Petty & Weisel

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30

R
un

tim
e 

(s
)

Tau - Validation Window Size

Deny-validity

Petty & Weisel

Figure 4 Comparison between Petty and Weisel and deny-
validity: (a) cost versus size; (b) cost versus accuracy.

...

Figure 5 Queueing model with fork/join connectors.

8 Journal of Simulation



the order of the LTS states, despite the number of states

remaining constant.3

3.5. Discussion

This study has analysed four representative validation

approaches, namely, the CD++ DEVS-based validation

approach, the DEVS-based Z specification validation

approach, the Petty and Weisel validation approach, and

the deny-validity validation approach. The first two

approaches propose to validate general model properties,

such as input/output transformations among others. We

have compared these approaches with the deny-validity

approach, in which the first validation stage also looks at

safety, liveness, and input/output transformations. Our

study shows that the deny-validity approach is extremely

sensitive to the model size in terms of the number of com-

ponents, with a total validation time of 1min for a model

with 10 components, and increasing to 7min for a composed

model with 1000 components. The DEVS-based approaches

have a significantly smaller validation time, with at most 15 s

for a model with 1000 components. The reasons for the

discrepancy in the validation costs for these approaches are

twofold. First, the DEVS-based approaches do not analyse

safety and liveness and other logical properties of the

composed model. The validation of these properties is time

consuming and suffers from state-space explosion, but pro-

vides increased confidence in the validity of the composed

model. Second, the deny-validity approach performs a

semantic validation of input/output transformations, in

that it queries a simulation ontology to determine partial

relationships between data exchanged by the components in

the composed model. In contrast, the DEVS-based approa-

ches only look at exact matching between input and output.

This provides reduced computational cost but also decreases

the knowledge about what data are exchanged between

components.

We next compare between the Petty and Weisel approach

and the deny-validity approach in the validation of the

composed model as compared with a reference model. Our

study has found that the introduction of time in the deny-

validity approach versus a timeless validation approach as

proposed by Petty and Weisel incurs significant trade-offs in

the computational cost of validation. Specifically, a timeless

Petty and Weisel validation approach incurs a validation

cost of around 13 s for models with 1000 components,

and seems to grow linearly with the composed model size.

In contrast, the time-based deny-validity approach takes

around a minute for models with 1000 components, and

seems to grow exponentially with the composed model size.

This exponential growth is further aggravated when the size

of the validation window is increased. In contrast, the

increase in validation window size has no effect on the Petty

and Weisel approach. However, a timeless validation app-

roach cannot validate models with complex structure, such

as fork and join connectors. We further analyse the deny-

validity approach. Our study finds that the number of fork

and join connectors together with the validation window

size have a direct effect on the cost of validation, which

reaches around 10min for large and complex models, with

the dominant cost being the incurred by the time-based

validation formalism.

0

200

400

600

800

1000

1200

(100, 3)

(100, 10)

(100, 20)

(500, 3)

(500, 10)

(500, 20)

(1000, 3)

(1000, 10)

(1000, 20)

R
un

tim
e 

(s
)

Composed Models

 0

 200

 400

 600

 800

 1000

 1200

(100, 3)

(100, 10)

(100, 20)

(500, 3)

(500, 10)

(500, 20)

(1000, 3)

(1000, 10)

(1000, 20)

R
un

tim
e 

(s
)

Composed Models

Component Communication

Component Coordination

Meta-Simulation

Reference Model Comparison

Figure 6 Total validation cost.

Table 5 Validation cost with composition structure

Problem
size (n; t)

Composition
structure r(%)

Runtime (s)

Model
properties

Model
execution

(1000; 3) 15 321.6 (MS)þ 160.8 72.59
20 358.23 (MS)þ 234.6 80.25
25 408.13 (MS)þ 265.3 93.53

(1000; 10) 15 320.1 (MS)þ 160.8 150.25
20 360.1 (MS)þ 234.6 219.10
25 408.3 (MS)þ 265.3 239.61

(1000; 20) 15 320.1þ 160.8 427.32
20 361. 2 (MS)þ 234.6 500.12
25 407.13 (MS)þ 265.3 624.43
30 452.32 (MS)þ 280.2 731.36

3However, the validation of component coordination using model
checking remains capped to reduce state space explosion.

C Szabo and YM Teo—Analysis of the cost of validating semantic composability 9



4. Related work

Verification, Validation, and Accreditation (VV&A) has

been a principal focus of research in the simulation com-

munity since the late 1970s (Sargent, 1979), with work such

as that by Balci (Balci and Sargent, 1981, 1982; Balci, 1997)

and Sargent (Balci and Sargent, 1981, 1982; Sargent, 2000,

1979) among others, providing detailed guidelines and pro-

cess organisation. However, very few works quantify the

cost of validation, more so in the new area of component-

based modelling and simulation. This is mainly because

validation cost is highly dependent on many factors, such

as characteristics of the simulation problem, model and

application domain among others, and thus is difficult to

estimate. Balci and Sargent propose a methodology for cost-

risk analysis in the statistical validation of simulation

models, by looking at the relationship between data collec-

tion cost, acceptable validity range, and model builder and

model user risks, when performing statistical hypothesis

testing (Balci and Sargent, 1981). A validity measure is

proposed and the trade-offs between data collection budget

and model user’s risk are analysed. However, there is no

estimate of the actual cost of validation. Historical data from

the US Defense Modeling and Simulation Office suggest that

VV&A activities account for 5-17.5% of the total modelling

and simulation budget (Defense Modeling and Simulation

Office (DMSO), 1996). A clear estimate of the validation

cost and the key factors that influence it is also missing in

the simulation industry. Reports from industry suggest that

validation cost is between 5 and 19% of the total project cost

(Love and Back, 2000) but no cost model is provided. The

same applies to the validation of component-based simula-

tions. While there are many works that focus on verifying

and validating general model properties (Wainer et al, 2002;

Traore, 2006; Moradi et al, 2007; Trojet et al, 2009) or on

comparing the composed model with a reference model

(Petty and Weisel, 2003a; Szabo and Teo, 2009), existing

work lacks an evaluation of the applicability and cost of

proposed approaches. In contrast, in this paper we evaluate

four existing approaches. We present a classification of

the factors that influence computational cost and analyse the

cost of existing validation approaches in terms of the

number of components and composition structure.

5. Conclusion

Industry practice suggests that the cost of traditional

simulation validation ranges from 5 to 19% of the entire

project cost (Love and Back, 2000). In component-based

modelling and simulation, semantic validation cost can be

significantly higher. To the best of our knowledge, we

present the first quantitative study of the cost of validating

semantic composability and its trade-offs with validation

accuracy. This study compares the cost of four main valida-

tion approaches, namely, CD++ DEVS (Wainer et al,

2002), Z specification-based DEVS (Traore, 2006), Petty

and Weisel formal theory (Petty and Weisel, 2003a), and

deny-validity (Szabo et al, 2009; Szabo and Teo, 2009). A

queueing model with one thousand components is used and

validation measurement is performed on a Dell Pow-erEdge

SC1430 compute server. The key factors that influence the

computational cost are simulation problem characteristics,

including the composition size and the degrees of inter-

action, and validation approach characteristics, including

the techniques used and the levels of abstraction. Current

validation approaches focus on validating general model

properties, and on comparing between the composed model

and a reference model. In general, the cost of validating

model properties grows, as expected, with the number of

components. However, the actual cost is vastly different

among approaches. The computational cost ranges from less

than 1 s in CD++ DEVS to more than 7min in deny-

validity. The cost depends mainly on the underlying

abstractions and assumptions employed.

The cost of validating a composed model against a

reference model in the time-based deny-validity approach is

seven times more than the timeless Petty and Weisel

approach. The time-based formalism and ordering in deny-

validity provides increased accuracy at the expense of

runtime. Moreover, the cost of time-base ordering in deny-

validity explodes when the validation window size is

increased. In the Petty and Weisel approach, increasing

validation window size has no significant impact on cost. In

contrast, a time-based ordering facilitates the validation of

composed models with complex structures including feed-

back loops and fork and join component connectors.

Specifically, a 25% increase in validation window size results

in a five-fold increase in validation cost.

As the deny-validity approach is one of the most compre-

hensive process for semantic validation, allowing different

degrees of validation accuracy and cost, we analyse it further.

We first analysed the cost of the different validation layers in

the deny-validity approach using a simple queueing model.

Next, we analysed the influence of the composition structure,

in terms of the number of fork and join connectors, on the

validation cost. Our study shows that while it takes a

minimum of 49 s to execute the SSF implementation of a

composed simulation model with 1000 components, it takes

minimum 17min to validate it. The cost of validating general

model properties represents 55% and the cost of validating

model execution accounts for the remaining 45%. A 10%

increase in the number of fork and join connectors in the

composition comes with a 50% increase in the validation cost.

References

Balci O (1997). Verification, validation and accreditation of
simulation models. In: Andradóttir S, Healy KJ, Withers DH
and Nelson BL (eds). Proceedings of the Winter Simulation

10 Journal of Simulation



Conference, Institute of Electrical and Electronics Engineers
Inc.: Piscataway, New Jersey, USA, pp 135–141.

Balci O and Sargent RG (1981). A methodology for cost-risk
analysis in the statistical validation of simulation models.
Communications of the ACM 24(4): 190–197.

Balci O and Sargent RG (1982). Some examples of simulation
model validation using hypothesis testing. In: Chao YW,
Madrigal O and Highland HJ (eds). Proceedings of the Winter
Simulation Conference, Institute of Electrical and Electronics
Engineers Inc.: Piscataway, New Jersey, USA, pp 621–629.

Banks J, Carson JS, Nelson BL and Nicol DM (2005). Discrete
Event System Simulation. Prentice-Hall: USA.

Bartholet RG, Brogan BC, Reynolds PP and Carnahan JC (2004). In
search of the philosopher’s stone: Simulation composability
versus component-based software design. In: Smith J, Peters B,
Ingalls RG and Rossetti MD (eds). Proceedings of the Fall
Simulation Interoperability Workshop, (PCE) Institute of Elec-
trical and Electronics Engineers Inc.: Piscataway, New Jersey,
USA.

Ben-Ari M (2008). Principles of the Spin Model Checker, Springer
Verlag: Berlin.

Choco Constraint Programming System. http://sourceforge.net/
projects/choco/, accessed January 2010.

Cowie J (1999). Towards realistic million-node internet simulations.
In: Arabnia HR (ed). Proceedings of International Conference on
Parallel and Distributed Processing Techniques and Applications,
CSREA Press: Las Vegas, USA, pp 2129–2135.

Dalle O (2006). OSA: An open component-based architecture for
discrete-event simulation. In: Burotzky W (ed). Proceedings of
the 20th European Conference on Modeling and Simulation,
Society of Modeling and Simulation Europe: Leipzig, Germany.

Davis PK and Anderson RH (2003). Improving the composability
of Department of Defense models and simulations.

Defense Modeling and Simulation Office (DMSO) (1996). Verifica-
tion, validation, and accreditation recommended practices
guide. U.S. Department of Defense. Office of the Director of
Defense Research and Engineering.

Department of the Navy (2004). Modeling and Simulation Verifi-
cation, Validation, and Accreditation Implementation Handbook.
Department of the Navy, http://nmso.navy.mil/NMSODigital
Library.aspx?Command=Core_Download&EntryId=3988.

Duke R, King P and Rose G (1991). The Object-Z Specification
Language: Version 1. Technical Report, http://www.dc.uba.ar/
people/materias/isoft1/papers/tr91-1.pdf.

Garavel H, Lang F, Mateescu R and Serwe W (2007). CADP 2006:
A toolbox for the construction and analysis of distributed
processes. In: Werner D and Holger H (eds). Proceedings of the
19th International Conference on Computer Aided Verification,
Springer Verlag: Bonn, Germany, pp 158–163.

Gore R and Reynolds PP (2008). Applying causal inference to
understand emergent behavior. In: Mason SJ, Hill R, Moench L
and Rose O (eds). Proceedings of the Winter Simulation
Conference, Institute of Electrical and Electronics Engineers
Inc.: Piscataway, New Jersey, USA, pp 712–721.

Gustavson P and Root L (1999). Object model use cases: A me-
chanism for capturing requirements and supporting BOM reuse.
In: Hieb M and Blalock J (eds). Spring Simulation Interoperability
Workshop, Simulation Interoperability Standards Organization:
Orlando, USA.

Kasputis S and Ng HC (2000). Composable simulations. In: Joines
JA and Barton RlR (eds). Proceedings of the Winter Simulation
Conference, Institute of Electrical and Electronics Engineers
Inc.: Piscataway, New Jersey, USA, pp 1577–1584.

Kennedy KE (2003). Formal methods in the verification and
validation of simulation models. In: Mason SJ and Hill R (eds).

Proceedings of the Spring Simulation Interoperability Workshop,
Simulation Interoperability Standards Organization: Orlando,
USA.

Knuth DE (1997). The Art of Computer Programming, Volume 3:
Sorting and Searching. Addison-Wesley: Reading, MA.

Love G and Back G (2000). Model verification and validation for
rapidly developed simulation models: Balancing cost and theory.
In: Davidsen PI, Ford DN and Mashayekhi, AN (eds).
Proceedings of the 18th International Conference of the System
Dynamics Society, Bergen, Norway.

Moradi F et al (2007). A rule-based approach to syntactic
and semantic composition of BOMs. In: Roberts DJ,
Theodoropoulos GK and Saddik AEl (eds). Proceedings of the
11th IEEE Symposium on Distributed Simulation and Real-Time
Applications, Systems Dynamics Society, IEEE Computer
Society: Crete, Greece, pp 145–155.

Pace DK (2004). Modeling and simulation verification and
validation challenges. Johns Hopkins APL Technical Digest
25(3): 163–172.

Petty MD and Weisel EW (2003a). A composability lexicon. In:
Mason SJ and Hill R (eds). Proceedings of the Spring Simulation
Interoperability Workshop, Simulation Interoperability Stan-
dards Organization: Orlando, USA, pp 181–187.

Petty MD and Weisel EW (2003b). Basis for a theory of semantic
composability. In: Mason SJ and Hill R (eds). Proceedings of the
Spring Simulation Interoperability Workshop, Simulation Inter-
operability Standards Organization: Orlando, USA.

Petty MD, Weisel EW and Mielke R (2005). Composability theory
overview and update. In: Hill R and Rose O (eds). Proceedings
of the Spring Simulation Interoperability Workshop, Simulation
Interoperability Standards Organization: Orlando, USA.

Saaltink M (1997). The Z/EVES system. Lecture Notes in Computer
Science 1212(1): 72–85.

Sargent R (2000). Verification, validation, and accreditation of
simulation models. In: Joines JA and Barton RlR (eds).
Proceedings of the Winter Simulation Conference, Institute of
Electrical and Electronics Engineers Inc.: Piscataway, New
Jersey, USA, pp 50–59.

Sargent RG (1979). Validation of simulation models. In:
Highland HJ, Spiegel MG and Shannon R (eds). Proceedings
of the Winter Simulation Conference, Institute of Electrical and
Electronics Engineers Inc.: Piscataway, New Jersey, USA, pp
497–503.

Smith G (2000). The Object-Z Specification Language. Kluwer
Academic Publishers: Dordrecht, MA.

Smith G, Kamm?ller F and Santen T (2002). Encoding object-z in
Isabelle/HOL. In: Bert D, Bowen JP, Henson MC and
Robinson K (eds). Proceedings of the International Conference
of B and Z Users, Springer Verlag: London, UK, pp 82–89.

Srba J (2001). On the power of labels in transition systems. In:
Larsen KG and Nielsen M (eds). Proceedings of the 12th
International Conference on Concurrency Theory, Springer
Verlag: Aalborg, Denmark, pp 277–291.

Szabo C and Teo YM (2009). An approach for validation of
semantic composability in simulation models. In: Hill R and
Moench L (eds). Proceedings of the 23rd ACM/IEEE/SCS
Workshop on Principles of Advanced and Distributed Simulation,
IEEE Computer Society: New York, USA, pp 3–10.

Szabo C, Teo YM and See S (2009). A time-based formalism for the
validation of semantic composability. In: Rossetti M, Hill R,
Johansson B and Dunkin A et al (eds). Proceedings of the Winter
Simulation Conference, Institute of Electrical and Electronics
Engineers Inc.: Piscataway, New Jersey, USA, pp 1411–1422.

Teo YM and Szabo C (2008). CODES: An integrated approach
to composable modeling and simulation. In: Roberts DJ and

C Szabo and YM Teo—Analysis of the cost of validating semantic composability 11



Karatza H (eds). Proceedings of the 41st Annual Simulation
Symposium, IEEE Computer Society: Ottawa, Canada, pp
103–110.

Tolk A (2006). What comes after the semantic web—PADS
implications for the dynamic web. In: Turner S and Riley G
(eds). Proceedings of the 20th Workshop on Principles of
Advanced and Distributed Simulation, IEEE Computer Society:
Singapore, pp 55–62.

Tolk A, Diallo SY and Turnitsa CD (2008). Mathematical
models towards self-organizing formal federation languages
based on conceptual models of information exchange
capabilities. In: Mason SJ, Hill R, Moench L and Rose O
(eds). Winter Simulation Conference, Institute of Electrical
and Electronics Engineers Inc.: Piscataway, New Jersey,
USA, pp 966–974.

Traore MK (2006). Analyzing static and temporal properties of
simulation models. In: Lawson B, Liu J, Perrone F andWieland F
et al (eds). Proceedings of the Winter Simulation Conference,

Institute of Electrical and Electronics Engineers Inc.: Piscat-
away, New Jersey, USA, pp 897–904.

Trojet MW, Frydman C and Hamri ME-A (2009). Practical
application of lightweight Z in DEVS framework. In: Spiegel MG
and Shannon R (eds). Proceedings of the Spring Simulation
Multiconference, Simulation Interoperability Standards Orga-
nization: Orlando, USA.

Wainer G, Morihama L and Passuello V (2002). Automatic
verification of DEVS Models. In: Liu J and Hill R (eds).
Proceedings of the SISO Spring Interoperability Workshop,
Simulation Interoperability Standards Organization: Orlando,
USA.

Zeigler BP, Praehofer H and Kim TG (2000). Theory of Modeling
and Simulation. Academic Press: New York.

Received 22 September 2011;
accepted 20 April 2012 after two revisions

12 Journal of Simulation




