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Abstract

In mainstream languages, threads are first-class in that they can be
dynamically created, stored in data structures, passed as parame-
ters, and returned from procedures. However, existing verification
systems support reasoning about threads in a restricted way: threads
are often represented by unique tokens that can neither be split nor
shared.

In this paper, we propose “threads as resource” to enable more
expressive treatment of first-class threads. Our approach allows
the ownership of a thread (and its resource) to be flexibly split,
combined, and (partially) transferred across procedure and thread
boundaries. We illustrate the utility of our approach in handling
three problems. First, we use “threads as resource” to verify the
multi-join pattern, i.e. threads can be shared among concurrent
threads and joined multiple times in different threads. Second,
using inductive predicates, we show how our approach naturally
captures the threadpool idiom where threads are stored in data
structures. Lastly, we present how thread liveness can be precisely
tracked. To demonstrate the feasibility of our approach, we im-
plemented it in a tool, called THREADHIP, on top of an existing
PARAHIP verifier. Experimental results show that THREADHIP is
more expressive than PARAHIP while achieving comparable veri-
fication performance.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel programming; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Verification

Keywords Threads as Resource; Concurrency Verification; First-
class Threads; Separation Logic

1. Introduction

Threads are considered as first-class in mainstream languages such
as Java, C#, and C/C++ in that threads can be treated like objects
of any other type: they can be dynamically created, stored in data
structures, shared among different threads, passed as parameters,
and returned from procedures. Hence, it is desirable for verification
systems to support reasoning about first-class threads.

[Copyright notice will appear here once ’preprint’ option is removed.]

One of the most popular techniques for reasoning about concur-
rent programs is separation logic [21, 23]. Originally, separation
logic was used to verify heap-manipulating sequential programs,
with the ability to express non-aliasing in the heap [23]. Separa-
tion logic was extended to verify shared-memory concurrent pro-
grams, e.g. concurrent separation logic [21], where ownerships of
heap objects are considered as resource, which can be shared and
transferred among concurrent threads. Using fractional permissions
[2], one can express full ownerships for exclusive write accesses
and partial ownerships for concurrent read accesses. Ownerships
of stack variables can also be considered as resource and treated in
the same way as heap objects [1].

Separation logic was traditionally extended to verify concur-
rent programs with parallel composition [21]. Recent works also
extended separation logic to handle dynamically-created threads
[12, 14, 15, 18, 19]. Hobor [14] allows threads to be dynamically
created using fork but does not support join. Gotsman et al. [12] use
thread handles to represent threads, while CHALICE [19] uses to-
kens, VERIFAST [15] uses thread permissions, and PARAHIP [18]
uses and-conjuncts for the same purpose. A fork operation re-
turns a unique handle/token/and-conjunct/permission (collectively
referred to as thread token) and a join operation on a thread to-
ken causes the joining thread (joiner) to wait for the completion of
the thread corresponding to the token (joinee). However, existing
works [12, 14, 15, 18, 19] support reasoning about threads in a lim-
ited way: unique tokens (representing threads) are not allowed to be
split and shared among different threads. As such, existing works
do not fully consider threads as first-class.

Reasoning about first-class threads is challenging because
threads are dynamic and non-lexically-scoped in nature. A thread
can be dynamically created in a procedure (or a thread), but shared
and joined in other procedures (or threads). In this paper, we pro-
pose an expressive treatment of first-class threads, called “threads
as resource”. Our approach enables threads’ ownerships to be rea-
soned about in a similar way to other types of resource. A thread’s
ownership is created when it is forked, and destroyed when it is
joined. In contrast to ownership of a normal heap object which
specifies values of its fields, ownership of a thread carries resource
that can be obtained by the joiner when the thread is joined. This is
to cater for the intuition that when a joiner joins with a joinee, the
joiner expects to obtain (in order to later read or write) certain re-
source transferred from the joinee. As threads in fork/join programs
are typically non-lexically-scoped, we allow threads’ ownerships
to be soundly split, combined, and (possibly partially) transferred
among procedures and threads.

Our approach elegantly solves at least three verification prob-
lems that were not properly supported. First, threads can now be
passed as arguments, shared, and joined by different threads. This
enables verification of intricate fork/join behaviors such as multi-
join patternwhere a thread is shared and joined in multiple threads.
Using our approach, the ownership of the joinee (and its resource)
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can be split and transferred (or shared) among the multiple join-
ers, so that they can respectively join with the joinee and get their
corresponding portions of the joinee’s resource. Second, by treat-
ing threads in a similar way to heap objects, we can apply current
advances in separation logic for heap objects to threads. For exam-
ple, by combining “threads as resource” with inductive predicates,
we can naturally capture a programming idiom called threadpool
where threads are stored in data structures. Lastly, we can formally
reason about the “liveness” of a thread. We achieve this by adding
a special predicate that explicitly indicates when a thread is dead
(i.e. after it is joined). Our approach has been implemented in a
tool, called THREADHIP, on top of the PARAHIP verifier [18].
Experimental results show that our new tool THREADHIP is more
expressive than PARAHIP, whilst achieving comparable verifica-
tion performance.

The rest of this paper is organized as follows. Section 2 moti-
vates our idea of “threads as resource”. Section 3 introduces our
core programming language and specification language, with a fo-
cus on modeling threads as resource. Section 4 presents our ap-
proach in details. Section 5 discusses three main applications of our
approach. Section 6 presents our prototype implementation and ex-
perimental results. Section 7 summarizes related work. Section 8
concludes our paper.

2. A Motivating Example

This section illustrates our treatment of “threads as resource” for
reasoning about programs with first-class threads. Fig. 1 shows a C-

data cell { int val; }1

2

void thread1(cell x, cell y)3

requires x 7−→ cell(vx) * y 7−→ cell(vy)4

ensures x 7−→ cell(vy) * y 7−→ cell(vx);5

{ int tmp = x.val; x.val = y.val; y.val = tmp; }6

7

void thread2(thrd t1, cell y)8

requires t1 7−→ thrd〈y 7−→ cell(vy)〉9

ensures y 7−→ cell(vy + 2) ∧ dead(t1);10

{ // {t1 7−→ thrd〈y 7−→ cell(vy)〉}11

join(t1);12

// {y 7−→ cell(vy) ∧ dead(t1)}13

y.val = y.val+2;14

// {y 7−→ cell(vy + 2) ∧ dead(t1)}15

}16

17

void main()18

requires emp ensures emp;19

{ cell x = new cell(1); cell y = new cell(2);20

// {x 7−→ cell(1) * y 7−→ cell(2)}21

thrd t1 = fork(thread1,x,y);22

// {t1 7−→ thrd〈x 7−→ cell(2) * y 7−→ cell(1)〉}23

// {t1 7−→ thrd〈x 7−→ cell(2)〉 * t1 7−→ thrd〈y 7−→ cell(1)〉}24

thrd t2 = fork(thread2,t1,y);25

//{t1 7−→ thrd〈x 7−→ cell(2)〉 * t2 7−→ thrd〈y 7−→ cell(3)∧dead(t1)〉}
join(t1);

26

27

//{x 7−→ cell(2) * t2 7−→ thrd〈y 7−→ cell(3)∧dead(t1)〉 ∧ dead(t1)}
x.val = x.val+1;

28

29

//{x 7−→ cell(3) * t2 7−→ thrd〈y 7−→ cell(3)∧dead(t1)〉 ∧ dead(t1)}
join(t2);

30

31

// {x 7−→ cell(3) * y 7−→ cell(3) ∧ dead(t1) ∧ dead(t2)}32

assert(x 7−→ cell(3) * y 7−→ cell(3)); /*valid*/33

destroy(x); destroy(y);34

// {emp ∧ dead(t1) ∧ dead(t2)}35

}36

Figure 1. A Motivating Example

like program posing challenges to existing verification systems. In
the program, the main thread executing the procedure main (called
main thread) forks a new thread t1 executing the procedure thread1
(line 22). thread1 will swap the values of the cells x and y. main
then forks another thread t2 executing the procedure thread2 with
t1 passed as one of its arguments (line 25). Afterward, t2 will join
with t1 (line 12) and manipulate the cell y, while main will also
join with t1 (line 27) but manipulate the cell x. In separation logic,
a heap node x 7−→ cell(vx) represents the ownership of an object
of type cell pointed to by x and having the field val of vx (called
ownership of x for short).

The program is challenging to verify because (1) fork and join
operations on t1 are non-lexically scoped (i.e. t1 is forked in main

but joined in thread t2), and (2) t1 is shared and joined in both
t2 and main (i.e. a multi-join). In this program, the ownerships of
x and y are flexibly transferred across thread boundaries, between
main, t1 and t2, via fork/join calls. To the best of our knowledge,
we are not aware of any existing approaches capable of verifying
this program. We propose “threads as resource” to verify such
programs soundly and modularly. The key points to handle this
program are (1) considering t1 as resource, and (2) allowing it to
be split and transferred between main and t2 via fork/join calls.

Our approach is based on the following observation: when a
thread (joiner) joins with another thread (joinee), the joiner ex-
pects to receive (in order to later read or write) certain resource
transferred from the joinee. In the example program, main joins
with t1 and expects the ownership of x transferred from t1, while
t2 joins with t1 and expects the ownership of y. Hence, the ver-
ification of the program in Fig. 1 is achieved by introducing the
thread ownership v 7−→ thrd〈Φ〉 indicating that v points to a possi-
bly live thread (as resource) carrying certain resource Φ. A thread
having the ownership v 7−→ thrd〈Φ〉 can perform a join(v), and
yield the resource Φ and a pure predicate dead(v) after joining.
This special predicate dead(v) explicitly indicates that thread v
is no longer alive. In Fig. 1, when t1 is forked (line 22), its pre-
condition is consumed and exchanged for the thread’s ownership
t1 7−→ thrd〈x 7−→ cell(2) * y 7−→ cell(1)〉 carrying the post-state of
thread1 (i.e. t1’s state after it has finished its execution). This is
sound and modular as other threads can only observe the post-
state of thread1 when they join with t1. Our approach enables
the thread’s ownership to be split into t1 7−→ thrd〈x 7−→ cell(2)〉 and
t1 7−→ thrd〈y 7−→ cell(1)〉 (from line 23 to line 24). This allows the
latter to be transferred to t2 while the former remains with main.
Consequently, having the ownerships of t1, both t2 and main can
perform join(t1) and get the corresponding resource: t2 obtains
the ownership of y to write to it, while main obtains and writes to x

(i.e. t2 and main write-share the resource transferred from t1). Us-
ing our “threads as resource” approach, the program can be verified
as both data-race-free and functionally correct.

Our treatment of “threads as resource” allows the ownership
of a thread to be flexibly split and transferred. For example, in
a program similar to Fig. 1, instead of writing to cells x and y,
both main and t2 may want to concurrently read the value of the
cells. Using fractional permissions [2], we could now split the
ownership of t1 from t1 7−→ thrd〈x 7−→ cell(2) * y 7−→ cell(1)〉, into

t1 7−→ thrd〈x
0.6
7−−→ cell(2) * y

0.6
7−−→ cell(1)〉 and

t1 7−→ thrd〈x
0.4
7−−→ cell(2) * y

0.4
7−−→ cell(1)〉, and transfer them into

the corresponding codes for main and t2. This allows main and t2

to be able to read concurrently cells x and y after joining with the
t1 thread.

In summary, we propose to treat threads as resource, thus allow-
ing threads’ ownerships to be soundly split and transferred across
procedure and thread boundaries. This supports first-class threads
and enables modular reasoning of intricate concurrent programs
with non-lexically-scoped fork/join and multi-join.
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P ::= data decl∗ global decl∗ proc decl∗ Program
data decl ::= data C { field decl∗ } Data declaration
field decl ::= type f; Field declaration

global decl ::= global type v Global variable declaration
proc decl ::= type pn(param∗) spec∗ { S } Procedure declaration

spec ::= requires Φpr ensures Φpo; Pre/Post-conditions
param ::= type v Parameter
type ::= void | int | bool | thrd | C Type

e ::= v | v.f | k | e1+e2 | e1=e2 | e1 6=e2 Variable/field/constant/expression

S ::=

v = newC(v∗) | destroy(v) | v = e
| v = fork(pn,v∗) | join(v) | pn(v∗)
| if e then S1 else S2 | S1;S2

| . . .

Statement

Figure 2. Core Programming Language with First-Class Threads

3. Programming and Specification Languages

In this section, we present our core programming language and
specification language, with a focus on modeling threads as re-
source.

3.1 Programming Language

We use the core programming language in Fig. 2 to convey our
idea. A program consists of data declarations (data decl∗), global
variable declarations (global decl∗), and procedure declarations
(proc decl∗). Each procedure declaration is annotated with pairs
of pre/post-conditions (Φpr/Φpo). New objects of type C can be
dynamically created and destroyed using new and destroy. A fork
receives a procedure name pn and a list of parameters v∗, creates
a new thread executing the procedure pn, and returns an object of
thrd type representing the newly-created thread. join(v) waits for
the thread that is pointed to by v to finish its execution. Note that a
joinee could be joined in multiple joiners. At run-time, the joiners
wait for the joinee to complete its execution. If a joiner waits for an
already-completed (or dead) thread, it proceeds immediately with-
out waiting (i.e. the join operation becomes no-op).We do not allow
canceling a thread. A thread is dead after it is joined or when the
entire program has finished its execution. The semantics of other
program statements (such as procedure calls pn(v∗), conditionals,
loops, assignments) are standard as can be found in the mainstream
languages.

3.2 Specification Language

Comp. formula ∆ ::= Φ | ∆1∨∆2 | ∆1∧π | ∆1 *∆2 | ∃v·∆
Disj. formula Φ ::=

∨
(∃v∗ · κ ∧ π)

Heap formula κ ::= emp | ι | κ1 * κ2

Atomic heap ι ::= v
ε
7−→ C(v∗) | v 7−→ thrd〈Φ〉

Pure formula π ::= α | π1∧π2 | π1∨π2 | ¬π
| ∃v·π | ∀v·π | dead(v)

Arith. formula α ::= αt
1=αt

2 | αt
1 6=αt

2 | αt
1<αt

2 | αt
1≤αt

2
Arith.term αt ::= k | v | k× αt | αt

1 + αt
2 | −αt

Fractional permission var. ε ∈ (0,1] v ∈ Variables
k ∈ Integer or fractional constants C ∈ Data names

Figure 3. Grammar for Core Specification Language

Fig. 3 shows our specification language for concurrent programs
manipulating “threads as resource”. A classical separation logic
formula Φ is in disjunctive normal form. Each disjunct in Φ con-
sists of a heap formula κ and a pure formula π. Furthermore, ∆
denotes a composite formula which could always be translated into
the Φ form. A pure formula π includes standard equality/inequal-
ity, Presburger arithmetic, and a pure predicate dead(v) indicating

that the thread v has completed its execution. π could also be ex-
tended to include other constraints such as set constraints. A heap
formula κ consists of multiple atomic heap formulas ι connected
with each other via the separation connective * . An atomic heap

formula v
ε
7−→ C(v∗) (or heap node) represents the fact that the cur-

rent thread has a certain fractional permission ε to access an object
of typeC pointed to by v. v∗ captures a list of variables representing
the fields of the object v.

The atomic heap formula v 7−→ thrd〈Φ〉 (or thread node) cap-
tures our idea of “threads as resource”: v points to a thread carrying
certain resource Φ, which is available after the thread is joined. By
representing threads as heap resource, we allow them to be flexi-
bly split and transferred in a similar way to other types of resource
such as heap nodes. Note that thread nodes themselves are non-
fractional, but their resources can already be flexibly split. Further-
more, no resource leakage from threads is possible since we explic-
itly track when each thread becomes dead.

Our approach allows for expressive reasoning about threads
and their liveness. For example, a formula t 7−→ thrd〈Φ〉

∨

dead(t)
specifies the fact that the thread t could be either alive or dead. On
the other hand, a formula with t 7−→ thrd〈Φ〉∧dead(t) indicates the
fact that t is already dead and hence the resource Φ can be safely
released.

4. Threads as Resource

In this section, we first introduce our forward verification rules. We
then present a set of sub-structural rules for manipulating resource,
especially threads as resource. Finally, we discuss the soundness of
our approach.

4.1 Forward Verification Rules

Our verification system is built on top of entailment checking:
∆A ⊢ ∆C ❀ ∆R

This entailment checks if antecedent∆A is precise enough to imply
consequent∆C , and computes the residue∆R for the next program
state (we write∆A ⊢ ∆C when ignoring the residue). For example:

x
0.6
7−−→ cell(1) * y

0.6
7−−→ cell(2) ⊢ x

0.6
7−−→ cell(1) ❀ y

0.6
7−−→ cell(2)

Fig. 4 presents our forward verification rules. Here we only
focus on three key constructs affecting threads’ resource: proce-
dure call, fork, and join. Forward verification is formalized using
Hoare’s triple for partial correctness: {Φpr}P{Φpo}. Given a pro-
gram P starting in a state satisfying the pre-condition Φpr , if the
program terminates, it will do so in a state satisfying the post-
condition Φpo. For simplicity, in this paper, we describe the ver-
ification rules with one pair of pre/post condition. Muliple pre/post
specifications can be handled in the same way as [5].
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spec(pn) := pn(w∗) requires Φpr ensures Φpo; { s }

∆ ⊢ Φpr ❀ ∆1 ∆2
def
= ∆1 * Φpo

{∆} pn(w∗) {∆2}

CALL

spec(pn) := pn(w∗) requires Φpr ensures Φpo; { s }

∆ ⊢ Φpr ❀ ∆1 ∆2
def
= ∆1 * v 7−→ thrd〈Φpo〉

{∆} v := fork(pn,w∗) {∆2}

FORK

{∆ * v 7−→ thrd〈Φpo〉} join(v) {∆ * Φpo ∧ dead(v)} JOIN−1

{∆ ∧ dead(v)} join(v) {∆ ∧ dead(v)} JOIN−2

Figure 4. Selected Verification Rules

In order to perform a procedure call (CALL), the caller should
be in a state∆ that can entail the pre-conditionΦpr of the callee (i.e
the procedure pn). spec(pn) denotes the specification of the proce-
dure pn. For conciseness, we omit the substitutions that link actual
and formal parameters of the procedure prior to the entailment. Af-
ter the entailment, the caller subsumes the post-condition Φpo of
the callee with the residue∆1 to form a new state∆2. Ownerships
are transferred across procedure boundaries, from the caller to the
callee via the entailment of the pre-condition and from the callee to
the caller via the spatial conjunction on the post-condition.

Similarly, when performing a fork (FORK), the forker should be
in a state ∆ that can entail the pre-condition Φpr of the forkee (i.e
the newly-created thread executing the procedure pn). Afterward,
a new thread node v 7−→ thrd〈Φpo〉 carrying the post-condition Φpo

of the forkee is created. The thread node is then combined with the
residue ∆1 to form a new state ∆2. The thread node is considered
as resource in ∆2; hence, it can be flexibly split and transferred
in subsequent parts of the program. The FORK rule is sound since
other threads can only observe the post-state of the forkee when
joining with it. It also ensures modularity as the forker only knows
the pre/post-conditions of the forkee.

When joining a thread (JOIN−1), the joiner simply exchanges
the thread node, which carries a resource Φpo, with the resource
itself. Each joinee could be joined by multiple joiners. Our verifi-
cation rules are based on the observation that when a joiner joins
with a joinee, the joiner is expecting to receive certain resource
transferred to it from the joinee. Hence, each joiner will receive
the current resource carried by the thread node. After a thread has
been joined, it becomes dead (indicated by the pure dead predi-
cate). Joining a dead thread is equivalent to a no-op (JOIN−2).

Using our verification rules, a CALL can be modeled as a FORK

immediately followed by a JOIN. As threads are considered as re-
source, fork and join operations can be in different lexical scopes
and thread nodes can be transferred across procedure and thread
boundaries. Furthermore, if there is a recursive fork call in a pro-
cedure (also called nested fork) such as the parallel Fibonacci pro-

gram1, the verification proceeds normally: a new thread node cor-
responding to the newly-created thread executing the procedure is
created. Therefore, in our system, a nested fork is handled in the
same way as a normal fork.

4.2 Manipulating “Threads as Resource”

The notion of “threads as resource” plays a critical role in our
approach as it enables threads to be treated in a similar way to other
objects: a thread node can be created, stored, split, and transferred

1 http://loris-7.ddns.comp.nus.edu.sg/˜project/threadhip/

(or shared) among multiple threads, allowing them to join and to
receive suitable resource after joining.

Our sub-structural rules for manipulating resource are presented
in Fig. 5. The rules rearrange resource in a separation logic formula
into equivalent forms. We denote resource equivalence as ⇐⇒.
By resource equivalence, we mean that the total resource on the
left and the right sides of ⇐⇒ are the same. Our approach allows
resource to be split, combined, and transferred across procedures
and threads, while it guarantees that the total resource remains un-
changed. The rules R−DISJ, R−CONJ, R−SCONJ, R−COM, and
R−EMP are straightforward. With fractional permissions ε, heap
nodes can be split and combined in a standard way (R−FRAC). The
left-to-right direction indicates permission splitting while the right-
to-left indicates permission combining. We also allow thread nodes
to be split and combined (R−THRD1). Splitting a thread node (left-
to-right) will split the resource carried by the node while combining
thread nodes (right-to-left) will combine the resource of the con-
stituent nodes. Finally, when a thread is dead, its carried resource
can be safely released (R−THRD2).

4.3 Soundness

This section presents the soundness of our approach. The proof is
based on the soundness proof of Gotsman et al. [12], which is tai-
lored towards locks and threads (but not threads as resource). Our
proof, on the other hand, is tailored towards threads as resource. We
first present the memory model of the specification language pre-
sented in Section 3.2. We then introduce the interleaving semantics
of the programming language presented in Section 3.1. Finally, we
prove the soundness of our approach with respect to the operational
semantics.

Memory Model.

Our basic memory model is extended from the model proposed in
[12]. As a simplification, we consider objects of type cell and
thrd only. User-defined data types can be supported by extending
from cell to objects with fields. This, however, unnecessarily
complicates the memory model. Instead, we focus on modeling
threads as resource. We also impose a restriction whereby thread
nodes can only be passed between the caller and callee of the same
thread, or between different threads (i.e. from forker to forkee, or
from joinee to joiner). Thread nodes, therefore, are not allowed to
belong to external environment such as lock invariants. This is to
avoid circularity when the two thread nodes of two different threads
refer to each other as their carried resource.

In our memory model, formulas are interpreted over program
state σ ∈ Σ, defined as follows:
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Φ1 ⇐⇒ Φ
′

1 Φ2 ⇐⇒ Φ
′

2

Φ1

∨

Φ2 ⇐⇒ Φ
′

1

∨

Φ
′

2

R−DISJ

κ ⇐⇒ κ
′

κ ∧ π ⇐⇒ κ
′

∧ π
R−CONJ

κ1 ⇐⇒ κ
′

1 κ2 ⇐⇒ κ
′

2

κ1 * κ2 ⇐⇒ κ
′

1 * κ
′

2

R−SCONJ

κ1 * κ2 ⇐⇒ κ2 * κ1 R−COM

κ * emp ⇐⇒ κ R−EMP

v
ε1+ε27−−−−→ C(v∗) ⇐⇒ v

ε17−→ C(v∗) * v
ε27−→ C(v∗) R−FRAC

v 7−→ thrd〈Φ1 * Φ2〉 ⇐⇒ v 7−→ thrd〈Φ1〉 * v 7−→ thrd〈Φ2〉 R−THRD1

v 7−→ thrd〈Φ〉 ∧ dead(v) =⇒ Φ R−THRD2

Figure 5. Sub-structural Rules

Loc
def
= {1, 2, . . .}

Var
def
= {x, y, . . .}

Val
def
= {. . . ,−1, 0, 1, . . .}

Perm
def
= (0, 1]

TIDS
def
= {1, 2, . . .}

TStates
def
= {F,D}

Σ
def
= Stack× Heap× THRDS

Heap
def
= Loc ⇀ cell(Val× Perm)

Stack
def
= Var ⇀ Val

THRDS
def
= TIDS ⇀ THRD(TStates×Π)

Program state σ = (s, h, t) ∈ Σ consists of a stack s ∈ Stack,
a heap h ∈ Heap, and a threadpool t ∈ THRDS. Each heap cell is
associated with a fractional permission ε ∈ Perm. THRDS maps a
thread identifier k ∈ TIDS into a thread with a state ⋄ ∈ TStates
(F = forked, and D = dead) and a resource Φ ∈ Π. Our memory
model is mostly similar to that described in [12]; it additionally
captures a threadpool of threads with their states (i.e. their liveness)
and their carried resource.

We denote f(x)↓ if the function f is defined on x, f(x)↑ if
the function f is undefined on x. We write f = [] if dom(f) is
empty. We denote f [(x, v)] (defined only if f(x)↑) as a function
that has the same value as f everywhere, except for x where it has
the value v. We now define * on program states, which interprets
the *-connective in our logic.

For s1, s2 ∈ Stack,

s1#s2 ⇔ ∀x.s1(x)↓ ∧s2(x)↓⇒ (∃v.s1(x) = v ∧ s2(x) = v)
If s1#s2, then

s1 * s2
def
= {(x, v) | (s1(x) = v ∧ s2(x)↑) ∨

s1(x)↑ ∧(s2(x) = v)},
otherwise s1 * s2 is undefined. Note that, for simplicity, we

do not consider permissions on program variables which can be
separately exented as described in [1].

For h1, h2 ∈ Heap,

h1#h2 ⇔ ( ∀l.h1(l)↓ ∧h2(l)↓ ⇒
(∃v, ε1, ε2.h1(l)=cell(v, ε1)∧h2(l)=cell(v, ε2)∧ε1+ε2≤1) )

If h1#h2, then

h1 * h2
def
= {(l, cell(v, ε) | (h1(l) = cell(v, ε) ∧ h2(l)↑) ∨

(h1(l)↑ ∧h2(l) = cell(v, ε))∨
(h1(l)=cell(v, ε1) ∧ h2(l)=cell(v, ε2) ∧ ε1+ε2=ε)},

otherwise h1 * h2 is undefined.

For t1, t2 ∈ THRDS,

t1#t2 ⇔ ( ∀k.t1(k)↓ ∧t2(k)↓ ⇒
(∃v, h1, s1, h2, s2, i.t1(k)=THRD(⋄,Φ1)∧t2(k)=THRD(⋄,Φ2)∧
s1#s2∧h1#h2∧(h1, s1, t1, i)|=kΦ1∧(h2, s2, t2, i)|=kΦ2) )

For thread states,

F * F=F D * D=D F * D=D

If t1#t2, then

t1 * t2
def
= {(k, THRD(⋄,Φ) | (t1(k)=THRD(⋄,Φ) ∧ t2(k)↑) ∨

(t1(k)↑ ∧t2(k)=THRD(⋄,Φ)) ∨ (t1(k)=THRD(⋄1,Φ1)∧
t2(k)=THRD(⋄2,Φ2)∧⋄ = ⋄1 * ⋄2∧Φ = Φ1 * Φ2)},

otherwise t1 * t2 is undefined. We lift * to states and set of
states pointwise.

The satisfaction relation for our specification language formulas
is presented in Fig 6. One can easily show that the sub-structural
rules in Fig. 5 are sound with respect to the satisfaction rela-
tion. A formula is interpreted with respect to a thread identifier
k∈{m}∪TIDS (m is the identifier of the main thread), a stack s,
a heap h, a threadpool t, and an interpretation i mapping logical
variables to values. We assume a function [[e]](s,i) that evaluates an
expression e with respect to the stack s and the interpretation i. We
write [[e]]s when s is sufficient to evaluate e. Note that, in our def-
initions, the predicate t1#t2 refers to the satisfaction relation |=,
which is defined based on #. However, due to the restriction that
two thread nodes of two different threads cannot refer to each other
as their carried resource, #, * , and |= are simultaneously defined

by induction which is guaranteed to terminate. Let [[Φ]]ki denote the
set of states in which the formula Φ is valid with respect to a thread

identifier k and an interpretation i. We write [[Φ]]k when the deno-
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Satisfaction Relation: (s, h, t, i) |=k Φ

(s, h, t, i) |=k ∃x. Φ ⇔ ∃v. (s, h, t, i[(x, v)]) |=k Φ
(s, h, t, i) |=k emp ⇔ s = [] ∧ h = [] ∧ t = []
(s, h, t, i) |=k Φ1 * Φ2 ⇔ ∃s1, s2, h1, h2, t1, t2. s = s1 * s2 ∧ h = h1 * h2 ∧ t = t1 * t2∧

(s1, h1, t1, i) |=k Φ1 ∧ (s2, h2, t2, i) |=k Φ2

(s, h, t, i) |=k Φ1

∨

Φ2 ⇔ (s, h, t, i) |=k Φ1 ∨ (s, h, t, i) |=k Φ2

(s, h, t, i) |=k κ ∧ π ⇔ (s, h, t, i) |=k κ ∧ (s, [], t, i) |=k π

(h, s, t, i) |=k x
ε
7−→ cell(v) ⇔ ∃l. s = [(x, l)] ∧ h = [(l, cell(v, ε))]

(s, h, t, i) |=k x 7−→ thrd〈Φ〉 ⇔ ∃id, s1, t1. s = s1 * [(x, id)] ∧ t = t1 * [(id, THRD(F,Φ))] ∧ (s1, h, t1, i) |=k Φ
(s, h, t, i) |=k dead(x) ⇔ ∃id. s = [(x, id)] ∧ t = [(id, THRD(D, emp))]
(s, h, t, i) |=k π1 op π2 ⇔ (s, h, t, i) |=k π1 op (s, h, t, i) |=k π2 ,where op ∈ {∧,∨}
(s, h, t, i) |=k ¬π ⇔ ¬((s, h, t, i) |=k π)
(s, h, t, i) |=k ∃x. π ⇔ ∃v. (s, h, t, i[(x, v)]) |=k π
(s, h, t, i) |=k ∀x. π ⇔ ∀v. (s, h, t, i[(x, v)]) |=k π
(s, h, t, i) |=k x1 op x2 ⇔ [[x1]](s,i)↓ ∧[[x2]](s,i)↓ ∧([[x1]](s,i) op [[x2]](s,i)) ,where op ∈ {=, 6=, <,≤}

Figure 6. Satisfaction Relation for Specification Language Formulas

tation of Φ is sufficient with respect to a thread identifier k. When
the denotation of a formula Φ does not depend on the thread identi-
fier and the interpretation of logical variables, we simply write [[Φ]].
Similar to [12], we say that a predicate p ⊆ Σ is precise if for any
state σ, there exists at most one substate σ0 that satisfies p.

Operational Semantics.

We consider a well-formed program P with the main proce-

dure main(){Sm} and a set of procedures f i(v∗i ){Si} (i =
1..n). Let Γ denote the procedure context in the program P ,

i.e. Γ={ {Φi
pr}f

i(v∗i ){Φ
i
po} | i = 1..n}. The Hoare’s triples

{Φpr}S{Φpo} presented in Section 4.1 are implicitly defined un-
der Γ, that is Γ ⊢ {Φpr}S{Φpo}.

Definition 1 (Well-formedness). A program is well-formed if the
following conditions hold:

• In the program text, there exists a procedure called main, which
indicates the entry point of the program.

• Procedure names are unique within a program. Procedure pa-
rameters are unique within a procedure. Free variables in the
body of a procedure are the procedure parameters.

• A normal procedure call or a fork statement mentions only
procedure names defined in the program text. The number of
actual parameters and formal parameters are equal.

The interleaving semantics of the program P is presented in
Fig. 7. The semantics is defined by a transition relation  P that
transforms pairs of program counters (which map a thread identifier
into its corresponding remaining statement, i.e. pc ∈ (TIDS ∪
{m}) ⇀ SS, where SS is the set of statements), and states (s, h,
t). The relation P is defined as the least one satisfying the rules
in Fig. 7. We denote ∗

P as the reflexive and transitive closure of
 P The initial program counter pc0 is [(m,Sm)] which contains
only the main thread whose identifier is m and whose remaining
statement is Sm.

In Fig. 7, spec(pn) denotes the specification of the procedure
pn in the program, [v/w]S denotes the substitution in S wherew is
substituted by v. The rules for fork and join are of special interest.
In the fork rule, a new thread is spawned and the return value v
points to its identifier j. The resource carried by j is captured in
t. We explicitly add an end statement to signify the end of each

newly spawned thread.2 As a quick observation, a thread identifier
corresponds to a thread node in our logic. Any threads (joiners)
knowing the identifier can perform a join operation to join with the
newly-created thread (joinee). In the join rule, if the joinee has not
yet finished its execution (i.e. it is not in aD state), the joiners have
to wait for the joinee to finish its execution. Note that when a joinee
is joined, it will not be removed from the threadpool. This allows
for the multi-join pattern and enables the joiners to immediately
proceed without waiting in case the joinee has already finished its
execution. There is a direct relation between theD state of a thread
during run-time and its dead predicate during verification-time.

Definition 2 (Safety). A program P is safe when running from an
initial state σ0 if it is not the case that pc0, σ0 

∗
P pc,⊤ for some pc.

Proof.

The proof is based on the soundness proof of Gotsman et al. [12].
We first present a thread-local semantics based on a thread-local
forward predicate transformer Post

γ
k(), and define the notion of

validity of Hoare’s triples for program statements with respect to
the thread-local semantics (Definition 3). We then prove the sound-
ness of our approach with respect to the thread-local semantics
(Lemma 1). Finally, we prove that the thread-location semantics
is adequate with respect to the interleaving semantics, which justi-
fies the soundness of our approach (Lemma 2 and 3). Additionally,
in a similar way to [12], using the thread-local semantics, we prove
that provable programs are race-free (Lemma 4).

For a state σ and a predicate p, define

rest(σ, p) =

{

σ1, if σ = σ1 * σ2 and σ2 ∈ p
⊤, otherwise

Let the domainD be topped powerset of states. Then, we define
a thread-local forward predicate transformer Post

γ
k(S) : D → D

for every thread k, statement S, and semantical procedure context γ
consisting of triples of the form {p}f(v∗){q} where p, q ⊆ Σ and
p is precise. For statement S other than fork, join, and procedure
call, Post

γ
k(S) = Postk(S) as defined in [12]. Here, we define

those for fork, join, and procedure call. Let

Post
γ
k(f(v

∗), (s, h, t)) = {(s′, h′, t′)} * q

if {p}f(v∗){q} ∈ γ, and rest((s, h, t), p) = {(s′, h′, t′)}, and
Post

γ
k(f(v

∗), (s, h, t)) = ⊤ otherwise. Let

2We also add an end statement at the end of the main procedure to signify
the end of the main thread.
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Transition Relation for Atomic Commands: S, σ  k σ′

x = new cell(v), (s[(x, l1)], h, t)  k (s[(x, l2)], h[(l2, cell(v, 1))], t), if h(l2)↑
destroy(x), (s, h[([[x]]s, cell(v, 1))], t)  k (s, h, t)
x = e, (s[(x, v)], h, t)  k (s[(x, [[e]]s[(x,v)])], h, t)
S, (s, h, t)  k ⊤, otherwise

Transition Relation for Programs: pc, σ  P pc′, σ′

k ∈ TIDS S1, (s, h, t)  k σ
pc[(k, S1;S2)], (s, h, t)  P pc[(k, S2)], σ

(S1 is an atomic command)

k ∈ TIDS

pc[(k, if true then S1 else S2; S)], (s, h, t)  P pc[(k, S1;S)], (s, h, t)

k ∈ TIDS

pc[(k, if false then S1 else S2; S)], (s, h, t)  P pc[(k, S2;S)], (s, h, t)

k ∈ TIDS

pc[(k, if e then S1 else S2; S)], (s, h, t)  P pc[(k, if [[e]]s then S1 else S2; S)], (s, h, t)

spec(pn) := pn(w1, . . . , wn) requires Φpr ensures Φpo; { S1 }
k ∈ TIDS ∀i.[[vi]]s↓ ρ = [v1/w1, . . . , vn/wn] S′

1 = ρS1

pc[(k, pn(v1, . . . , vn);S)], (s, h, t)  P pc[(k, S′
1;S)], (s, h, t)

spec(pn) := pn(w1, . . . , wn) requires Φpr ensures Φpo; { S1 }
k, j ∈ TIDS t(j)↑ [[v]]s↓ ∀i.[[vi]]s↓ ρ = [v1/w1, . . . , vn/wn] S′

1 = ρS1 Φ′
po = ρΦpo

pc[(k, v=fork(pn,v1, . . . , vn);S)], (s, h, t)  P pc[(k, S), (j, S′
1; end)], (s[(v, j)], h, t[(j, THRD(F,Φ

′
po))])

k ∈ TIDS [[v]]s↓
pc[(k, join(v);S), ([[v]]s, end)], (s, h, t[([[v]]s, THRD(F,Φ))])  P pc[(k, S)], (s, h, t[([[v]]s, THRD(D, emp))])

k ∈ TIDS [[v]]s↓
pc[(k, join(v);S)], (s, h, t[([[v]]s, THRD(D, emp))])  P pc[(k, S)], (s, h, t[([[v]]s, THRD(D, emp))])

Figure 7. Operational Semantics of Well-formed Programs. (⊤ indicates a fault.)

Post
γ
k(v=fork(f,v∗), (s, h, t)) =

{(s′[(v, j)], h′, t′[(j, THRD(F,Φpo))])}

where j ∈ TIDS, if {p}f(v∗){q} ∈ γ, Φpo is the post-condition
of f(v∗), and rest((s, h, t), p) = {(s′, h′, t′)}, and Post

γ
k(v =

fork(f,v∗), (s, h, t)) = ⊤ otherwise. Let

Post
γ
k(join(v), (s, h, t[([[v]]s, THRD(F,Φ))])) =

{(s, h, t[([[v]]s, THRD(D, emp))]} * [[Φ]],

Post
γ
k(join(v), (s, h, t[([[v]]s, THRD(D, emp))])) =

{(s, h, t[([[v]]s, THRD(D, emp))]},

if {p}f(v∗){q} ∈ γ, [[v]]s↓, and Post
γ
k(join(v), (s, h, t)) = ⊤

otherwise. The requirement that the preconditions in γ are precise
is to ensure the determinism of splitting the state at fork and pro-
cedure call. Post

γ
k() for other non-atomic commands are defined

as in [12] with the help of a function Fk(γ, S, σ). We first assume
a control-flow relation G where (v, S, v′) ∈ G indicates the pro-
gram points v before and v′ after the statement S in the program’s
control flow graph (Gpr(S) = v and Gpo(S) = v′ for short). In
addition, let proc(v) denote the name of the procedure to which
the program point v belongs (main for the main procedure in the
main thread). We sometimes overload proc(S) to denote the name
of the procedure to which the statement S belongs. We also as-
sume a function g that takes a program point and returns the cor-
responding program state at that point. In addition, we assume that

a thread executing a procedure f will start and end at the program
points startf and stopf respectively. Then, Fk(γ, S, σ)(g) = g′

where g′(startf ) = σ and for every program point v2 such that
v2 6= startf , g

′(v2) =
⊔

(v1,S,v2)∈G Postk(S, g(v1)). Hence,

Postk(S, σ) = (lfp(Fk(γ, S, σ)))(stop). For a procedure con-
text Γ, we denote [[Γ]] as its corresponding semantical procedure
context, i.e. {Φpr}f(v

∗){Φpo} ∈ Γ iff {[[Φpr]]}f(v
∗){[[Φpo]]} ∈

γ. We now extend the validity |=k of Hoare’s triples with respect
to the thread-local semantics for thread k.

Definition 3. For a statement S,

Γ |=k {Φpr}S{Φpo} ⇔ Post
[[Γ]]
k (S, [[Φpr]]

k) ⊑ [[Φpo]]
k.

Lemma 1 (Soundness with respect to thread-local semantics). If
Γ ⊢ {Φpr}S{Φpo}, then for all k ∈ TIDS, Γ |=k {Φpr}S{Φpo}.

Proof. Standard verification rules (such as those for creating a
new object, deallocating an existing object, etc.) have been proven
sound with respect to the thread-local semantics in [12]. Here, it is
easy to show that the definition of Post

γ
k() implies the soundness

of CALL, FORK, JOIN−1, and JOIN−2 (presented in Fig. 4) with
respect to the thread-local semantics. We can then perform induc-
tion on the derivation of Γ ⊢ {Φpr}S{Φpo}.
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The following lemma states that the thread-local semantics is
an over-approximation of the interleaving operational semantics
described in Fig. 7.

Lemma 2 (Over-approximating Lemma). Consider a program P
with the main procedure main(){Sm} equipped with a precon-

dition p ∈ D, a set of procedures f i(v∗i ){Si} (i = 1..n), and
a semantical procedure context γ = {{pi}f i(v∗i ){q

i} | i =
1..n} such that Post

γ
k(Si, pi) ⊑ qi for all i = 1..n and k ∈

TIDS. Let gm(main)=lfp(Fm(γ, S, p)) and gk(f
i)=lfp(Fk(γ,

Si, p
i)) for all k ∈ TIDS and i = 1..n. Then for any state

σ0 = (h0, s0, []) such that

{σ0} ⊑ p (1)

whenever pc0, σ0, P pc, σ1, it is the case that

{σ1} ⊑

(

⊛
{k|pc(k)↓}

gk(Gpr(pc(k)))

)

. (2)

Proof. The proof is done by induction on the length m of the
derivation of σ1. For m = 0, it trivially holds. Now, suppose
that pc0, σ0  

∗
P pc[(j, S;S′)], σ1  P pc′[(j, S′)], σ2, (v, S,

v′) ∈ G and

{σ1} ⊑

(

⊛
{k|pc(k)↓}

gk(Gpr(pc(k)))

)

* gj(v),

we have to prove that

{σ2} ⊑

(

⊛
{k|pc′(k)↓}

gk(Gpr(pc
′(k)))

)

* gj(v
′) (3)

The proof for statements other than fork, join, and procedure
call has been given in [12]. Here, we focus on those for fork, join,
and procedure call.

1. S is v=fork(f i,v1, . . . , vn). Assume that σ1 = σ′
1 * σ′′

1 ,
where σ′

1 ∈ gj(v), σ
′′
1 = ⊛{k|pc(k)↓}gk(Gpr(pc(k))), σ

′
1 = (s,

h, t), pc′ = pc[j′ : Si], σ2 = (s[(v, j′)], h, t[(j′, THRD(F,
Φi

po))]) * σ′′
1 , Post

γ
k(S, σ

′
1) ⊑ gj(v

′); otherwise, the right-
hand side of Eq. 3 is ⊤. Now, we have to prove that {σ2} ⊑
gj(v

′) * {σ′′
1 }. Let σ3 = (s[(v, j′)], h, t[(j′, THRD(F,Φi

po))]),
then Post

γ
k(S, σ

′
1) ⊑ gj(v

′) implies {σ3} ⊑ gj(v
′), hence

{σ2} = {σ3} * {σ′′
1 } ⊑ gj(v

′) * {σ′′
1 }.

2. S is join(v). We consider two cases: v is dead and v
is alive. When v is dead, assume that σ1 = σ3 * σ4, σ3 =
(s, h, t[([[v]]s, THRD(D, emp))]), σ3 ∈ gj(proc(v)), pc

′ = pc,
and σ4 = ⊛{k|pc(k)↓}gk(Gpr(pc(k))). Since Post

γ
k(join(v),

σ3) = {σ3} ⊑ gj(v
′), Eq. 3 trivially holds. We now consider

the case where v is alive. Assume that σ1 = σ3 * σ4 * σ5,
σ3 ∈ gj(proc(v)), σ3 = (s, h, t[([[v]]s, THRD(F,Φ))]), t

′ =
t[([[v]]s, THRD(D, emp))], σ4 = ⊛{k|pc(k)↓}gk(Gpr(pc(k))), pc =
pc′[([[v]]s, end)], {σ5} ⊑ [[Φ]], and σ2 = (s, h, t′) * σ4 * σ5; other-
wise, either the left-hand side of Eq. 3 is {} or the right-hand side of
Eq. 3 is⊤. Now, we have to prove that σ2 ⊑ gj(v

′) * {σ4}. By def-
inition of Post() for join(v), we get {(s, h, t′)} * {σ5} ⊑ gj(v

′).
Hence, {σ2} = {(s, h, t′)} * {σ5} * {σ4} ⊑ gj(v

′) * σ4.

3. S is f i(v1, . . . , vn). f i(v1, . . . , vn) can be modeled as

v=fork(f i,v1, . . . , vn); join(v). Since the cases of fork, join,
and sequential composition have been proven sound, the case of
procedure call follows.

The soundness of our approach is now established by the fol-
lowing lemma.

Lemma 3 (Soundness of Threads as Resource). Consider a pro-
gram P with the main procedure main(){Sm} and a set of pro-

cedures f i(v∗i ){Si} (i = 1..n) together with their correspond-

ing pre/post-conditions (Φi
pr/Φ

i
po) where Φi

pr is precise. Let Γ =
{{Φi

pr}f
i(v∗i ){Φ

i
po} | i = 1..n}. If our verifier derives a proof

for P , i.e.

Γ⊢{Φ1
pr}S1{Φ

1
po}, . . . , Γ⊢{Φn

pr}Sn{Φ
n
po},Γ⊢{Φpr}Sm{Φpo},

then for any interpretation j and the state σ0=(s0, h0, []) such that
σ0∈[[Φpr]]

m
j the program P is safe when running from σ0 and if

pc0, σ0  P pc1, (s, h, t), where ∀k.pc1(k)↓ =⇒ pc1(k)=end,
then (s, h, t) ∈ [[Φpo]]

m
i * (⊛{k|t(k)=THRD(F,Φ)}[[Φ]]).

Proof. Consider an interpretation j and the state σ0 = (s0, h0,
[]) such that σ0 ∈ [[Φpr]]

m
j . By Lemma 1, for all k ∈ TIDS,

Γ |=k {Φi
pr}Si{Φ

i
po} and Γ |=m {Φpr}Sm{Φpo}. By Def-

inition 3, we have Post
γ
k(Si, [[Φ

i
pr]]) ⊑ [[Φi

po]] and Postγm(S,
[[Φpr]]

m
j ) ⊑ [[Φpo]]

m
j . Since Eq. 1 is fulfilled, we are now able to

establish the safety of P . Suppose that pc0, σ0, P pc1, (s, h, t)
and ∀k.pc1(k)↓ =⇒ pc1(k)=end, then from Eq. 2 we have {(s,
h, t)} ⊑ [[Φpo]]

m
i * (⊛{k|t(k)=THRD(F,Φ)}[[Φ]])

In addition to partial correctness, in a similar way to [12], we
can prove that, when using our approach, provable programs are
race-free, as stated in Lemma 4.

Definition 4 (Data Race). When running from an initial state σ0, a
program P has a data race if for some pc and a state σ1 such that
pc0, σ0  P pc, σ1, there exists two atomic statements S1 in thread
k (i.e. pc(k) = S1;S

′
1) and S2 in thread j (i.e. pc(j) = S2;S

′
2)

(k 6= j) such that (S1, σ1 6 k⊤), (S2, σ1 6 j⊤), and S1 ⊲⊳σ1
S2

(i.e., S1 and S2 both access the same memory location in state σ1

and at least one of the accesses is a write).

Lemma 4 (Data-race Freedom). Consider a program P with the

main proceduremain(){Sm} and a set of procedures f i(v∗i ){Si}
(i = 1..n) together with their corresponding pre/post-conditions

(Φi
pr/Φ

i
po) where Φi

pr is precise. Let Γ = {{Φi
pr}f

i(v∗i ){Φ
i
po}}

(i = 1..n). If our verifier derives a proof for P , i.e.

Γ⊢{Φ1
pr}S1{Φ

1
po}, . . . , Γ⊢{Φn

pr}Sn{Φ
n
po},Γ⊢{Φpr}Sm{Φpo},

then the program P has no data race when running from an initial
state σ0 = (s0, h0, []) such that σ0 ∈ [[Φpr]]

m
j for any interpreta-

tion j.

Proof. It directly follows from Theorem 15 of [12]. Intuitively,
one can prove that, for a provable program, given state σ1, two
interfering atomic statements S1 and S2, (S1, σ1 6 k⊤), and (S2,
σ1 6 j⊤), there do not exist σ2 and σ3 such that σ1 = σ2 * σ3 * σ4,
(S1, σ2 6 k⊤), and (S2, σ3 6 j⊤).

5. Applications

5.1 Verifying the Multi-join Pattern

A program with multi-join pattern allows a thread (joinee) to be
shared and joined in multiple threads (joiners). During the execu-
tion of the program, the joiners wait for the joinee to finish its ex-
ecution. If joiners wait for an already-completed joinee, they pro-
ceed immediately without waiting. By joining with the joinee, the
joiners expect to receive certain resource transferred from the joi-
nee. The motivating program in Fig. 1 is an example of such a
multi-join pattern. As we have shown in previous sections, our ap-
proach handles the multi-join pattern naturally. Our approach al-
lows the ownership of the joinee to be split, shared, and joined by
multiple joiners, where each joiner obtains their corresponding part
of the joinee’s resource upon join.
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data node { int val; node next; }1

data list { node head; }2

data count { int val; }3

self 7−→ ll(n)
def
= self=null ∧ n=04 ∨

∃q · self 7−→ node( , q) * q 7−→ ll(n−1)5

inv n≥0;6

7

void countList(list l)8

requires l 7−→ list(h) * h 7−→ ll(n) ∧ n≥0
ensures l 7−→ list(h) * h 7−→ ll(n) ∧ res=n;

9

10

{ ...}11

12

list createList(int n)13

requires n≥0
ensures res 7−→ list(h) * h 7−→ ll(n);

14

15

{ ...}16

17

list destroyList(list l)18

requires l 7−→ list(h) * h 7−→ ll(n)
ensures emp;

19

20

{ ...}21

22

void mapper(list l, list o, list e)23

requires l 7−→ list(h) * h 7−→ ll(n) * o 7−→ list(null) * e 7−→ list(null)
ensures o 7−→ list(oh) * oh 7−→ ll(n1) * e 7−→ list(eh) *

eh 7−→ ll(n2) ∧ n=n1+n2;

24

25

26

{ ...}27

28

void reducer(thrd m, list l, count c)29

requires m 7−→ thrd〈l 7−→ list(h) * h 7−→ ll(n)∧n≥0〉 * c 7−→count( )
ensures l 7−→ list(h) * h 7−→ ll(n) * c 7−→ count(n) ∧ dead(m);

30

31

{ join(m); /*multi-joined by the two reducers*/32

c.val = countList(l); }33

34

void main()35

requires emp ensures emp;36

{ int n = 10000; list l = createList(n);37

list ol = new list(null); list el = new list(null);38

count c1 = new count(0); count c2 = new count(0);39

/*fork mapper/reducer threads*/40

thrd m = fork(mapper,l,ol,el);41

thrd r1 = fork(reducer,m,ol,c1);42

thrd r2 = fork(reducer,m,el,c2);43

/*wait for them to finish*/44

join(r1);45

join(r2);46

assert(c1.val + c2.val = n); /*valid*/47

destroyList(ol); destroyList(el);48

destroy(c1); destroy(c2);49

}

Figure 8. Map/Reduce Pattern using Multi-join

We now illustrate another example of multi-join concurrency
pattern in Fig. 8, based on the map/reduce paradigm. In this pro-
gram, the main thread concurrently forks three threads: a mapper m
to produce two lists, and two reducers r1 and r2 to process a list
each. Both the reducers each take m as a parameter and joins it at an
appropriate place to recover their respective lists from m. The main
thread subsequently joins up the two reducers before completing
its execution. This multi-join program is challenging to verify be-
cause (i) fork and join operations on the mapper m are non-lexically
scoped (i.e. m is forked in main but joined in threads r1 and r2),
and (2) part of the computed resources from m is made available
to r1, while another part is made available to r2. In this program,
the ownerships of two lists produced by the mapper must be flex-
ibly transferred across thread boundaries, via fork/join calls. The
key points to handle this program are (1) considering the executing
thread of m as resource, and (2) allowing it to be split and transferred

between main, r1 and r2 via fork/join calls. Using our approach,
the program can be verified as both data-race-free and functionally
correct.

5.2 Inductive Predicates and Threads as Resource

Modeling threads as resource open opportunities for applying cur-
rent advances in separation logic, which were originally designed
for heap objects, to threads. In this section, we describe how
“threads as resource” together with inductive predicates [11, 20]
can be used to naturally capture a programming idiom, called
threadpool, where threads are stored in data structures.

An example program is presented in Fig. 9. The program re-
ceives an input n, and then invokes forkThreads to create n con-
current threads executing the procedure thread. For simplicity, we
assume each thread will have a read permission of the cell x in
the pre-condition and will return the read permission in the post-
condition. The program will wait for all threads to finish their ex-
ecution by invoking joinThreads. At the end, as threads already

data cell { int val; }1

data item { thrd t; item next; }2

3

int input() requires emp ensures res>0;4

5

void thread(cell x,int M)6

requires x
1/M
7−−−→ cell( ) ∧M>0 ensures x

1/M
7−−−→ cell( );7

8

item forkHelper(cell x, int n, int M)9

case { n = 0 → requires emp ensures emp ∧ res = null;10

n > 0 → requires x
n/M
7−−−→ cell( ) ∧M≥n11

ensures res 7−→ pool(x, n,M); }12

{ if (n==0){ return null;} else {13

thrd t = fork(thread,x,M);14

item p = forkHelper(x,n-1,M);15

item i = new item(t,p);16

return i; }17

18

item forkThreads(cell x, int n)19

requires x 7−→ cell( ) ∧ n>020

ensures res 7−→ pool(x, n, n);21

{ return forkHelper(x,n,n); }22

23

void joinHelper(item tp, cell x, int n, int M)24

requires tp 7−→ pool(x, n,M) ∧M≥n ∧ n>=025

ensures x
n/M
7−−−→ cell( ) ∧ n>0

∨

emp ∧ n = 0;26

{ if (tp==null){ return;} else {27

joinHelper(tp.next,x,n-1,M);28

join(tp.t); destroy(tp); }29

30

void joinThreads(item tp, cell x, int n)31

requires tp 7−→ pool(x, n, n) ∧ n>0;32

ensures x 7−→ cell( );33

{ return joinHelper(tp,x,n,n); }34

35

void main() requires emp ensures emp;36

{ cell x = new cell(1); int n = input();37

item tp = forkThreads(x,n);38

joinThreads(tp,x,n);39

destroy(x); }40

Figure 9. Verification of a Program with Dynamic Threads using
Inductive Predicates
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finished, it is safe to destroy the cell x. In this program, each item
in the threadpool is a data structure of type item. Each item will
store a thread in its field t and a pointer next to the next item in the
pool. The forkThreads returns the first item in the pool, while the
joinThreads receives the item and joins with all threads in the pool.
In the program’s specifications, “res” is used to denote the returned
result of a procedure and “ ” represents an unknown value.

The key idea to verify this program is to use an inductively
defined predicate, called pool to abstract the threadpool. As threads
are modeled as resource, they can be naturally captured inside the
predicate in the same way as other heap resource, as follows:

self 7−→ pool(x ,n,M )
def
= self=null ∧ n=0 ∧M>0

∨

∃t , p · self 7−→ item(t , p) * t 7−→ thrd〈x
1/M
7−−−→ cell( )〉 *

p 7−→ pool(x ,n−1 ,M )
inv n≥0 ∧M>0 ;

The above predicate definition asserts that a pool can be empty
(the base case self=null ) or consists of a head item (specified by

self 7−→ item(t , p)), a thread node (t 7−→ thrd〈x
1/M
7−−−→ cell( )〉) and

a tail data structure which is also a pool. The invariant n≥0 ∧
M>0 must hold for all instances of the predicate. Using the above
definition and case analysis [11], the program can be verified as
functionally correct and data-race-free. Although we use linked
lists here, our approach easily adapts to other data structures, such
as arrays.

5.3 Thread Liveness and Resource Leakage

Using our approach, threads’ liveness can be precisely tracked. For
example, we could modify the program in Fig. 9 to additionally
keep track of already-completed (or dead) threads. In the proce-
dure joinHelper, after a thread is joined, instead of destroying the
corresponding item (line 29), we could capture all items and their

dead threads in a deadpool 3, inductively defined as follows:

self 7−→ deadpool(n)
def
= self=null ∧ n=0

∨

∃t , p · self 7−→ item(t , p) * p 7−→ deadpool(n−1 )∧ dead(t)
inv n≥0 ;

Our approach is also able to keep track of threads’ resource in
a precise manner. This is important for avoiding leakages of thread
resource. As an example, consider the use of a resource split, prior
to a join operation.

// {t 7−→ thrd〈Φ1 * Φ2〉}
// {t 7−→ thrd〈Φ1〉 * t 7−→ thrd〈Φ2〉}
join(t);

// {Φ1 * t 7−→ thrd〈Φ2〉 ∧ dead(t)}
// {Φ1 * Φ2 ∧ dead(t)} /*R−THRD2 applied*/

This split causes the join operation to release only resource Φ1,
whilst Φ2 remains trapped as resource inside a thread node. This
results in a resource leakage if the scenario is not properly consid-
ered. However, our verification system handles such scenarios by
releasing the trapped resource using the R−THRD2 rule in Fig. 5,
thus ours avoids the leakages of thread resource.

6. Implementation and Experimental Results

We demonstrate the feasibility of our “threads as resource” ap-
proach by implementing it on top of PARAHIP [18], a cur-
rent state-of-the-art verifier for fork-join concurrency and mutex
locks that is able to verify functional correctness and deadlock-
freedom. PARAHIP models threads as separate and-conjuncts, and
its threads are not allowed to be split and shared. In contrast, be-
sides verifying functional correctness, data-race freedom, deadlock

3We refer interested readers to deadpool program in our project webpage
for more details.

freedom, and non-lexically-scoped fork/join, our implementation
(called THREADHIP) is also capable of verifying first-class threads
and multi-join.

The expressiveness of “threads as resource” is beyond that of
other verification systems for fork/join programs. However, as there
is a lack of commonly accepted benchmarks in the literature, we
cannot easily compare THREADHIP with other systems. In order
to give readers an idea of the applicability of our approach, we did
an experimental comparison between PARAHIP and THREADHIP.
Experimental programs consist of 16 deadlock/deadlock-freedom
programs from PARAHIP’s benchmark and other intricate pro-

grams inspired by the literature. 4 Besides the theoretical contri-
butions, the empirical questions we investigate are (1) whether
the “threads as resource” approach is capable of verifying more
challenging programs, and (2) how THREADHIP performs, com-
pared with PARAHIP. All experiments were conducted on a ma-
chine with Ubuntu 14.04, 3.20GHz Intel Core i7-960 processor,
and 12GB memory.

The experimental results are presented in Table 1. THREADHIP
is able to verify all programs of PARAHIP’s benchmark and other
programs found in the literature. For these programs, PARAHIP
and THREADHIP showed comparable verification times (e.g. for
PARAHIP’s benchmark, the difference is +2.0%). Nonetheless,
THREADHIP is more expressive than PARAHIP since THREAD-
HIP is also capable of verifying more complex programs that
manipulate the multi-join pattern and/or require expressive treat-
ment of threads’ resource such as mapreduce, threadpool, and
multicast. We believe that existing verifiers for verifying con-
current programs can easily integrate our “threads as resource” ap-
proach into their systems (as we did for PARAHIP) and benefit
from its greater expressiveness with negligible performance differ-
ence.

7. Related Work

This section discusses related works on reasoning about shared-
memory concurrent programs. Our approach currently supports
only partial correctness. Proving (non-)termination is an orthogonal
issue and could be separately extended.

Traditional works on concurrency verification such as Owicki-
Gries [22] and Rely/Guarantee reasoning [16] often focused on
simple parallel composition, rather than fork/join. Fork/join con-
currency is more general than the parallel composition for two main
reasons. First, fork/join supports dynamic thread creation and ter-
mination. Second, while threads in a parallel composition are lex-
ically scoped, threads in fork/join programs can be non-lexically
scoped. Therefore, fork/join programs are more challenging for
verification. Even recent approaches such as CSL [21], RGSep
[25], LRG [9], and Views [6], omit fork/join concurrency from
their languages. Our “threads as resource” is complementary to the
above approaches and could be integrated into them.

There also exist approaches that can handle fork/join operations.
Both Hobor [14] and Feng and Shao [10] support fork and omit join
with the claim that thread join can be implemented using synchro-
nization. However, without join, the former allows threads to leak
resource upon termination while the latter requires global spec-
ifications of inter-thread interference. Approaches that can han-
dle both fork and join can be grouped as modeling threads as to-
kens [12, 15, 19] and modeling threads as and-conjuncts [17, 18].
Though syntactically different, they are semantically similar in
that the tokens and the and-conjuncts are used to represent the
post-states of forked threads. However, they offer limited support

4 THREADHIP and all experimental programs are
available for both online use and download at
http://loris-7.ddns.comp.nus.edu.sg/˜project/threadhip/.
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Program Properties
Verification Time (s)

PARAHIP THREADHIP Diff

PARAHIP’s benchmark F/L/(N) * * +2.0%

fibonacci [17] F 0.076 0.077 +1.3%
parallel-mergesort [17] F 1.326 1.236 -6.8%
oracle [14] F/L 1.654 1.646 -0.5%
owicki-gries [15] F/L 1.227 1.241 +1.1%

multi-join1 F/N/M - 0.075 -
multi-join2 F/N/M - 0.216 -
mapreduce F/N/M - 0.515 -
threadpool F/N/P - 0.199 -
deadpool F/N/P - 0.261 -
multicast [12] F/L/N/P - 1.057 -
no-deadlock-nonlexical2 F/L/N/M - 0.122 -

Table 1. Experimental Results. The second column indicates properties of a program, i.e. whether it uses fork/join (F), locks (L), non-lexical
fork/join (N), multi-join (M), and inductive predicates (P); verification times are average of the 10 runs (in seconds); the final column is

computed as THREADHIP−PARAHIP
PARAHIP

; ( * ) details of PARAHIP’s benchmark are presented in Table 2, here the final column of PARAHIP’s
benchmark reports the average of its 16 programs.

Program Properties
Verification Time (s)

PARAHIP THREADHIP Diff

deadlock1 F/L 0.085 0.085 0.0%
deadlock2 F/L 0.088 0.090 +2.3%
deadlock3 F/L 0.095 0.097 +2.1%
deadlock-nested-forkjoin F/L 0.150 0.156 +4.0%
disj-deadlock F/L 0.103 0.102 -1.0%
disj-no-deadlock1 F/L 0.131 0.132 +0.8%
disj-no-deadlock2 F/L 0.136 0.142 +4.4%
double-acquire F/L 0.760 0.750 -1.3%
fork-join-as-send-recv F/L 0.176 0.189 +7.4%
no-deadlock1 F/L 0.104 0.099 -4.8%
no-deadlock2 F/L 0.104 0.108 +3.8%
no-deadlock3 F/L 0.137 0.414 +2.9%
ordered-locking F/L 0.189 0.195 +3.2%
unordered-locking F/L 0.173 0.180 +4.0%

deadlock-nonlexical F/L/N 0.098 0.097 +1.0%
no-deadlock-nonlexical F/L/N 0.116 0.119 +2.6%

Average - - - +2.0%

Table 2. Experimental Results on PARAHIP’s benchmark. 14 out of 16 programs in PARAHIP’s benchmark have properties F/L; two
programs have properties F/L/N.

for first-class threads: tokens and and-conjuncts are not allowed
to be split and shared among concurrent threads. As such, they
are not expressive enough to verify programs with more intricate
fork/join behaviors such as the multi-join pattern where threads
are shared and joined in multiple threads. Existing works could
encode the multi-join pattern by using synchronization primitives
such as channels or locks. However, the encoding requires addi-
tional support for the primitives and could complicate reasoning
(i.e. we have to reason about channels or locks instead of just fo-
cusing on threads). Our approach is more elegant and natural. In-
spired by the key notation of resource in separation logic [1, 21],
we propose to model threads as resource, thus allow ownerships
of threads to be flexibly split and distributed among multiple join-
ers. This enables verification of the multi-join pattern. In addition,
unlike ours, none of related works that we are aware of support
explicit reasoning about thread liveness. To the best of our knowl-
edge, only Haack and Hurlin [13] can reason about some multi-join
scenarios. In their approach, a thread token can be associated with
a fraction and this allows multiple joiners to join with the same

joinee in order to read-share the joinee’s resource. However, this
simple multiplicative treatment of thread tokens is not expressive
enough as it is unable to verify programs that require the joiners to
write-share the resource of the joinee (e.g. the program in Fig 1).
In order to cater to a more flexible treatment of joinees and their
resource, modeling threads as resource is essential.

The concept of higher-orderness, where a heap node carries
other heap nodes, has been proposed in the literature. Typical ex-
amples are lock nodes that carry the locks’ resource invariants
[12, 14, 15]. However, thread nodes and lock nodes are fundamen-
tally different. First, locks and threads are used differently. While
the resource inside a lock node can be repeatedly acquired/released,
the resource inside a thread node can be obtained only once when
the thread is joined. Second, unlike the resource in a lock node
which is exclusively acquired by a single thread, the resource in a
thread node can be split and shared among multiple joiners. Our
“threads as resource” also shares some similarities with Concur-
rent Abstract Predicates (CAP) [7, 8, 24]. The basic idea behind
CAP is to provide an abstraction of possible interferences from
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concurrently running threads, by partitioning the state into regions
with protocols governing how the state in each region is allowed
to evolve. Ours is simpler; a thread node is an abstraction of a
thread and can be considered as a placeholder for the resource that
it carries. The placeholder is created when forking, split and shared
across procedure boundaries, and destroyed when joining. Hence,
our approach enables reasoning about first-class threads without re-
sorting to any additional protocols.

8. Conclusion

We proposed to model first-class threads as resource to enable ex-
pressive treatment of threads’ ownerships. Our approach allows re-
sources of threads to be flexibly split, combined, and transferred
across procedure boundaries. This enables verification of multi-
join pattern, where multiple joiners can share and join the same
joinee in order to manipulate (read or write) the resource of the
joinee after join. In addition, we demonstrated how threads as re-
source is combined with inductive predicates to capture the thread-
pool idiom. Using a special dead predicate, we showed that thread
liveness can be precisely tracked. We have implemented our ap-
proach in a tool, called THREADHIP, to verify partial correctness
and data-race freedom of concurrent programs with non-lexically-
scoped fork/join, first-class threads, and multi-join. Our experiment
showed that THREADHIP is more expressive than PARAHIP while
achieving comparable verification time.

As future work, we plan to exploit current advances in resource
synthesis (such as [3, 4]) to synthesize “threads as resource” speci-
fication automatically.
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