Compactly Representing Parallel Program Executions

Ankit Goel

Abhik Roychoudhury

Tulika Mitra

School of Computing
National University of Singapore
Republic of Singapore 117543
[ankitgoe,abhik,tulika]@comp.nus.edu.sg

ABSTRACT

Collecting a program’s execution profile is important for
many reasons: code optimization, memory layout, program
debugging and program comprehension. Path based execu-
tion profiles are more detailed than count based execution
profiles, since they present the order of execution of the var-
ious blocks in a program: modules, procedures, basic blocks
etc. Recently, online string compression techniques have
been employed for collecting compact representations of se-
quential program executions. In this paper, we show how a
similar approach can be taken for shared memory parallel
programs. Our compaction scheme yields one to two orders
of magnitude compression compared to the uncompressed
parallel program trace on some of the SPLASH benchmarks.
Our compressed execution traces contain detailed informa-
tion about synchronization and control/data flow which can
be exploited for post-mortem analysis. In particular, infor-
mation in our compact execution traces are useful for accu-
rate data race detection (detecting unsynchronized shared
variable accesses that occurred in the execution).

Categories and Subject Descriptors

D.1.3 [Programming Techniques|: Concurrent Program-
ming— Parallel Programming

General Terms

Algorithms, Measurement

Keywords

Path profiling, Program path compression, Dynamic pro-
gram analysis.

1. INTRODUCTION

Profiling a program and analyzing program profiles have
traditionally been an important area of research. Profiles are
useful for guiding code transformations, code layout, data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

layout and many other purposes. Indeed the performance
of selected benchmark programs in architectural simulations
is often used in developing novel processor and memory ar-
chitectures. Traditionally the program profiles have been
aggregate in nature, denoting the total count of basic block
executions, cache misses etc. Path profiles of programs are
considered more useful simply because they capture more
information: the entire execution trace of a program for a
particular input. However, path profiles are also more ex-
pensive to collect and store. Recently, Larus developed the
notion of a Whole Program Path (WPP) [11] which cap-
tures the entire control flow trace of a program’s execution.
The storage overhead for this trace is reduced drastically by
employing on-line string compression techniques [14]. Sub-
sequently, [4] has studied the compression of dynamic data
access pattern of a program. [24] studies the break-up of
a program’s control flow trace into per-function sub-traces,
and stores these sub-traces compactly.

A natural question that arises from this line of work is
whether such path profiling techniques extend to shared
memory parallel programs. Developing execution profiles
for parallel programs (containing the synchronization and
control/data flow in an execution trace) is also crucial for
various reasons. It allows the programmer to study the
shared variable data access patterns across threads. This
may be important for deciding on the memory layout in each
thread, detection of useless cache misses due to inter-thread
artifactual communication etc. It may also help in choos-
ing a multiprocessor architecture for running a program. In
particular, the choice of the granularity of coherence and
the cache coherence protocol are important for multiproces-
sor memory system performance. Intelligent choices can be
made for both (i.e., the coherence granularity and the co-
herence protocol) by studying programs’ execution traces.

Furthermore, the complete execution trace of a parallel
program can reveal bugs which are unique to shared mem-
ory programs: the presence of data races. A data race is
an unsynchronized shared variable access in a program. A
program with data races can produce different results de-
pending on the relative speed of the processors and is often
considered as unintended by the programmer. By inspect-
ing the synchronizations and data/control flow information
in an execution trace, it is possible to accurately identify
data races manifested in the trace.

In this paper, we develop techniques to extract compressed

republish, to post on servers or to redistribute to lists, requires prior specific execution profiles for shared memory parallel programs. For

permission and/or a fee.
PPoPP’03,June 11-13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-588-2/03/000655.00.

multithreaded programs running on a single processor, one
can easily adapt the notion of Whole Program Paths (WPP)

by changing the alphabet of the string denoting the exe-
cution path. The string will then store information about
entry and exit from a thread, which appear at the points
where a new thread is scheduled. However, for parallel pro-
grams, we need to separately maintain the execution trace
on each processor. Across processors we need to maintain in-
formation about synchronization (which is achieved through
primitives such as locks, unlocks and barriers). In partic-
ular, we can represent the control flow trace in each thread
as a WPP, and the shared memory locations accessed by
each load/store instruction can also be compressed on-the-
fly. The resultant representation achieves a high degree of
compression since the memory addresses accessed by a par-
ticular instruction often form a progression (e.g., if the in-
struction sweeps the elements of a unidimensional or mul-
tidimensional array). The unified representation of control
and data flow in a trace is useful for guiding software pre-
fetching or finding conflicting instruction pairs in different
threads which cause data races.

Contributions of this PaperThe contributions of this pa-
per can be summarized as follows.

e We study the feasibility of collecting and storing com-
pressed execution profiles for shared memory parallel
programs. To the best of our knowledge, little work
has been done on collecting compact representations
of parallel program executions.

e We study a unified representation for storing the con-
trol and data flow in an execution trace (see CDR rep-
resentation in Section 2). This can be useful for stor-
ing sequential program traces as well. We show that
our unified representation achieves one to two orders
of magnitude compression on some of the SPLASH
benchmarks. The compression technique outperforms
general purpose compression schemes such as gzip [25].

e The execution trace of a parallel program can be ana-
lyzed post-mortem to find data races. Unfortunately,
some of these data races may be artifacts. To de-
tect data races which are artifacts, we need detailed
data/control flow information in the execution traces,
so that we can compute the data and control depen-
dencies. We can afford to capture much of this required
information in our profiles because of its compressed
nature.

Section OrganizationThe rest of this paper is organized
as follows. Section 2 presents our compressed representation
of parallel program execution profiles. Section 3 presents ex-
perimental results on compression efficiency and compres-
sion time using the SPLASH benchmarks. Section 4 de-
scribes the application of our profiles, in particular for post-
mortem data race detection. The next section describes re-
lated work. Conclusions appear in Section 6.

2. COMPRESSED REPRESENTATIONS

In this section, we present compressed representations
of parallel program executions. Our starting point is the
Whole Program Path (WPP) representation developed by
Larus [11]. As mentioned before, WPP is a compressed rep-
resentation for sequential program executions. It is based

on the SEQUITUR algorithm [14] which represents a finite
string o (the execution itself) as a context free grammar
whose language is the singleton set {c}. The execution
path of a sequential program can be viewed as a string (over
an alphabet of basic block executions, say) from which the
grammar is synthesized on-the-fly. The time complexity of
the synthesis algorithm is linear in the length of the input
string. The grammar generated is represented as a Directed
Acyclic Graph, called a Whole Program Path (WPP).

SEQUITUR OverviewThe SEQUITUR algorithm reads
symbols one-by-one from the input string and restructures
the rules of the grammar to maintain the following invari-
ants:

e 1o pair of adjacent symbols appear more than once in
the grammar

e cvery rule (except the rule defining the start symbol)
is used more than once.

To intuitively understand the algorithm, we briefly describe
how it works on the string abcabc. After reading the first four
symbols, the grammar consists of the single production rule
S — abca (where S is the start symbol). On reading the fifth
symbol, it becomes S — abcab. Since the adjacent symbols
ab appear twice in this rule (violating the first invariant),
SEQUITUR introduces a non-terminal to get

S — AcA A —ab

Note that here the rule defining non-terminal A is used
twice. Finally, on reading the last symbol of the string
abcabc the above grammar becomes

S — AcAc A — ab

This grammar needs to be restructured since the symbols Ac
appear twice. SEQUITUR introduces another non-terminal
to solve the problem

S — BB
B — Ac
A — ab

However, now the rule defining non-terminal A is used only
once. So, this rule is eliminated to produce the final result.
Note that the grammar accepts only the string abcabe.

S — BB B — abc

Synchronization Primitiveswe seek to develop similar
compressed representations for parallel program executions.
Consider a parallel program P || ... || P, where each thread
P; is running on a different processor. We assume a shared
memory model where the different threads communicate via
shared variables, and synchronize using lock, unlock and
barrier operations. The lock and unlock operations have a
well-understood semantics. They are of the form (lock 1;)
and (unlock 1;) where [; is a lock variable. In general,
there can be several lock variables used in a single paral-
lel program. A barrier operation is of the form (barrier bj)
where b; is the barrier variable. Any thread P; blocks at
(barrier b;) until all other threads reach their respective
(barrier b;) statements. Thus a barrier operation serves
as a handshake among all the n threads. Lock, unlock and

barrier form a popular set of synchronization primitives used
commonly by programmers.

Any representation of a parallel program execution needs
to consider: (a) control flow in each thread (b) shared data
access pattern in threads (c) synchronization pattern across
threads. Before we describe our compact representations,
we first establish the relations among control flow, shared
data access and synchronization pattern across threads.

2.1 Synchronization Pattern

The synchronization pattern across threads for a parallel
program execution can be visualized as a Message Sequence
Chart [3, 23]. A Message Sequence Chart captures a sce-
nario in system execution by depicting inter-process inter-
actions. Each process is represented as a vertical line. Each
vertical line is annotated with a sequence of events which
are assumed to be in total order (i.e., the event occurring at
the top of process p “happens-before” the event occurring at
the bottom of process p’s vertical line). The possible events
for any process p are (a) plg,m: p sends a message m to
process q, (b) p?q, m : p receives a message m from process
q, and (c) p,a: p executes internal computation a. The di-
agram depicts a partial order among all the events which is
obtained from the transitive closure of the following order-
ing relations: (1) the send of any message “happens-before”
its corresponding receive, and (2) the events in any process
p are in total order.

To represent the execution of a parallel program Py || ... ||
P, we depict each P; as a vertical line. Furthermore, we
represent an additional process M denoting a single shared
memory containing all the lock variables (in general there
can be many locks in a realistic program, each guarding dif-
ferent structures/objects). Each unlock operation in thread
P; over lock variable [is shown as a send event P;!M,[. Sim-
ilarly, a lock operation in thread P; over lock variable [is a
receive event P;?M, 1.} In other words, send/receive events
are used to depict hand-over of locks. Barriers are han-
dled using send-receive edges in a similar fashion. All other
computations, including read/write of shared variables are
considered as internal events.

lock

unlock
lock

unlock lock

unlock|

lock

Thread 1 Thread 2 Thread 3 Memory

Figure 1: Synchronization Pattern

For example consider the program execution shown in Fig-
ure 1 where all the lock and unlock operations are on a single

'To distinguish various acquires/releases of the same lock
variable as distinct messages, we can annotate the message
with an id, i.e. PIM,1%*® and P;?M,1* denote the k-th
release/acquire of lock variable .

lock variable. In this example, the total order of synchro-
nization operations is:

(lock, 1), (unlock, 1), (lock, 2), (unlock, 2),
(lock, 3), (unlock, 3), (lock, 1), . ..

In our representation, the only communication across dif-
ferent threads that is captured is via the synchronization
primitives. Communication via shared variable accesses is
not explicitly represented, unlike the “interaction diagrams”
of [2]. In other words, shared variable data dependences
(a load operations reads the value of which store opera-
tion) are not explicitly represented. These dependences can
be inferred from our representation if the parallel program
concerned is “properly synchronized” (all shared variable
accesses are protected by locks).

Given the above depiction of a parallel program execu-
tion, we can develop some simple observations on how the
execution can be represented in a compact manner.

A. All the synchronization events form a total order and
can be stored as a sequence Ssynch-

B. The control flow/shared data access in each thread
forms a total order and can be individually compressed.

C. Any synchronization event occurring in a thread P;
appears in the compressed representation of P; as well
as in Ssynch. Thus, these two occurrences (of the same
event) must be associated.

Observation (A) follows from the fact that we assume a sin-
gle shared memory containing all synchronization variables.
We assume that accesses to the synchronization variables
are serialized. Observation (B) suggests the use of com-
pression algorithms like SEQUITUR (which have proven ef-
fective for compressing sequential program executions) on
control flow/shared data access of each thread. Observation
(C) indicates that there should be some association between
Ssynen and the compressed control flow/shared data access
per thread. We now explain how this is achieved using syn-
chronization counts.

2.2 Synchronization Counts

To represent the execution trace of a parallel program, it
is not sufficient to only represent the control/data flow in
each thread and the global synchronization pattern. This
does not allow us to retrieve the synchronization segments
(the execution between a lock and its corresponding unlock)
in a thread P; without decompressing or naively traversing
the trace of P;. To solve this problem, we need to annotate
the compacted traces of the individual threads.

Note that a WPP is a hierarchical representation of a
string, which can be reconstructed by a depth-first traversal
of the WPP (where the children of a node are chosen left-
to-right). Given the WPP of some string o and an edge e
in this WPP, consider the directed acyclic graph rooted at
the source node of e. Now consider the depth-first traversal
of this directed acyclic graph until e is encountered. Let the
string of terminal symbols constructed via this depth-first
traversal be called o.. We now annotate the compacted
trace of thread P; as follows. Each edge e in P;’s Whole
Program Path is annotated with a synchronization count
synch_cnt(e). It denotes the number of synchronization op-
erations executed by P; in the execution sequence oe.

Data : WPP of Thread P;; Order of Synchronization
Operation m.

Result : Root to leaf path Path,, of the mth synchro-
nization operation by P; in its WPP.

X:= root of WPP; Path,, := null; val := m;
while X # a leaf node do
let e1,...,er be the outgoing edges of X;
find smallest ¢ s.t. synch_cnt(eiy1) > val;
if no such i exists then

| seti:=k
end
append e; to Pathm;
set val := val — synch_cnt(e;);
set X := destination node of e;;

end
return Pathm,;

Algorithm 1: Identifying the root-to-leaf path of a particular
synchronization operation

Figure 2 illustrates this representation with an example.
Only the control flow in each thread is shown. Thus, the
alphabet of the WPP of P; is 3; = set of basic blocks in
thread P;. The numbers 1...6 in the execution trace rep-
resent the basic blocks in the two threads (all of the code is
not shown). Basic blocks 3,4 in Thread 1 and basic blocks
1,2 in Thread 2 contain synchronization operations. The
count annotations on the edges of the WPP represent the
synch_cnt. To illustrate these annotations consider the bold
edge S — A in Figure 2; let this edge be e. Then, by the
preceding definition o is the string (1,2, 3,4, 5). Since there
are two synchronization operations in this sequence, there-
fore synch_cnt(e) = 2 (as shown in the figure). On the
other hand, consider the bold edge A — 4 in Figure 2; let
this edge be e¢’. Then, o is the sequence (3), and hence
synch_cnt(e') = 1.

Given this annotation, it is easy to associate the synchro-
nization events with the control/data flow trace. Suppose,
we are interested to find out the execution trace between
a lock operation and the corresponding unlock operation of
a thread P;. Let the lock and unlock be the m** and n'"
(n > m) synchronization operations executed by thread P;
in Ssyncn respectively. We can now use the synch_cnt to
identify the root to leaf paths Path., and Path,, for the two
synchronization operations in the WPP of thread P; (refer
Algorithm 1). Let X be the lowest common non-terminal
node of the two paths Path,, and Path,. Then the sub-
tree generated by X gives the execution trace of P; between
the lock and the corresponding unlock operation. Thus,
the synchronization counts capture the association between
synchronization events and control flow/shared data access,
which allows random navigation of the execution trace.

2.3 Control and/or Data Flow

To complete the description of our compact representa-
tion, we now need to fix an alphabet ;. The control/data
flow in thread P; is defined as a string over X;. This string
can be stored in a compacted format using a SEQUITUR
grammar representation. We consider three different com-
pact representations.

e Control only representation (COR) Representing only
control flow in each thread.

e Data only representation (DOR) Representing shared
data accesses in each thread.

e Control + Data representation (CDR) Representing
combined control flow and shared data accesses in each
thread.

We now elaborate on each of these representations.

COR Representationrhe COR representation of an exe-
cution of parallel program P || ... || P, consists of:

WPP The control flow in each thread P; is represented as
a Whole Program Path (WPP) [11] over the alphabet
>.; = the set of basic blocks in thread P;.

Ssynech Synchronization operations are stored as a sequence
of entries of the form: (threadld,lock,lockVar) or
(threadId,unlock, lockV ar) or (barrier, barrierVar).

synch_cnt Each edge s — t in P;’s WPP is annotated with
a synchronization count synch_cnit(s — t).

Note that for barriers in Ssynch, we do not maintain the
thread identifier. A barrier operation is placed in the total
order Ssynch when the last thread reaches that barrier. The
above scheme can be extended to threads with fork / join
operations by augmenting thread P;’s WPP with a unique
start; and end; node. The effect of fork and join can then
be represented by storing incoming edges into start; and
outgoing edges from end; respectively.

DOR Representatiorwe can represent the data accesses
of a parallel program execution as follows. As before, let the
parallel program be Pi || ... || Pn.

e The sequence of data accesses in each thread P; is
compressed using SEQUITUR. The alphabet of the
string denoting the execution is ¥;, defined as follows.
¥, consists of synchronization operations and shared
memory operations in thread P;. The synchronization
operations consist of lock, unlock and barrier entries
as shown in COR Representation. The shared memory
operations are of the form (load,loc) or (store,loc)
where loc is a shared memory location. Note that a
single load/store instruction in a thread may access
different locations at different points of time in an ex-
ecution (e.g. if the instruction involves array access).
This will lead to different letters in our alphabet.

e Each edge s — t in the WPP of P; is annotated with
a synchronization count synch_cnt(s — t) as in COR
representation.

e The synchronization pattern across threads is stored
separately as a total order of synchronization opera-
tions as in COR representation.

CDR Representatiorkinally, we consider another repre-
sentation for parallel program executions, where the shared
data access pattern for each load/store instruction is consid-
ered. This can be important for software pre-fetching. If we
know the data access pattern for a particular instruction, the
compiler can add prefetch instructions before them (such as
adding the instruction prefetch A[i+1] before load A[il

Execution Trace

1 1 (lock y)
2 2 (unlock y)
3 (lock x) 3
4 (unlock x) 4
5 3
3 (lock x) 4
4 (unlock x) 3
6 1 (lock y)
2 (unlock y)
Thread 1 Thread 2 Thread 1

Ssynch

<2, lock, y>
<2, unlock, y>
<1, lock, x>
<1, unlock, x>
<1, lock, x>
<1, unlock, x>
<2, lock, y>
<2, unlock, y>

Figure 2: Synchronization Count Annotations

if A is an array which is accessed sequentially). Knowing
the data access pattern for an instruction [is also useful for
finding instructions in other threads which have a potential
data race with I.

The shared data access and control flow in a parallel pro-
gram execution is represented as follows.

WPP The control flow in each thread P; is stored as a
Whole Program Path as in COR Representation. The
set of terminals of P;’s WPP is the set of basic blocks
of P; and is called ;.

Synchronization The synchronization pattern across the
various threads is stored as in COR Representation.

Data access per instruction For each terminal a € ¥;
(representing a straight-line code fragment in thread
P;), let Z, be the shared data load/store instructions
in a. Then, for each I € Z,, we store the sequence of
memory locations accessed by I as a WPP.

2.4 Achieving Further Compaction

The CDR representation serves as a unified description
of control flow and shared variable accesses. The memory
locations accessed by a load/store instruction I can be sim-
ply compacted into a WPP using the SEQUITUR grammar.
However, the regularity of the memory locations accessed by
an instruction in a program can be exploited to achieve fur-
ther compaction. We first describe how this is achieved and
then discuss potential uses.

Our compression of the sequence of memory locations ac-
cessed by a shared data load/store instruction is shown in a
phase-by-phase manner. However, the effect of all the three
phases can be achieved by an online algorithm.

1. Diff: The sequence of memory locations is converted
into a difference representation. Thus, the sequence
X1, X2, ..., Xk is converted to the sequence

X1, X0 — X1, X3 —Xo,..., X — X1

. RLE: The difference representation of Step 1 is com-
pacted using run-length encoding (RLE), that is, by
recording contiguous repeated occurrences of the same
difference. If the sequence of memory locations ac-
cessed is 10, 14, 18,22,42; then at the end of step 1 we
have 10,4,4,4,20 and at the end of step 2 we have

10',43,20". This means that 10 occurs once, followed
by 4 occurring thrice, and so on.

Thread 1 Thread 2

Diff o RLE 0 SEQUITUR of data access
[] Basic block without load/store instruction
[Basic block with load/storeinstruction

Figure 3: CDR representation

3. SEQ: The SEQUITUR compression algorithm [14] is
applied over the run-length encoded string obtained in
step 2.

To achieve the effects of the above steps in an online algo-
rithm we need to feed symbols into SEQUITUR, only when
we reach the end of a run of identical differences. For the
string 10, 14, 18, 22, 42 we first send 10! to SEQUITUR. Sub-
sequently we encounter a difference of 4; however we keep on
consuming symbols until we reach 42 (when the difference
is no longer 4).

Figure 3 depicts the CDR representation. Let us now
explain the rationale for our representation. Step 1 (Diff)
is motivated by the fact that an instruction often involves
accesses to successive elements of an array (whose memory
addresses are in Arithmetic Progression). Step 2 (RLE) is
needed for the following compression inefficiency of the SE-
QUITUR algorithm. Let us consider a string =, x, ...,z (the
same symbol z repeated 2% times, say). SEQUITUR intro-
duces k production rules of the form

S — A1A1 Al — A2A2 Akfl — I

In step 2 (RLE), we will simply represent it as a single

symbol 22" Finally, employing the SEQUITUR algorithm
over such composite symbols in step 3 (SEQ) allows us to
compactly represent (a) repeated accesses to the same por-
tion of an array, or (b) repeated accesses to different portions
(which are of the same length) of a multidimensional array.
This is often the case, e.g. if the instruction is of the form
store A[j][k] occurring within a nested loop as shown in
the following code fragment. We assume that the dimen-

Benchmark | Source Description Input size
FFT SPLASH-2 | 1-D fast Fourier transform 2'% complex data points
LU SPLASH-2 | Parallel dense blocked LU factorization 256 x 256 matrix
Mp3d SPLASH Particle flow in simulated wind tunnel 50 K particles
Water SPLASH Molecular dynamics simulator 64 molecules
SOR Treadmarks | Red-black successive over-relaxation on a grid | 100 x 100 grid

Table 1: Description of benchmark applications.

sions of matrix A are 1..X,1..Y where M1 > 1, N1 > 1, M2 < X
and N2 < Y. Thus, the code sweeps through a sub-grid of
the array.

for (j = M1; j <= M2; j++) {
for (k = N1; k <= N2; k++) {
Alj1[x] = ...

In the above code fragment, the shared memory accesses

(A[M1][N1] ... A[M1][N2]),
(A[M1+1][N1]... A[M1 + 1][N2]),

(A[M2][N1],... A[M2][N2])
are mapped to (M2 — M1+ 1) occurrences of d¥2~N! where
d is the size of a cell in the matrix A. Note that here dV2~N!
will be treated as a terminal symbol of the grammar. The oc-
currences of the composite terminal d¥2~N?! are then further
compressed by the SEQUITUR algorithm. This allows us to
compactly represent multidimensional array accesses which
is very common in many scientific computing benchmarks.
In particular, if a matrix is operated by several threads in
parallel and each thread is allocated a rectangular region
of the matrix, then the above situation is likely to happen.
This is because all the memory addresses accessed by an in-
struction load A[j][k] or store A[j][k] in a thread are
not contiguously placed in the memory layout of the matrix.
Instead they correspond to runs of contiguous positions in
the matrix and these runs are typically of the same length.

3. COMPRESSION EFFICIENCY

The main goals of this work are (1) compact represen-
tation of the execution trace of a parallel program and (2)
using this representation in profile-driven debugging and op-
timization. In this section, we quantitatively evaluate the
compression efficiency of our representations. The next sec-
tion describes how the representations can be used to facil-
itate profile-driven debugging.

3.1 Benchmarks & Methodology

We used five different shared-memory parallel applications
for our study. The description of the applications is given
in Table 1. Out of these, FFT and LU are from SPLASH-
2 benchmark applications suite [22], Mp3d and Water are
from SPLASH benchmark suite [21], and SOR is from Tread-
Marks benchmark applications [9]. The inputs used to gen-
erate the execution traces are also shown in Table 1.

To collect execution traces, we ran each of these appli-
cations on RSIM-1.0 simulator [8]. RSIM is an execution-
driven simulator that models shared-memory multiproces-

Pgm. | Proc. | Shared Mem. | Barriers | Locks
Size (bytes)

2 3,220,200 14 0
FFT | 4 3,228,904 14 0

8 3,295,528 14 0

2 526,220 4 0
LU 4 526,660 4 0

8 526,660 4 0

2 2,378,040 13 1,103
Mp3d | 4 2,379,064 13 1,104

8 2,381,240 13 1,113

2 50,032 6 2,090
Water | 4 50,032 6 2,100

8 50,032 6 2,120

2 53,256 5 0
SOR | 4 53,384 5 0

8 53,640 5 0

Table 2: Characteristics of benchmark applications.

sors with aggressive state-of-the-art ILP processors, aggres-
sive memory system, and multiprocessor cache coherence
protocol. As we are interested only in the execution se-
quence, we configured RSIM processors with simple in-order
execution units. We used versions of the applications that
have been ported for RSIM. All the applications were com-
piled and linked for SUN SPARC V9.

Identification of shared memory accesses requires some
clarification. In RSIM, shared memory is allocated dynam-
ically starting from a “base address”. All the load/stores
accessing addresses above the base address will be marked
as shared memory references. For the control flow, our
tool takes in the binary executable and identifies the ba-
sic blocks. During execution, the instruction addresses are
matched against basic block boundaries and the basic block
number is sent to the compression algorithm.

To evaluate the scalability of our representations, we ran
each benchmark application on 2, 4 and 8 processors. The
characteristics of the benchmark applications for the differ-
ent number of processors are given in Table 2. The col-
umn Shared Mem. Size represents the maximum amount of
shared memory allocated for the applications. As can be
seen from Table 2, the maximum amount of shared memory
allocated hardly increases with increasing number of proces-
sors if the input size is kept constant. The columns Barriers
and Locks represent the number of dynamic barriers and
lock/unlock pairs executed by all the processors. LU, FFT
and SOR use only barriers for synchronization whereas Mp3d
and Water use both barriers and locks for synchronization.
Again, note that the number of lock/unlock pairs executed
remains almost the same as we increase the number of pro-
cessors while keeping the input constant. The number of

barriers executed of course remains the same irrespective of
the number of processors.

3.2 COR Representation Efficiency

We first present the compression efficiency of COR rep-
resentation. Recall that the COR representation only cap-
tures the control flow and the synchronization operations.
Table 3 shows the compression efficiency for the different
benchmarks with 2, 4 and 8 processors. The column Orig.
Trace represents the cost of storing the uncompressed basic
block level execution trace, whereas the column WPP rep-
resents the storage requirement after compressing the Orig.
Trace using SEQUITUR. For parallel programs, in addition
to the WPPs for each processor, we also need to store the
order of the synchronization operations. The column Ssynch
shows the cost of storing the total order of synchronization
operations across threads. As Mp3d and Water have lot of
synchronizations, they require more space for Ssyncn. The
first % column represents the space requirement of WPP +
Ssynch as a percentage of Orig. Trace. For larger bench-
marks, it is less than 1% and even for smaller benchmarks,
it is always under 9%. Notice that with increasing number of
processors, the size of Orig. Trace remains almost the same,
but the WPP size increases by a small amount. It shows
that temporal and spatial locality decrease per processor as
we employ more processors. However, the compression ratio
does not change significantly.

Finally, we also include the cost of annotating the WPP
edges with synch_cnt to facilitate random access into the
execution trace given a synchronization point. The last
column presents the space requirement of WPP + Ssynch
+ synch_cnt as a percentage of Orig. Trace. As can be
seen from the table, including the annotations on the edges
has very little space overhead, but makes the representation
more flexible for navigation.

3.3 DOR Representation Efficiency

Table 4 shows the compression efficiency of the DOR rep-
resentation for the different benchmarks with 2, 4 and 8
processors. The column Orig. Trace represents the un-
compressed shared memory access trace of all the proces-
sors. As with control flow, the trace size increases very lit-
tle with more processors. The column S represents the
space requirement after Orig. Trace is compressed using
SEQUITUR. Again Ssynch represents the cost for storing
total order of the synchronization operations and the next
percentage column indicates SQ + Ssynch as a percentage
of Orig. Trace. Notice that compared to COR represen-
tation where the compression ratio was less than 9% for
all the benchmarks, it is at least 35% for DOR represen-
tation and can be as bad as 79%. These results indicate
that there is very little locality of access to be exploited
by SEQUITUR in global shared memory access patterns.
As with COR representation, we annotated the edges with
synch_cnt. The final column of SQ + Ssynch + synch_cnt
as percentage of Orig. Trace shows that the efficiency dete-
riorates to the point of making the compressed version take
more space than uncompressed version for Water. The CDR
representation alleviates this problem.

3.4 CDR Representation Efficiency

In this subsection, we study the efficiency of CDR repre-
sentation which captures combined data and control flow.

200 | M 2 Processors
[e M 4 Processors
" L 8 Processors
o
4
x 150
o
5 |
It
W 100
g
D L
5 50]
£
8 I

0 .
FFT LU Mp3d Water SOR

Figure 4: Advantage of CDR Representation (Both
SEQ and Diff o RLE o SEQ were performed on the
data access sequences of individual load/store in-
structions)

The column Orig. Trace represents the total storage cost
for the uncompressed control flow trace in terms of basic
blocks and the uncompressed shared memory access trace.
The Compressed Trace column shows the compressed size
of these two components and their total. Recall that the
cost to store control flow and synchronization is identical to
COR representation. The only additional cost is to store
the shared memory access pattern per load/store instruc-
tion after compression with our three phase Diff o RLE
o SE(Q scheme. Notice that compared to Table 4, which
compresses the complete shared memory access trace per
processor using SEQUITUR, this separate compression per
load/store instruction achieves significantly better compres-
sion ratio (compare column S@ in Table 4 with the column
Compressed Trace — Data in Table 5). The only exception
is the Mp3d benchmark where no significant space savings is
obtained by compressing the memory access pattern of each
load/store instruction separately. Except for Mp3d, other
benchmarks achieve about 10-200 times more compression
with Diff o RLE o SEQ. Mp3d simulates particle flow which
performs completely random data access and hence cannot
be captured easily using our compression technique. The
compression efficiency for control and data together in Ta-
ble 5 varies from 0.25%-9.81% — a significant improvement
over DOR representation.

To show that the main advantage of our scheme comes
from the Diff o RLE pre-processing step, Figure 4 compares
the compression efficiency of pure SEQUITUR with Diff o
RLE o SEQ (refer Section 2.4 to see the transformations in
Diff, RLE and SEQ steps). In both cases, we apply com-
pression separately on the shared memory access trace of
each individual load/store instruction. Diff o RLE o SEQ
achieves as high as 211 times size difference compared to
SEQUITUR for FFT. The improvement is impressive for SOR
and LU as well. For Water, the size difference is 3-5 times,
whereas for Mp3d the difference is 2 times. Notice that the
size difference decreases with increasing number of proces-
sors indicating the decrease in regularity of access pattern
with increasing processor count.

Table 3: Compression Efficiency for COR Representation. All the sizes are

Benchmark | Proc. | Orig. Trace | WPP Ssynch. | % synch_cnt | %

2 66.06 M 406.32 K | 28 0.62 | 84.89 K 0.74

FFT 4 66.16 M 42458 K | 28 0.64 | 88.15 K 0.78

8 66.37 M 453.70 K | 28 0.68 | 93.44 K 0.82

2 54.73 M 229.35 K | 8 0.42 | 47.75 K 0.51

LU 4 55.32 M 244.81 K | 8 0.44 | 50.54 K 0.53

8 56.50 M 281.65 K | 8 0.50 | 57.24 K 0.60

2 67.42 M 231.77T K | 15.49 K | 0.37 | 92.86 K 0.50

Mp3d 4 67.42 M 259.79 K | 15.51 K | 0.41 | 103.16 K 0.56

8 67.43 M 295.36 K | 15.64 K | 0.46 | 116.25 K 0.63

2 5M 81.01 K 29.77T K | 2.22 | 30.15 K 2.82

Water 4 5.01 M 97.03 K 2991 K | 2.53 | 35.87T K 3.25

8 5.02 M 11898 K | 30.19 K | 2.97 | 43.77T K 3.85

2 90.09 K 2.69 K 10 3.00 | 474 3.50

SOR 4 91.01 K 4.79 K 10 5.30 | 837 6.20
8 92.80 K 7.86 K 10 8.56 | 1385 10.04

Benchmark | Proc. | Orig. Trace | SQ Ssynch. | % synch_cnt | %
2 77.68 M 27.34 M 28 35.20 | 5.19 M 41.88
FFT 4 77.69 M 27.74 M 28 35.70 | 5.19 M 42.39
8 77.72 M 27.97 M 28 35.99 | 5.20 M 42.68
2 89.42 M 56.10 M 8 62.74 | 12.24 M 76.43
LU 4 89.42 M 56.20 M 8 62.85 | 12.24 M 76.54
8 89.42 M 56.24 M 8 62.89 | 12.24 M 76.58
2 19.84 M 871 M 15.49 K | 43.98 | 2.88 M 58.50
Mp3d 4 19.83 M 9.45 M 1551 K | 47.74 | 2.87T M 62.20
8 19.84 M 10.05 M 15.64 K | 50.73 | 2.87 M 65.20
2 1.15 M 833.52 K | 29.77 K | 75.07 | 324.81 K 103.31
Water 4 1.15 M 849.75 K | 29.91 K | 76.50 | 324.84 K 104.74
8 1.16 M 883.82 K | 30.19 K | 78.80 | 324.90 K 106.81
2 907.34 K 392.71 K | 10 43.28 | 76.97 K 51.77
SOR 4 908.58 K 393.83 K | 10 43.35 | 77.02 K 51.83
8 908.06 K 394.94 K | 10 43.50 | 77.12 K 52.00

Table 4: Compression Efficiency for DOR Representation. All sizes are in bytes.

in bytes.

Pgm | Proc. | Orig. Compressed Trace gzipped trace
Trace COR Data Total % Control | Data Total %
2 143.74M | 491.24K | 144.28K | 635.52K | 0.44 | 827.47K | 13.78M | 14.61M | 10.16
FFT | 4 143.85M | 512.76K | 276.21K | 788.97K | 0.55 | 3.32M 12.58M | 15.90M | 11.05
8 144.09M | 547.17K | 521.46K | 1.07TM 0.74 | 3.46M 12.34M | 15.80M | 10.97
2 144.15M | 277.10K | 83.42K | 360.52K | 0.25 | 1.88M 2.93M 4.81M 3.34
LU 4 144.74M | 295.36K | 123.36K | 418.72K | 0.29 | 3.76M 3.06M 6.81M 4.71
8 145.92M | 338.89K | 189.78K | 528.67K | 0.36 | 5.17TM 2.78M 7.95M 5.45
2 87.26M | 340.12K | 8.09M 8.43M 9.66 | 1.03M 6.20M 7.23M 8.29
Mp3d | 4 87.25M | 378.46K | 8.10M 8.48M 9.72 | 1.16M 6.11M 7.2TM 8.33
8 87.27TM | 427.25K | 8.13M 8.56 M 9.81 | 1.31M 4.47TM 5.78M 6.62
2 6.15M 140.93K | 85.55K | 226.48K | 3.68 | 292.87K | 108.75K | 401.62K | 6.50
Water | 4 6.16M 162.81K | 132.58K | 295.39K | 4.79 | 563.49K | 130.98K | 694.47K | 11.20
8 6.18M 192.94K | 190.18K | 383.12K | 6.2 | 676.056K | 171.05K | 847.10K | 13.75
2 997.46K | 3.17K 10.91K | 14.09K | 1.41 | 1.10K 71.73K | 72.83K | 7.30
SOR | 4 999.59K | 5.64K 20.15K | 25.79K | 2.58 | 1.57K 77.61K | 79.18K | 7.92
8 1M 9.25K 32.52K | 41.77TK | 4.18 | 2.69K 87.24K | 89.93K | 9.00

Table 5: Compression Efficiency for CDR Representation. All the sizes are in bytes.

- M 2 Processors
o B 4 Processors
] 8 Processors
o
M 20
o
T
o
Z‘é
o
7
@
£ 10
=
<
2
s
£
<]
) I
0o FFT LU Mp3d Water SOR

Figure 5: Compression Timing Overhead for CDR
representation. (Both SEQ and Diff o RLE o SEQ
were performed on the data access sequences of in-
dividual load/store instructions)

3.5 Timing Overheads

The pre-processing stages Diff o RLE add extra overhead
for Water, FFT, and Mp3d as shown in Figure 5. For SOR and
LU our scheme is actually faster than SEQUITUR as the pre-
processing brings out more locality in the string. For all the
benchmarks, the absolute time taken for compression using
our scheme varies from 1 second to at most 16 minutes. The
measurements were taken on a Pentium III 1 GHz machine
with 906 MB of memory.

Note that our experiments were conducted using the RSIM
simulator, not a real multiprocessor. One possible concern
is that in a real multiprocessor the tracing overheads can
distort the program behavior, thereby producing a different
execution. A solution to this problem is to trace minimal
number of operations in a parallel program execution so as
to ensure deterministic replay ([12] shows that less than 2%
of the shared memory operations usually need to be traced).
Then, our compressed path profile can be collected during
the deterministic replay.

3.6 Comparison with Gzip

Table 4 shows the comparison of our CDR compression
scheme against LZ77 [25], a classic data compression al-
gorithm proposed by Ziv and Lempel. We use standard
gzip utility based on LZ77 coding to compress the control
flow and the shared memory access pattern of individual
load/store instructions. The compression efficiency of con-
trol flow with SEQUITUR is significantly better than gzip
except for SOR. For the shared memory access pattern per
load/store instruction, our three phase Diff o RLE o SEQ
scheme performs better than gzip in all benchmarks except
Mp3d. As mentioned before, Mp3d’s random access pattern
was not amenable to our scheme. Overall, the compres-
sion efficiency of gzip for control and data together varies
from 3.34%-13.75% — much worse than CDR representa-
tion. Moreover, gzip will not allow random access of the
compressed control and data flow representation to identify
data races as discussed in the next section.

4. APPLICATIONS

So far we have studied compressed representations of ex-
ecutions of shared memory parallel programs. One point
needs to be noted in this context. For describing the ex-
ecution in each thread, we have considered three alternate
representations in Section 2 which store different informa-
tion. COR representation describes control flow by stor-
ing the basic blocks executed, while DOR representation
stores the sequence of shared memory data accesses exe-
cuted in a thread. The CDR representation explicitly stores
the sequence of shared memory data accesses per instruction
(rather the overall sequence of shared memory data accesses
in a thread). If it is not possible to store all of the three rep-
resentations, we believe that it is crucial to store the control
flow as well as shared memory data accesses per thread.
Hence, we recommend that a parallel program execution be
stored using either (a) COR and DOR representations, or
(b) CDR representation.

4.1 Apparent Data Race Detection

We now discuss how our representation of a parallel pro-
gram execution can be used to perform accurate data race
detection in a post-mortem fashion. The CDR representa-
tion is sufficient for these purposes.

For the convenience of the reader, we recall that an appar-
ent data race exists between two shared variable reads/writes
a and b of a parallel program if (1) a and b occur in differ-
ent threads of the program (2) a and b operate on the same
shared variable and at least one of them is a write, and (3)
they are not prevented from happening in parallel by syn-
chronization operations. There is a rich literature on data
race detection for parallel and multithreaded programs, see
[5, 7, 13, 17, 18, 20] for example.

For finding the set of all apparent data races post-mortem,
the usual technique divides the execution in each thread
into “synchronization segments”, that is, segments of code
between synchronization operations [18]. The task then is
to find out the various synchronization segments in differ-
ent threads which may happen in parallel. We can traverse
either the CDR or the DOR representation of an execution
profile to compute: (a) synchronization segments in threads,
and (b) the conflicts among these segments.

Note that apparent data race detection involves detecting
the sequence of acquires and releases (or locks and unlocks)
executed on a particular lock variable. For example, con-
sider the execution shown in Figure 6. Suppose we want to
find which segment in thread 1 is in conflict (may happen in
parallel) with the segment marked in bold in thread 2. For
this purpose, we need to compute the following in thread 1:

e last unlock in thread 1 before (lock,2), say ui.
e the lock occurring in thread 1 immediately after u;

Now, the next lock of thread 1 as mentioned above turns out
to be the second occurrence of lock in thread 1. Note that in
the Whole Program Path of thread 1, lock and unlock are
simply two terminal symbols. The individual occurrences of
lock and unlock in thread 1 are not distinguished. However,
we want to locate the segment of code between the first un-
lock and second lock in thread 1 to compute the segment
marked in bold in thread 1 (refer Figure 6). This segment
of thread 1 is in conflict with the segment marked in bold
in thread 2. We want to compute this segment in thread 1

without decompressing the WPP of thread 1. This can be
achieved by identifying the root-to-leaf path of the respec-
tive lock and unlock occurrences using Algorithm 1.

lock

unlock
lock

write X

read X unlock lock

unlock|

lock

Thread 1 Thread 2 Thread 3 Memory

Figure 6: An apparent data race

Using our compressed representation, we have performed
post-mortem detection of apparent data races. Some of the
benchmarks (including LU) reported large number appar-
ent data races. In particular, the LU benchmark (with 2
threads) reported 63,832 apparent data races in 6 seconds
on a Pentium IIT 1 GHz machine with 906 MB of memory.
Note that a single pair of operations on a shared variable
may be executed many times in a parallel program execu-
tion, each time being reported as a data race. In particular,
the 63,832 data races in the LU benchmark correspond to
only five distinct pairs of conflicting instructions in the two
threads of the benchmark. To avoid this problem, we can
use the CDR representation instead of DOR representation
for data race detection. In the CDR representation, we mark
the instruction corresponding to a shared data access. Con-
sequently replicated data race reports from the same pair of
instructions can be avoided.

4.2 Detecting Data Race Artifacts

Consider the parallel program execution in Figure 7 where
A is a shared array and Subscript is a shared variable. Ini-
tially we assume Subscript = 0. Note that this code does
not contain any synchronization operations. The two data
race pairs exhibited in this code fragment are: (1) the read-
ing and writing of Subscript, (2) the reading and writing of
A[1]. Clearly, the second one happens due to the occurrence
of the first data race. In particular, the value of Subscript is
propagated to x which controls the shared memory location
accessed by A[x]. In this case, it is more meaningful to re-
port only the first data race pair, since the second data race
may not even occur (A[1] may not be even read in the sec-
ond thread) if the first data race does not occur. Hence, the
second data race is called an artifact of the first data race.
Detecting and not reporting artifact data races reduces the
burden on the programmer.

Thread 1 Thread 2
Subscript := 1; x := Subscript
A[1] := 0 ; y = A[x]

Figure 7: Example of an artifact data race

The above notion of data race artifact has been formally
studied by Netzer and Miller in [13]. Roughly speaking,
they consider an event-control dependence relation E s.t.
(a,b) € E if

1. a writes a shared variable which is used by b (directly
or through other variables) to determine which loca-
tions to access, or

2. a precedes b in the same thread, or
3. there exists ¢ such that (a,c) € E and (¢, b) € E.

The event-control dependence is defined on events which in
practice is a fragment of sequential code (simply a single in-
struction at the finest level of granularity). Note that by the
above definition the write of Subscript event-controls both
the read of A[x], as well as the write of A[1]. Under this
condition, the second data race (involving the read/write
of A[1]) is deemed to be an artifact of the first. Formally
a data race pair (c,d) is an artifact of another data race
pair (a,b) if (a,c) € FE and (a,d) € E, or (b,c) € F and
(b,d) € E. In other words, either a or b event-controls both
cand d.

The above definitions provide a clean way of detecting
artifact data races. This reduces the number of data races
reported to the programmer and hence is more useful in
detecting potential bugs in the program. Computing the
event-control dependences however depends on data flow in-
formation. This is captured in our representation of parallel
program execution. In particular, in the execution of Fig-
ure 7 we can infer that Subscript := 1 event-controls the
read of A[x] since: (1) the read of A[x] uses local variable x
which is set by the statement x := Subscript, and (2) the
statement x := Subscript can occur after Subscript := 1
in Thread 1 (it is not constrained otherwise by synchroniza-
tion operations). Clearly, this inference can be mechanized,
allowing us to automatically compute the E relation. The
compact nature of our representation allows us to store the
sequence of shared variable accesses. This can be exploited
in the computation of the event control dependence, and
hence for accurate data race detection.

5. RELATED WORK

Execution profile-driven code optimization has been stud-
ied in the programming languages, compiler and architec-
ture community for many years. We review some of the
relevant literature in this section.

Work on Path ProfilesDue to the huge size of program
traces, traditionally only short sub-paths of the execution
path (describing the behavior of the program in a specific
procedure, say) used to be captured. Recently, Larus showed
that the control flow in a program’s entire execution path
can be stored by employing online data compression tech-
niques [11]. The SEQUITUR algorithm was adapted by
Larus to represent the complete control flow information in
a sequential program execution. Similar trace compaction
techniques have been employed in [16] for the purposes of
program understanding and software visualization. Chilimbi
studied how variants of SEQUITUR can be used for repre-
senting data access patterns in a sequential program execu-
tion [4]. This is useful for the purposes of memory layout
(e.g. which blocks should map to the same cache line) and

enables software pre-fetching. Zhang and Gupta [24] sug-
gested compact representations where the execution trace is
broken up into per-function path traces (thereby enabling
post-mortem retrieval of execution traces of specific func-
tions). In particular, a dynamic call graph is maintained to
record the sequence of function calls/returns and for each
function, the various path traces encountered in its different
calls are compacted.

In our work, we have studied compressed representations
for parallel program traces. Parallel programs have two dif-
ferent kinds of structuring: the per-function structuring in
each thread (as in sequential programs) and the per-thread
structuring. We have concentrated on supporting the per-
thread structuring by representing each thread as a Whole
Program Path (WPP). Each WPP may contain informa-
tion pertaining to synchronization as well as control and/or
shared memory data flow. Furthermore, we have studied
two kinds of shared data access patterns in an execution:
the global shared data accesses in each thread, as well as
the shared data accessed by each instruction. For the latter
(which we call the CDR representation), it is often advan-
tageous to represent the memory accesses in a difference
representation and perform run-length encoding of the dif-
ferences before employing the SEQUITUR algorithm. In
other words, even though we found the SEQUITUR algo-
rithm to be useful for program path compression, it is often
necessary to manipulate the alphabet of the string being
compressed (i.e. the set of terminal symbols using which
the program path is described).

Recently, we have been pointed to a work on compress-
ing instruction and data address traces in a sequential pro-
gram [15]. Unlike our method, this is a two pass method
which creates a descriptor for each basic block in the first
pass. It uses the attributes in this descriptor in the sec-
ond pass to create a compressed trace. This compression
technique also identifies the unique offsets between succes-
sive data addresses referenced by an instruction. However,
this technique cannot afford to collect the entire trace of
data references by an instruction (as is done in our CDR
method). This is because the method does not employ any
on-line compression scheme and the entire trace is too big to
be stored in memory. Instead, the compressed trace simply
intersperses the instruction and data references, where data
references indicate which unique offset is used.

Work on Deterministic Replayost of the work in paral-
lel program tracing is geared towards deterministic replay of
executions (reconstructing and replaying an execution from
recorded information) [10, 12, 19]. This is primarily useful
for program debugging and comprehension; it does not re-
quire recording all shared memory accesses. However, our
aim is not only to store enough information so that the cur-
rent execution can be “replayed”. Indeed, one of the in-
tended uses of our compact representation is memory per-
formance optimization. Our parallel program execution can
serve as a profile which is used to optimize some of the “arti-
factual communication” [6] (additional communication be-
tween levels of the shared memory hierarchy which takes
place as an artifact of the program’s interaction with the
memory organization). Note that our compressed represen-
tations can also be used for deterministic replay of properly
synchronized parallel programs. In programs which are not
properly synchronized, we need the data dependences be-

tween unsynchronized shared variable reads and writes for
exact replay. These dependences are not captured in our
representation.

Work on Data Race Detectiofn Section 4, we discussed
how the precise data flow information maintained by our
compact traces can be exploited for accurate dynamic data
race detection. Dynamic data race detection techniques are
typically categorized into two classes: on-the-fly [5, 7, 20]
and post-mortem [1, 13, 18]. One of the major drawbacks of
the post-mortem method is the huge size of the trace. This
problem can be alleviated using our compact trace repre-
sentations. In fact, the compressed nature of our traces
allows us to instrument/record more information during ex-
ecution: the exact order of the shared variable accesses in
each thread. This additional data flow information enables
more accurate post-mortem analysis of data races.

6. DISCUSSION

Execution profiles are important for analysis, optimiza-
tion as well as debugging since they provide valuable infor-
mation about a program’s dynamic behavior. In this paper
we have presented compression schemes for representing ex-
ecution profiles of shared memory parallel programs. Our
representation captures control/data flow and synchroniza-
tions in the execution of a shared memory multithreaded
program running on a multiprocessor architecture. Our ex-
perimental results show substantial compaction in SPLASH
benchmark traces using a representation which combines
control and data flow. We also present evidence of scala-
bility of the compression efficiency with increasing number
of processors. Finally, we have studied how this compact
path profile can be used for post-mortem program debug-
ging such as detecting data races.

The execution trace of a shared memory parallel program
should maintain the control/data flow of each processor as
well as the their interactions during execution. In this paper,
the control/data flow of each processor is maintained indi-
vidually as Whole Program Paths (WPP). The total order
of the synchronization operations executed by all processors
and the annotation of each processor’s WPP with synchro-
nization counts help us to capture those inter-processor com-
munications which are protected via synchronization primi-
tives such as lock, unlock, and barriers.

However, our compact trace currently does not capture
the actual order of unsynchronized shared variable accesses
by different processors. Maintaining the order of all inter-
processor communication (via shared variable accesses) can
lead to prohibitively high storage requirement. Fortunately,
it is not necessary to maintain every inter-processor com-
munication for capturing a parallel program execution. Net-
zer’s work [12] shows that it is sufficient to maintain the tran-
sitive reduction of the program order on each processor and
the shared variable conflict orders. Moreover, he proposed
an on-the-fly technique to identify the orderings in the tran-
sitive reduction relation. It is possible to adapt our tracing
mechanism to record these orderings in the transitive reduc-
tion as the only information about inter-processor communi-
cation (instead of recording the synchronization operations
as is done currently).

We plan to investigate whether the order of operations
appearing in the transitive reduction can be captured via
annotations of the WPP edges (in a manner similar to our

current handling of synchronization counts). This can lead
to new uses of the compressed execution profiles. For ex-
ample, given a compact program trace that captures the
order of shared variable accesses across processors, we can
use the trace to characterize whether an invalidation-based
or update-based cache coherence protocol is suitable for the
parallel program. An update-based protocol typically per-
forms better if between two consecutive writes (updates) by
a processor to the same variable, other processors read that
variable. For any shared variable v, we can identify con-
secutive writes to v by processor P; as follows. We look
up the terminal node for store v in the WPP of P; and
its two consecutive incoming edges. Given these edges and
their annotations, we find out the shared memory accesses
performed by other processors during that interval. If the in-
terval contains many read accesses of v by other processors,
then an update-based protocol will perform better. Formal-
izing these observations remains a topic of future work.

7. ACKNOWLEDGMENTS

The reviewers’ comments were helpful in revising the pa-
per. This work was partially supported by National Uni-
versity of Singapore Research Project R-252-000-088-112.
Ankit Goel was partially supported by a scholarship from
IDA, Singapore.

8. REFERENCES

[1] S.V. Adve, M.D. Hill, B.P. Miller, and R.H.B. Netzer.
Detecting data races in weak memory systems. In
ACM International Symposium on Computer
Architecture (ISCA), 1991.

[2] R. Alur and R. Grosu. Shared variable interaction
diagrams. In International Conference on Automated
Software Engineering (ASE), 2001.

[3] R. Alur, G.J. Holzmann, and D.A. Peled. An analyzer
for message sequence charts. In International
Conference on Tools and Algorithms for Construction
and Analysis of Systems (TACAS), LNCS 1055, 1996.

[4] T.M. Chilimbi. Efficient representations and
abstractions for quantifying and exploiting data
reference locality. In ACM International Conference
on Programming Language Design and
Implementation (PLDI), 2001.

[5] J-D. Choi and S.L. Min. Race frontier: Reproducing
data races in parallel program debugging. In ACM
International Conference on Principles and Practice
of Parallel Programming (PPoPP), 1991.

[6] D.E. Culler, J.P. Singh, and A. Gupta. Parallel
Computer Architecture: A Hardware/Software
Approach. Morgan Kaufmann, 1999.

[7] A. Dinning and E. Schonberg. An empirical
comparison of monitoring algorithms for access
anomaly detection. In ACM International Conference
on Principles and Practice of Parallel Programming
(PPoPP), 1990.

[8] C.J. Hughes, V.S. Pai, P. Ranganathan, and S.V.
Adve. RSIM: Simulating shared-memory
multiprocessors with ILP processors. IEEE Computer,
35(2), 2002.

[9] P. Keleher, S. Dwarkadas, A. L. Cox, and
W. Zwaenepoel. Treadmarks: Distributed shared

(11]

(12]

20]

(21]

memory on standard workstations and operating
systems. In Winter USENIX Conference, 1994.

R. Konuru, H. Srinivasan, and J-D. Choi.
Deterministic replay of distributed java applications.
In International Parallel and Distributed Processing
Symposium (IPDPS), 2000.

J.R. Larus. Whole program paths. In ACM
International Conference on Programming Language
Design and Implementation (PLDI), 1999.

R.H.B. Netzer. Optimal tracing and replay for
debugging shared-memory parallel programs. In
ACM/ONR Workshop on Parallel and Distributed
Debugging, 1993.

R.H.B. Netzer and B.P. Miller. Improving the
accuracy of data race detection. In ACM International
Conference on Principles and Practice of Parallel
Programming (PPoPP), 1991.

C.G. Nevill-Manning and I.H. Witten. Identifying
hierarchical structure in sequences: A linear-time
algorithm. Journal of Artificial Intelligence Research,
7, 1997.

A R. Pleszkun. Techniques for compressing program
address traces. In IEEE/ACM International
Symposium on Microarchitecture (MICRQO), 1994.
S.P. Reiss and M. Renieris. Encoding program
executions. In ACM/IEEE International Conference
on Software Engineering (ICSE), 2001.

M.C. Rinard. Analysis of multithreaded programs. In
Static Analysis Symposium (SAS), 2001.

M. Ronsse and K. de Bosschere. Recplay: A fully
integrated practical record/replay system. ACM
Transactions on Computer Systems, 17(2), 1999.

M. Russinovich and B. Cogswell. Replay for
concurrent non-deterministic shared memory
applications. In ACM International Conference on
Programming Language Design and Implementation
(PLDI), 1996.

S. Savage et al. Eraser: a dynamic data race detector
for multithreaded programs. ACM Transactions on
Computer Systems, 15(4), 1997.

J.P. Singh, W-D. Weber, and A. Gupta. SPLASH:
Stanford parallel applications for shared-memory.
ACM SIGARCH Computer Architecture News, 20(1),
1992.

S. C. Woo et al. The SPLASH-2 programs:
Characterization and methodological considerations.
In International Symposium on Computer Architecture
(ISCA), 1995.

Z.120. Message Sequence Charts (MSC’96), 1996.

Y. Zhang and R. Gupta. Timestamped whole program
path representation and its applications. In ACM
International Conference on Programming Language
Design and Implementation (PLDI), 2001.

J. Ziv and A. Lempel. A universal algorithm for
sequential data compression. IEEFE Transactions on
Information Theory, 23(3), 1977.

