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Parameterized systems are characterized by the presence of a large (or even unbounded) number

of behaviorally similar processes, and they often appear in distributed controllers and protocols.
Verification of parameterized systems involves reasoning about unboundedly many processes and

hence cannot be accomplished directly by model checking. In this work, we develop an abstraction

refinement based verification framework for parameterized systems. We enhance the well-known
SPIN model checker with process count abstractions to develop a time and memory efficient

Linear-time Temporal Logic (LTL) model checker for parameterized systems. We also develop
methods for automated detection of spurious counter-examples, and their elimination via abstrac-

tion refinement. The usability / scalability of our checker is demonstrated via the modeling and

automated verification of several real-life parameterized control systems and protocols.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification—Model
Checking

General Terms: Verification

Additional Key Words and Phrases: SPIN Model Checker, Abstraction Refinement

1. INTRODUCTION

Many distributed control systems contain a large number of concurrently running, behav-
iorally similar processes interacting among themselves, as well as with other processes.
Examples of such control systems are common in automotive, avionics and other appli-
cation domains. As an example consider a centralized controller disseminating traffic in-
formation to various flights in a flight control system. Or, consider a centralized registry
enabling the communication among various devices (such as CD player, TV, GPS) in a
modern car. The behaviorally similar processes in these systems are generally of the same
process-type (e.g. the process-type of flights in a flight-control system). Furthermore, the
number of processes in a process type is often unbounded when the system is designed, and
fixed later when the system is deployed. For example, at design time we do not know how
many incoming/outgoing flights a flight control system may need to deal with when it is
deployed. It is necessary to verify crucial properties of the control system with unbounded
number of flights, such that the verification results hold for any number of flights.
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Concurrent systems with unboundedly many behaviorally similar processes of the same
process type are known as parameterized systems. Parameterized systems typically consist
of finitely many process types – the behavior of each process type being summarized by a
finite-state transition system. The number of processes for (some of) the process types is
unbounded — denoted as ω. Verification of parameterized systems is beyond the realm of
model checking since we need to reason about unboundedly many processes. Note that it
is unnatural to fix the number of processes to an arbitrary constant, just for making their
verification amenable to model checking. This is because it is in general difficult (not
decidable) to compute a cutoff number on the number of processes such that the restricted
system will exhibit all behaviors of the system with unbounded number of processes.

Most existing works on parameterized system verification have focused on developing
(more) automated checking procedures. However, researchers have ignored the issues in
developing a usable and efficient checker which can be used for debugging real-life param-
eterized control software, namely: (a) being supported by a powerful modeling language to
describe non-trivial control systems and protocols, (b) time/space efficiency in checking,
(c) spurious counter-example detection (the spurious behaviors arising from abstraction),
along with abstraction-refinement, and (d) analysis of non-spurious counter-examples to
determine a finite-state system exhibiting the same trace. In this paper, we address these
issues.

We develop an abstraction-refinement based automated proof method for parameterized
systems. Our abstractions (and their refinements) deal with the number of processes to
keep track of, for process types in the system with unbounded number of processes. Thus,
for every process type with unbounded number of processes — a cutoff number is assumed
in the initial abstraction and then gradually refined by repeated application of abstract -
modelcheck - refine steps. Since our abstractions in general lead to over-approximations of
behavior, model checking of the abstracted system may lead to spurious counter-examples.
We develop automated methods to (i) check whether a given counter-example trace is spu-
rious, and (ii) refine our abstraction (by increasing cutoff numbers) to eliminate a given
spurious counter-example. For non-spurious traces (traces which point to real errors), we
develop heuristics to determine a system with a small, finite number of processes which
exhibit the same counter-example trace. Our method can be used for verifying Linear-time
Temporal Logic (LTL) properties of parameterized systems, subject to few restrictions;
these restrictions appear in Section 8.1.

Similar to works on abstraction refinement based sequential software verification [Chaki
et al. 2003; Beyer et al. 2007; Ball and Rajamani 2002], our proof method follows an ab-
stract - verify - refine loop which is iterated. While those approaches deal with abstraction
of program variables from unbounded data domains, our abstractions deal with unbounded
number of processes. Our spurious counter-example check and refinement step is fully au-
tomated, thereby making our proof method fully automated. Since parameterized system
verification is undecidable [Apt and Kozen 1986], our verification procedure may not ter-
minate in general. However, this is not unexpected given the undecidability of the problem
— existing works on abstraction refinement based software verification (such as [Chaki
et al. 2003; Beyer et al. 2007; Ball and Rajamani 2002]) also cannot guarantee termination
of the abstract-verify-refine loop. In our experiments on several real-life control systems
and protocols, our verification procedure not only terminates, but also is highly efficient in
terms of time and memory.
ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 3, September 2001.
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Fig. 1. Verification framework

In terms of implementation, we modify the internals of the well-known SPIN model
checker [Holzmann 2003; 1997] to integrate our proof method. Any designer familiar with
SPIN, and its input language PROMELA, can use our method as a black-box to verify pa-
rameterized systems. We take advantage of powerful optimizations inside SPIN to develop
an efficient checker for parameterized systems.

Contributions. The contributions of this paper are as follows.

—We develop a fully automated methodology for parameterized system verification via ab-
straction refinement. Given a LTL property ϕ, our proof method gradually discovers the
cutoff numbers needed to prove ϕ for each process type in the system with unbounded
number of processes.

—As far as system modeling is concerned, we tie up with the rich PROMELA modeling
language used in SPIN. Our goal here is pragmatic — since PROMELA/SPIN are widely
used for system modeling/verification, this immediately increases the potential usability
of our method. Indeed, we implement our proof method inside the verification engine
of SPIN. Thus, any user familiar with PROMELA/SPIN can straightaway use our proof
method for parameterized system verification. Moreover, all of the state-space optimiza-
tions already built inside SPIN enhance the efficiency of our checker.

—Last but not the least, experiments with our parameterized system checker implemented
inside SPIN demonstrate its scalability in terms of time and memory. We have exper-
imented our checker on large-scale parameterized control systems from the automo-
tive/avionics domain as well as on well-known bus protocols (such as Futurebus+).
We have also made our tool available for usage in research / teaching. The tool and
its description can be obtained from http://www.comp.nus.edu.sg/˜abhik/
SPIN++/

In summary, we develop an abstraction refinement based automated proof method for pa-
rameterized systems, and integrate it with the mature SPIN model checking tool. This
also enables rich modeling of parameterized systems using PROMELA, and experiments on
large-scale parameterized control systems.
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2. OVERVIEW

An outline of our verification framework appears in Figure 1. The verification procedure
involves deriving an abstract verifier (based on model checker SPIN) corresponding to a
given system model and property to be verified. Parameterized verification of the system
proceeds by executing the abstract verifier thus generated. At the end of a verification run,
either the verifier outputs “pass”– indicating no property violation in the system model,
or a counter-example exhibiting the property violation. Since, in general our abstraction
is an over-approximation of concrete behaviors, a counter-example obtained from the ab-
stract verifier can be spurious. Thus, a spuriousness check is performed on the counter-
example obtained. If a counter-example is not spurious, a system with finite number of
processes exhibiting the same counterexample is generated. Otherwise, we refine our ab-
straction to prevent the spurious counter-example from occurring in the subsequent verifi-
cation runs. Since parameterized system verification is undecidable [Apt and Kozen 1986],
the abstraction-refinement loop shown in Figure 1 is not guaranteed to terminate. Hence,
user may specify a bound on the number of refinement steps undertaken.

We now illustrate the various steps in our verification framework with the help of a small
example. Consider a system model consisting of a single process type p1 with no local
variables. The transition system corresponding to process type p1 is shown in Figure 2,
where for i ∈ [0, 3], li represents a control location, and α0 – α2 represent the actions
executed by a p1-process. Thus, for example, a process of type p1 can move from location
l0 to l1 by executing action α0. Assume now, that we want to verify certain properties for
this system model for any number of p1 processes. Let us consider an unbounded number
of p1 processes which are initially in the state l0.

In our abstract verification we only maintain the count of processes in various local
states, and not their individual states or identities. If the process count is unbounded in
some state, it is represented as ω during abstract verification. Further, a user-provided
p1 specific cutoff parameter (called cutp1 ) is used, such that ω represents greater-than
or equal-to cutp1 p1-processes. Then, (a) if a p1 process moves in to a state with cutp1
number of processes, the process count of that state becomes ω, and (b) if a p1 process
moves out of a state with currently ω number of processes, there remains either ω or cutp1
number of processes in the source state.

We now consider verification of the given system against the following LTL property:
¬(α0 ∧Xα1 ∧XXα2). It specifies that the action sequence σ = α0α1α2 can never occur
in a system execution. Initially, let cutp1 = 1. This means in the abstract verification, the
count of processes in any state li is either 0 (denoting no processes in li) or ω (denoting
one or more processes in li). Abstract verification returns a counter-example trace, which
is σ itself. The number of processes in different states during abstract execution of σ are
shown in the following.

Control Number of processes (cutp1 = 1)
state Initially After α0 After α1 After α2

l0 ω ω, 0 ω, 0 ω, 0
l1 0 ω ω, 0 ω, 0
l2 0 0 ω ω
l3 0 0 0 ω

However, it is easy to see that the counter-example trace σ cannot be exhibited in any
ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 3, September 2001.
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Fig. 2. Example transition system for a process type p1.

concrete system. At least two occurrences of α0 are required for α1 and α2 to be executed
subsequently. Hence, σ is spurious. Trace σ can be exhibited in the abstract system because
after a single occurrence of α0, the process count in l1 becomes ω (since cutp1 = 1).
Consequently, both α1 and α2 can be executed from l1. In order to prevent this spurious
counter-example, we refine our abstraction by increasing the cutoff number cutp1 to 2.
This means in the abstract verification, the count of processes in any state li is now either 0
(denoting no processes in li) or 1 (denoting exactly one process in li) or ω (denoting more
than one process in li). Now, after a single occurrence of α0 the process count at l1 will
become 1 (and not ω), which is not sufficient to execute both α1 and α2. As a result, σ can
no longer occur in abstract execution.

As another example, consider the LTL property ¬(α0 ∧Xα1), which specifies that the
action sequence σ′ = α0α1 can never occur. Similar to the previous example, here also the
abstract verification run returns a counter-example, which is σ′. However, unlike above, σ′

is not spurious and can be exhibited in a concrete system. Further, we can easily see that
σ′ can be exhibited in a concrete system with only a single process of type p1. Later, (in
Section 6.2) we describe a heuristic procedure for deriving such a smaller concrete system
corresponding to a non-spurious counter-example for debugging purposes.

3. MODELING

We use (a fragment of) PROMELA, the input language of SPIN, for modeling the system
to be verified. This enables a user already familiar with SPIN, and hence PROMELA, to
readily use our parameterized verification framework.

We fix a finite set of process types P with p, q ranging over P . Each process type in
P corresponds to a process declaration via proctype in PROMELA. Various processes,
which are the instances of process types in P , are described by means of finite-state la-
beled transition systems. We also fix a finite alphabet of actions Σ with α, β ranging over
Σ. Actions in Σ represent basic PROMELA statements, such that an action in Σ may cor-
respond to a send/receive event, an assignment, an assertion, or creation of an instance of
a process type. Various processes can communicate via synchronous message exchange or
through shared variables. With each action α ∈ Σ, we associate– (a) a pre-condition Preα
specifying a boolean condition to be satisfied by a system state for executing α, and (b) a
post-condition Postα capturing the system state update upon execution of α.

We note here that PROMELA allows inter-process communication via shared variables,
synchronous message passing as well as asynchronous message passing. In our modeling,
we restrict ourselves to systems which do not have asynchronous message passing.

In order to model the internal states and computations performed by processes, we fix
a set of local variables V arp for each process type p ∈ P , and a set of global variables

ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 3, September 2001.
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V arG. Assume that V arp ∩ V arq = ∅ whenever p, q ∈ P and p 6= q. Also, let V arP =⋃
p∈P V arp and V arP ∩ V arG = ∅. Each variable x ∈ V arP ∪ V arG takes values from

a finite domain Dx. Thus, a variable valuation refers to a mapping of each variable to a
value in its finite domain.

DEFINITION 1 SYSTEM MODEL. A system model is a structure

S = (V arG, v
g
in, TSP)

consisting of (i) a set of global variables V arG, (ii) their initial valuation vgin and (iii) a
p-indexed family of transition systems

TSP = {TSp = (Lp,→p, l
p
in, V arp, v

p
in)}p∈P

such that for each p ∈ P ,

—Lp is a finite set of p’s control states,
—→p⊆ Lp × Σ× Lp is a transition relation for p,
—lpin ∈ Lp is the initial control state of p, and
—V arp is the set of local variables in p, and vpin is their initial valuation.

Consider the example in Figure 2, which consists of a single process type p1 with no
local variables. The actions appearing in this specification are Σ = {α0, α1, α2}, and the
transition system of p1 is represented as:

TSp1 = ({l0, l1, l2, l3},→p1 , l0, ∅)

where→p1= {(l0, α0, l1), (l1, α1, l2), (l1, α2, l3)}.
Let OBJp denote a finite non-empty set of processes populating process type p. We

require that OBJp ∩ OBJq = ∅ whenever p 6= q. We set OBJ =
⋃
p∈P OBJp and let o, o′

range over OBJ. Further, each variable x in the system has a finite domain Dx. Hence, we
let V alG be a mapping for each global variable to its finite domain, and V alp be a mapping
for each variable in process type p to its finite domain. We denote V alP =

⋃
p∈P V alp.

For each process type p, let Sp ⊆ Lp × V alp represent the execution states of p, where Lp
is the set of p’s control states describing TSp and V alp is the set of valuations of variables
in V arp. The initial p-state is given by spin = (lpin, v

p
in), where lpin ∈ Lp is the initial

p-control state and vpin is an initial valuation of variables in p. We set SP =
⋃
p∈P Sp

and let s, s′ range over SP . Again, consider the example shown in Figure 2. The initial
state corresponding to process type p1 is sp1in = (l0, ε), where the variable valuation part is
empty (represented as ε) since p1 has no local variables.

In order to define the operational semantics of a system model, we define the notion of a
configuration capturing the global system state during execution. Since we are defining a
system configuration where the system consists of concrete processes, we call it a “concrete
configuration”. This is to distinguish this notion from the state space abstraction and the
abstract configurations we will introduce later.

DEFINITION 2 CONCRETE CONFIGURATION. Let S = (V arG, v
g
in, TSP) be a given

system model. A concrete configuration of S is a pair of mappings (vg,M), where vg is a
valuation of global variables V arG, and mapping M : SP → 2OBJ is defined such that:

—M(s) ⊆ OBJp for every p and every s in Sp,
—M(s) ∩M(s′) = ∅ whenever s 6= s′, and

ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 3, September 2001.
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—
⋃
{M(s) | s ∈ Sp} = OBJp for every p.

Let CFG denote the set of all concrete configurations.

Given a system model S = (V arG, v
g
in, TSP) and an initial set of processes OBJinp

for each process type p, the initial configuration of S is defined as Cin = (vgin,M
in),

where– (a) vgin is an initial valuation of global variables, and (b) for every p ∈ P and
every s ∈ Sp, M in(s) = OBJinp if s = spin, otherwise M in(s) = ∅. For the example
shown in Figure 2, suppose two instances (say, o1, o2) of process type p1 are created
initially. Since, p1 has no local variables, all possible execution states of p1 are determined
by its local control states, i.e. Sp1 = {s0, s1, s2, s3} = SP , where si = (li, ε), with ε
representing an empty variable valuation. Also, since there are no global variables in this
example, the global variable valuations in this example will also be empty (or, ε). Then,
the initial configuration in this case is given by: (ε,M in), where M in(s0) = {o1, o2} and
M in(s1) = M in(s2) = M in(s3) = ∅.

During execution, system moves from one concrete configuration to another by partici-
pating in an action from Σ. If a process o of type p moves from state s1 ∈ Sp at concrete
configuration C = (v,M) to state s2 ∈ Sp by executing an action α ∈ Σ, the processes at
the resulting configuration C ′ = (v′,M ′) are determined as follows. Let I : SP → 2OBJ

be an intermediate mapping s.t.

—If s1 6= s2, then
I(s1) = M(s1)− {o}.
I(s2) = M(s2) ∪ {o}.
I(s) = M(s) for s ∈ SP\{s1, s2}.

—Otherwise, ∀s ∈ SP , I(s) = M(s).

The relationship between the resulting mapping M ′ at configuration C ′ and the inter-
mediate mapping I is as follows – (i) If α does not create new process, then M ′ = I , (ii)
Otherwise, suppose by executing α, a new process oq of type q is created and starts its
execution from an execution state sq ∈ Sq . Then, we have

—M ′(sq) = I(sq) ∪ {oq};
—M ′(s) = I(s), for all s 6= sq .

We use relation updatec(s1,M, α, s2,M
′) to denote that the mapping M ′ can be de-

rived from M due to migration of a process from state s1 to s2 by executing α. The
transition relation for the concrete execution ↪→⊆ CFG× Σ× CFG is defined as follows.

DEFINITION 3 CONCRETE TRANSITION RELATION ↪→. LetC = (vg,M),C ′ = (v′g,M
′)

∈ CFG be concrete configurations of a system model S = (V arG, v
g
in, TSP), and α ∈ Σ

be an action. Then (C,α,C ′) ∈↪→ iff ∃p ∈ P,∃s = (l, v), s′ = (l′, v′) ∈ Sp, s.t.

(1) (l, α, l′) ∈→p is a transition in TSp.
(2) |M(s)| ≥ 1, i.e. there is at least one process at state s.
(3) v and vg satisfy the pre-condition Preα.
(4) v′(v′g) is the effect of post-condition Postα on v(vg). Here v′g represents an update

of global variables V arG, which can later be read/updated by other processes, thus
allowing for shared variable communication.

ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 3, September 2001.
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Fig. 3. Sample Concrete Transition Relation

(5) If last action executed was a send1 event, then α must be the corresponding receive
event. If the matching receive cannot be executed, then the last executed send event is
rolled back, and some other enabled action is executed in its place.

(6) The relation updatec(s,M,α, s′,M ′) holds as described above.

For the example shown earlier in Figure 2, we present its state exploration graph depict-
ing all reachable concrete configurations in Figure 3. Since, no global variables are used in
this example, we omit their valuation from a state representation. In each global state, the
processes presented in various execution states of process type p1 are shown, which is the
only process type appearing in this example. Also, for i = 0, 1, 2, 3, si = (li, ε), where li
is the local control state of p1 and ε represents an empty local variable valuation. Initially,
two processes of type p1 are created, which are represented as o1 and o2 residing at state
s0 = (l0, ε). Then, either o1 or o2 can be chosen to execute α0, following by the execution
of α0 from the other process, or the execution of either α1 or α2 from the same process,
resulting in different paths in the state exploration graph ending in two configurations with
o1 residing at state s2 and o2 residing at state s3, or vice versa.

4. STATE SPACE ABSTRACTION

4.1 Core Abstraction

For efficient verification of parameterized systems, we employ an abstract state space rep-
resentation, where the core idea is to group together processes in a process type which are
in similar states. However, the grouping of processes is not fixed statically, but changes
dynamically with the state space construction. Two processes of type p are similar if and
only if they are in the same state s = (l, v) ∈ Sp, where l is the control state in TSp (the
transition system of p) and v is a valuation of p’s variables. Based on this, the key idea in
our abstraction is that, if two processes are in the same execution state– there is no need
to distinguish between them via their process ids. Hence, our abstraction systematically

1Recall that, we only consider synchronous message communication.
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exploits this observation by only maintaining the count of processes in each execution state
in
⋃
p∈P Sp.

Along with the state space abstraction as described above, we allow a process-type to
have an unbounded number of processes in our abstract execution semantics. If a process
type p initially has unbounded number of processes, or if p has unbounded number of
processes due to dynamic process creation during execution – the user provides an input
parameter cutp ∈ N. By default cutp is set to 1. Then, for any number of processes equal
to or greater than cutp, we represent it as ω.

For a process type p with initially fixed number of processes, and no dynamic process
creation – the process counts never become ω and the number of processes is fixed. Hence,
the cutoff number is not an issue! We can simply assume the cutoff number to be a number
greater than the number of p-processes by default.

Based on our abstract state representation, we now define the notion of an abstract con-
figuration.

DEFINITION 4 ABSTRACT CONFIGURATION. Let S = (V arG, v
g
in, TSP) be a given

system model and for each process type p ∈ P , Na
p denote the number of p-processes

during execution. An abstract configuration is defined as a pair of mappings (vag ,Ma),
where vag ∈ V alG is a valuation of global variables and Ma : SP → N ∪ {ω} s.t.
∀p ∈ P,

∑
s∈Sp

Ma(s) = Na
p .

Let CFGabs denote the set of all abstract configurations.

Let S = (V arG, v
g
in, TSP) be a given system model with Np number of processes of

type p ∈ P . Then, the initial abstract configuration of S is defined as Cina = (ving ,M
in
a ),

where– (a) ving is the initial valuation of global variables, and (b) for every p ∈ P and every
s ∈ Sp, M in

a (s) = Np if s = spin, otherwise M in
a (s) = 0.

During execution, system moves from one abstract configuration to another by executing
an action from Σ. If a process of type p moves from state s1 ∈ Sp at configuration
Ca = (v,Ma) to state s2 ∈ Sp by executing an action α ∈ Σ, the process counts at a
resulting configuration C ′a = (v′,M ′a) are determined as follows. Let Ia : SP → N∪ {ω}
be an intermediate mapping, s.t. –

—If s1 6= s2, then

Ia(s1) =

{
Ma(s1)− 1, if Ma(s1) < cutp
cutp − 1 or ω, if otherwise.

Ia(s2) =

{
M(s2) + 1, if M(s2) < cutp − 1
ω, otherwise .

Ia(s) = M(s), for s ∈ SP\{s1, s2} (1)

—Otherwise, ∀s ∈ SP · Ia(s) = Ma(s).

If α does not create new process, then M ′a = Ia. Otherwise, suppose by executing α, a
process of type q is created and starts its execution from state sq ∈ Sq . Then we set

—for state sq ,

M ′a(sq) =

{
Ia(sq) + 1, if Ia(sq) < cutq − 1
ω, otherwise.

(2)

—for s ∈ SP\{sq}, M ′a(s) = Ia(s).
ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 3, September 2001.
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Fig. 4. Partial (abstract) state exploration graph for p1 (Np1 = ω).

We use the relation updatea(s1,Ma, α, s2,M
′
a) to denote that mapping M ′a can be

derived from Ma due to migration of a process from state s1 to s2 by executing action α.
Note that, when there are ω processes in the source state s1 at configuration Ca =

(v,Ma) (i.e. Ma(s1) = ω) and the destination state s2 is different from s1, then two
possible configurations may result from Ca as described above (see Eqs. (1)). If C ′a =
(v′,M ′a) represents the resulting abstract configuration, then process count in state s1 at
configuration C ′a (i.e. M ′a(s1)) is either– (i) ω, assuming there were greater than cutp
processes in s1 at configuration Ca, or (ii) cutp − 1, assuming there were exactly cutp
processes in s1 at configuration Ca. Given the above notion of abstract configurations
CFGabs, we define an abstract transition relation ↪→a⊆ CFGabs×Σ×CFGabs as follows.

DEFINITION 5 ABSTRACT TRANSITION RELATION ↪→a . Let S = (V arG, v
g
in, TSP)

be a system model, Ca = (vg,M), C ′a = (v′g,M
′
a) ∈ CFGabs be its abstract configura-

tions, and α ∈ Σ be an action. Then (Ca, α, C
′
a) ∈↪→a if and only if ∃p ∈ P,∃ s =

(l, v), s′ = (l′, v′) ∈ Sp, s.t.

(1) (l, α, l′) ∈→p is a transition in TSp,

(2) Ma(s) ≥ 1, i.e. there is at least one process in s,

(3) v and vg satisfy the pre-condition Preα.

(4) v′(v′g) is the effect of post-condition Postα on v(vg). Here v′g represents an update
of global variables V arG, which can later be read/updated by other processes, thus
allowing for shared variable communication.

(5) If last action executed was a send2 event, then α must be the corresponding receive
event. If the matching receive cannot be executed, then the last executed send event is
rolled back, and some other enabled action is executed in its place.

(6) The relation updatea(s,Ma, α, s
′,M ′a) holds.

2Recall that, we only consider synchronous message communication.
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For illustration, we again consider the example in Figure 2. Assume that, an unbounded
number of processes (ω) of type p1 are created initially, and the default cutoff number
cutp1 = 1 is used. For i ∈ [0, 3], si = (li, ε), where li is a control location in TSp1, and
since p1 has no local variables, their valuation is represented as ε. Further, assuming that
there are no global variables, we omit global variable valuation from the abstract config-
urations. Hence, we represent the abstract configurations for this system by a mapping
Ma, such that Ma(si), i ∈ [0, 3] represents the number of p1 processes in state si. Its
partial abstract state exploration graph is shown in Figure 4. Initially, action α0 is exe-
cuted by a process in state s0 from the initial configuration (Cina ), resulting in two different
configurations C1 and C2. The configuration C1

a (towards left) corresponds to the case
where ω represents exactly one process in state s0 at Cina , while configuration C2

a (towards
right) corresponds to the case where ω represents two or more processes in state s0 at Cina .
Further, all actions α0, α1 and α2 are enabled at configuration C2

a , while only α1 and
α2 are enabled at configuration C1

a . The paths following these abstract configurations are
explored in a similar manner.

4.2 Soundness of Abstraction

We now show the soundness of proof search over the abstract state space. Before proceed-
ing to the proof, we first define a relation '⊆ CFG× CFGabs as follows.

DEFINITION 6. For all Cc = (vgc ,Mc) ∈ CFG and Ca = (vga,Ma) ∈ CFGabs, Cc '
Ca iff vgc = vga, and ∀p ∈ P,∀s ∈ Sp, Ma(s) ≥ |Mc(s)|.

We now prove that our abstract execution semantics is an over-approximation of the
concrete execution semantics.

THEOREM 1. Let σ be a possibly infinite sequence of actions that can be exhibited in
the concrete execution of a system model S with initially N c

p ∈ N processes of type p.
Then, σ can be exhibited in the abstract execution of S with initially Na

p processes of type
p, where either Na

p = ω or Na
p ∈ N s.t. Na

p ≥ N c
p .

PROOF. In order to prove this theorem, we consider the following property. Recall that
↪→ and ↪→a denote the concrete and abstract transition relations respectively.

Property 1:
∀(Cc, α, C ′c) ∈↪→,∀Ca ∈ CFGabs, Cc ' Ca ⇒ ∃(Ca, α, C ′a) ∈↪→a, s.t. C ′c ' C ′a.

We prove the above property as follows. Let Cc = (vgc ,Mc), C ′c = (vg
′

c ,M
′
c) ∈ CFG,

and Ca = (vga,Ma) ∈ CFGabs, s.t. (Cc, α, C
′
c) ∈↪→ and Cc ' Ca. Suppose by executing

α in concrete execution, a process o of type p moves from state sα to state s′α. Hence,
updatec(sα,Mc, α, s

′
α,M

′
c) from Def. 3 holds.

Since Cc ' Ca, by Def. 6, vgc = vga; moreover, Ma(sα) ≥ |Mc(sα)| and Ma(s′α) ≥
|Mc(s

′
α)|. Thus, action α can be executed by choosing a process from state sα in the

abstract execution. Let C ′a = (vg
′

a ,M
′
a) be the resulting abstract configuration. Without

loss of generality, we assume that sα 6= s′α.
If Ma(sα) ∈ N, by the definition of updatec and udpatea (ref. Sections 3 and 4), we

have intermediate mappings I ′c(sα) = Ic(sα) − {o} and I ′a(sα) = Ia(sα) − 1. Now, we
consider the following cases based on action α.
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(1) If α does not create new process and sα 6= s′α, then M ′a(sα) = I ′a(sα) and M ′c(sα) =
I ′c(sα). Since Ma(sα) ≥ |Mc(sα)|, we have M ′a(sα) ≥ |M ′c(sα)|.

(2) If, by executing α, a new process oq of type q is created and starts its execution at
state sq , then we have M ′c(sq) = Mc(sq) ∪ {oq} and M ′a(sq) = Ma(sq) + 1. Since
Ma(sα) ≥ |Mc(sα)|, we have M ′a(sα) ≥ |M ′c(sα)|.

If Ma(sα) = ω, then by the definition of updatea, we always allow the possibility
that M ′a(sα) = ω. By the similar argument as in the case of Ma(sα) ∈ N, we have
M ′a(sα) ≥ |M ′c(sα)|. Similar argument applies to M ′a(s′α). Finally since the effect of
action α is the same on vgc and vga, we have vg

′

c = vg
′

a . Therefore, C ′c ' C ′a.
Property 1 establishes that ' is a simulation relation. To complete the proof of the main

theorem, we only need to show that the initial configurations in the concrete and abstract
execution semantics are related by '. This is indeed the case, and this concludes the
proof.

4.3 When is the abstraction exact?

We have now established that our abstract execution semantics is an over approximation
— any execution trace exhibited in the concrete execution semantics is also exhibited in
the abstract execution semantics. Further, our abstract execution semantics is exact (i.e.,
any sequence of actions allowed by the abstract execution semantics is also allowed by the
concrete execution semantics) iff the following conditions hold–

C1. In abstract execution, the process counts in a process type p are always represented
using a natural number (i.e. they never become ω) and are updated following the usual
arithmetic rules. Note that cutp does not play any role in this case.

C2. For each process type p, the initial number of processes in abstract execution (Na
p ) is

equal to the initial number of processes in the concrete execution (N c
p ), i.e. Na

p = N c
p .

DEFINITION 7. Let CFGabs (CFG) be the set of abstract (concrete) configurations of
system model S . Then for all Ca = (vga,Ma) ∈ CFGabs and Cc = (vgc ,Mc) ∈ CFG,
Ca 'a Cc iff vga = vgc and ∀s ∈ SP , (Ma(s) = |Mc(s)|).

THEOREM 2. Let σ = α0α1 . . . be a possibly infinite action sequence exhibited in the
abstract execution of S satisfying C1, then σ can be exhibited in the concrete execution
of S satisfying C2, and for i ≥ 0, Cia 'a Cic, where Cia (Cic) is the abstract (concrete)
configuration before the abstract (concrete) execution of αi.

PROOF. In order to prove this theorem, we consider the following property. The ↪→ and
↪→a denote the concrete and abstract transition relations respectively.

Property 2:
∀(Ca, α, C ′a) ∈↪→a,∀Cc ∈ CFG, Ca 'a Cc ⇒ ∃(Cc, α, C ′c) ∈↪→, s.t. C ′a 'a C ′c.

We prove the above property as follows. Let Ca = (vga,Ma), C ′a = (vg
′

a ,M
′
a) ∈

CFGabs, and Cc = (vgc ,Mc) ∈ CFG, s.t.(Ca, α, C ′a) ∈↪→a and Ca 'a Cc. Suppose
by executing action α in the abstract execution, a process of type p moves from state sα to
s′α, where sα, s′α ∈ Sp.

Since Ca 'a Cc, we have vga = vgc and ∀s ∈ SP , (Ma(s) = |Mc(s)|), which implies
that ∀s ∈ SP ,Ma(s) ∈ N. Hence, by the definition of updatea, we have intermediate
ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 3, September 2001.
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mappings I ′a(sα) = Ma(sα)− 1 and I ′a(s′α) = Ma(s′α) + 1. Moreover α can be executed
by a process op of type p at state sα in the concrete execution, which results in the interme-
diate mappings – Ic(sα) = Mc(sα)− {op} and Ic(s′α) = Mc(s

′
α) + {op}. Therefore, we

have Ia(sα) = |I ′c(sα)| and Ia(s′α) = |I ′c(s′α)|. Now, based on the characteristic of action
α, we consider the following cases:

(1) If α does not create new process, then for abstract execution, we have M ′a(sα) =
Ia(sα), M ′a(s′α) = Ia(s′α); and for concrete execution, we have M ′c(sα) = Ic(sα),
M ′c(s

′
α) = Ic(s

′
α). Therefore, M ′a(sα) = |M ′c(sα)|, M ′a(s′α) = |M ′c(s′α)|.

(2) If, by executing α, a new process of type q is created and starts its execution at local
state sq . Moreover, in concrete execution, this new process is identified as oq . Then,
in abstract execution, we have M ′a(sq) = Ia(sq) + 1, and for all other s ∈ ScP ,
M ′a(s) = Ia(s). In concrete execution, we have M ′c(sq) = Ic(sq) ∪ {oq}, and for all
other s ∈ SP , M ′c(s) = Ic(s). Therefore, we have M ′a(sα) = |M ′c(sα)|, M ′a(s′α) =
|M ′c(s′α)|.

Finally, the effect of α is the same on vgc and vga. Therefore, we have C ′a 'a C ′c.
Property 2 establishes that 'a is a simulation relation. It is easy to see that C0

a 'a C0
c ,

i.e. the initial configurations in the abstract and concrete execution semantics are related
by 'a. This concludes the proof.

5. EXTENDING ABSTRACTION WITH COUNT VARIABLES

In the previous section we discussed our state space abstraction which involved abstracting
away process ids. From the real life case studies that we have modeled for our experiments,
we observe that this counter abstraction alone is not sufficient for modeling most of these
examples. These examples generally involve a process (e.g. a controller) that needs to
communicate with, and maintain a count of processes of another type (e.g. several clients).
Then, if we intend to verify a system which has an unbounded number of processes, say of
type p, we cannot use a variable with a finite domain to keep a count of p-processes.

5.1 Extended Abstraction Scheme

In order to keep track of the number of processes of type p with an unbounded number of
processes, we introduce process-count variables having the domain N ∪ {ω}. We denote
the set of all process-count variables as V arω . For a process-count variable, we only allow
assignment operation that initializes it with a constant value or ω, as well as operations that
increment or decrement its value by 1, and obey the following execution semantics3. For a
process-count variable v ∈ V arω used for counting processes of type p:

v++ =

{
v + 1, v < cutp − 1
ω, otherwise.

v−− =

{
v − 1, v < cutp
cutp − 1 or ω, otherwise.

Moreover, v can be involved in a boolean expression: B ≡ v Relop c, where Relop
is a relational operator and c ∈ N. Here, we only consider the case where Relop is ≤. If

3The abstract semantics can be similarly extended to support increment/decrement of a process count variable by
any constant number c. The case c = 1, worked out here, is most common.
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v ∈ [0, cutp), B evaluates to true if v ≤ c, and false otherwise. If v = ω and c < cutp,
then B is false. Otherwise, if v = ω and c ≥ cutp, then we non-deterministically allow
B to be either true or false. Various other relational operators are considered in a similar
manner.

Thus, if process type p has ω processes in abstract execution, the value of v lies in the
domain [0, cutp) ∪ {ω}, where ω indicates the value of v to be cutp or greater. Further,
when v is decremented by one (i.e. v−−), if the original value of v is ω, then the resulting
value of v is non-deterministically chosen to be either cutp − 1 or ω. The former (latter)
choice corresponds to the possibility that value of v was equal-to (greater-than) cutp.

In PROMELA, a process-count variable used for counting processes of type p, is declared
using the following syntax– ‘abs p X’, where p is the process-type andX is any valid string
allowed in a variable name in PROMELA. This specific format allows the verifier to identify
and update these variables as per the rules described above.

Since the domain of variable x ∈ V arω includes the unbounded value represented as ω,
to distinguish it from the concrete domain of x, i.e. Dx (= N), we represent the abstract
domain asDax (i.e. N∪{ω}). Note that, for all other variables y ∈ (V arP ∪V arG)\V arω ,
Day = Dy . Then, we use V alap to represent the abstract valuations of variables in V arp,
which is a mapping for each variable to its abstract domain. Let V alaP =

⋃
p∈P V al

a
p . The

abstract valuations of global variables is represented similarly as V alaG. Accordingly, the
abstract states of a process type p are represented as Sap ⊆ Lp × V alap , where Lp if the set
of local states in the transition system TSp as before. The abstract initial p-state is given
by sap,in = (lpin, v

a
p,in), where vap,in is an initial valuation of variables in p over abstract

variable domain. Further, we set SaP =
⋃
p∈P S

a
p .

Since the domain of variables in V arω differs in the abstract execution as compared to
the concrete execution, we are to establish a relation between valuation of variables in the
concrete and abstract execution as following. Let R be a relation between valuation of
variables in concrete and abstract domain: R ⊆ (V alG × V alP) × (V alaG × V alaP). For
all g ∈ V alG, f ∈ V alP , ga ∈ V alaG, fa ∈ V alaP : (g, f)R(ga, fa) iff

(1) ∀v ∈ V arG\V arω, ga(v) = g(v).
(2) ∀v ∈ V arP\V arω, fa(v) = f(v).
(3) ∀v ∈ V arG ∩ V arω, ga(v) = g(v), if g(v) ∈ [0, cutp);

and ga(v) = ω, otherwise.
(4) ∀v ∈ V arP ∩ V arω, fa(v) = f(v), if f(v) ∈ [0, cutp);

and fa(v) = ω, otherwise.

5.2 Soundness with Process-count Variables

We now refine the relation '⊂ CFG × CFGabs with respect to R between concrete and
abstract configurations as follows.

DEFINITION 8. For all Cc = (vgc ,Mc) ∈ CFG and Ca = (vga,Ma) ∈ CFGabs, Cc '
Ca iff ∀p ∈ P , ∀sc = (l, vc) ∈ Sp,∃sa = (l, va) ∈ Sap , s.t.(vgc , vc)R(vga, va)∧Ma(sa) ≥
|Mc(sc)|.

We now prove that our abstract execution semantics is an over-approximation of the
concrete execution semantics.

THEOREM 3. Let σ be a possibly infinite sequence of actions that can be exhibited in
the concrete execution of a system model S with initially N c

p ∈ N processes of type p.
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Then, σ can be exhibited in the abstract execution of S with initially Na
p processes of type

p, where either Na
p = ω or Na

p ∈ N s.t. Na
p ≥ N c

p .

PROOF. In order to prove this theorem, we consider the following property. Recall that
↪→ and ↪→a denote the concrete and abstract transition relations respectively.

Property 1:
∀(Cc, α, C ′c) ∈↪→,∀Ca ∈ CFGabs, Cc ' Ca ⇒ ∃(Ca, α, C ′a) ∈↪→a, s.t. C ′c ' C ′a.

We prove the above property as follows. Let Cc = (vgc ,Mc), C ′c = (vg
′

c ,M
′
c) ∈ CFG,

and Ca = (vga,Ma) ∈ CFGabs, s.t. (Cc, α, C
′
c) ∈↪→ and Cc ' Ca. Suppose by executing

α, a process o of type p is moved from state sc = (l, vc) to state s′c = (l′, v′c). Hence,
updatec(sc,Mc, α, s

′
c,M

′
c) in Def. 3 holds.

Since Cc ' Ca, by Def. 8, ∃sa = (l, va) ∈ SaP , s.t.(g, f)R(ga, fa) ∧ Ma(sa) ≥
|Mc(sc)|, where g ∈ V alG, f ∈ V alP , fa ∈ V alaG, fa ∈ V alaP . Since α is executable
from sc, to show that α is also executable from sa in the abstract execution, we first need
to show that vga and va satisfy Preα. Since (vgc , vc)R(vga, va), let x be a variable in the
system, we consider the following cases:

(1) If x ∈ V arG\V arω , then ga(x) = g(x), and hence ga(x) satisfies Preα. Similar
argument applies to x ∈ V arP\V arω .

(2) If x ∈ V arG ∩ V arω , then ga(x) ≥ g(x). Now, consider boolean expression B ≡
xRelopc, where Relop is any relational operator and c is a constant. Here, we take
the case where Relop is ≤ as an example. Various other relational operators can be
considered in a similar fashion. Since g(x) ≤ c evaluates to true, we consider the
evaluation of ga(x) ≤ c as follows.
—If g(x) ∈ [0, cutp), then ga(x) = g(x). Hence, ga(x) ≤ c evaluates to true.
—If g(x) ≥ cutp, then ga(x) = ω. Let g(x) = n0 ∈ N. Since ω represents a

value greater than or equal to cutp, ga(x) is possible to evaluate to n0 (n0 ≥ cutp).
Therefore, we always allow the possibility that ga(x) ≤ c evaluates to true.

Hence, whenever g(x) satisfies Preα, ga(x) satisfies Preα. Similar argument applies
to x ∈ V arP\V arω .

Let C ′a = (vg
′

a ,M
′
a) ∈ CFGabs be the resulting abstract configuration, such that a

process moves to state s′a = (l′, v′a) ∈ Sap by executing α in abstract execution. Consider
the global and local variables. For a variable x, let vc and v′c be the valuation of x before and
after execution of α in concrete execution, respectively. Their corresponding valuations in
the abstract execution are va and v′a. If x ∈ V arG\V arω , then since vc = va and the
effect of α on x in concrete and abstract executions are identical. Hence, we have v′c = v′a.
Similar result is obtained for V arP\V arω . If x ∈ V arω , since va ≥ vc, by the operational
semantics for abstract-count variables, we have v′a ≥ v′c. Hence, we can easily see that
(vg

′

c , v
′
c)R(vg

′

a , v
′
a).

Further, similar to the proof of Theorem 1 in Section 4, by the semantics of updatec and
udpatea, we have M ′a(sa) ≥ |M ′c(sc)| and M ′a(s′a) ≥ |M ′c(s′c)|. Therefore, C ′c ' C ′a.

Property 1 establishes that ' is a simulation relation. To complete the proof of the main
theorem, we only need to show that the initial configurations in the concrete and abstract
execution semantics are related by '. This is indeed the case, and this concludes the
proof.
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l0

l1

l2

l3

α0

α1

α2

Server Client

…

… …

α0 : abs_Client_l2 > 0; abs_Client_l2‐‐; snd(status)
α1 : abs_Client_l2 == 0;
α2 : rcv(status) 

Fig. 5. Example of using process-count variable

Note that under condition C1 and C2 (refer Page 12), Sap = Sp for all process type p
and Da

x = Dx for all variable x. Hence, our abstraction is again exact. Theorem 2 and its
proof in Section 4 also apply in this case.

5.3 Elimination of Spuriousness Caused by Process-Count Variables

In our modeling, process-count variables can be used as a global shared-variable or local
variable that keeps track of the number of processes in a particular control state of a pro-
cess type. The use of data abstraction, in particular, process-count variables, introduces
extra spurious behaviors in the system. This is mainly due to the fact that a process-count
variable and the actual number of processes that it keeps track of are both updated in a
non-deterministic manner. A server-client example in Figure 5 demonstrates the issue. In
this example, a Server informs all the connected Clients of its status, and the number of
connected clients is maintained via Server’s local variable abs Client l2. After one ex-
ecution of send and receive actions, four global states can be generated (Figure 6). The
global states in dotted box are spurious, since in these states, the process-count variable
(abs Client l2) is unbounded while the actual number of processes in the corresponding
state (l2) is a concrete number less than cutClient, or vise-versa.

To eliminate the spuriousness caused by using process-count variables, we require that
a process-count variable to be associated with a control state whose number of processes it
keeps track of. In PROMELA, to count the number of processes at local state l of a process
type p, we follow the naming convention abs p l for the associated process-count variable.
Moreover, an internal variable (name it as int p l) is used to maintain the execution choice
of abs p l (i.e., ω − 1 = ω or ω − 1 = cutp). During state space exploration, when
control reaches an execution state s = (l, vp) of process type p and an action α ∈ Σ is
enabled, a check is performed to make sure that Ma(s) matches the value of abs p l (note
that, the only possible reason for the two not matching is because the initial assignment
ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 3, September 2001.
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Server: [s = (loc, abs_Client_l2), Ma(s)], …
Client:  [s = (loc), Ma(s)], …

S: [(l0, ω), 1]
C: [(l2), ω]

S: [(l0, cutclient-1), 1]
C: [(l2), ω], [(l3), ω]

S: [(l0, cutclient-1), 1]
C: [(l2), cutclient-1], [(l3), ω]

S: [(l0, ω), 1]
C: [(l2), cutclient-1], [(l3), ω]

… …

deadlock

…

α0α2

α0α2 α0α2 α0α2

Each box is of the form:

Fig. 6. Partial state exploration in the presence of process-count variable

of abs p l does not equal to Ma(s), and hence should be reported as an error); moreover,
after the execution of α, Ma(s) is updated following our abstract semantics but with the
same execution choice as the update of abs p l. Consider the Server-Client example in
Figure 5. The control state associated with process-count variable abs Client l2 is l2
of process type Client. When abs Client l2 is updated as a post-condition of action α0,
internal variable int Client l2 is updated; and when α2 is enabled from an execution state
s = (l2, vClient), Ma(s) is updated based on the value of int Client l2, which ensures
that the spurious global states (the dotted boxes in Figure 6) are never reached.

To summarize, the use of process-count variables in a PROMELA model requires the
following steps:

(1) Identify and label the control states that associate with any process-count variables.
(2) Declare process-count variable (either local or global) using naming convention abs p l,

such that it counts the number of processes at control state (with label) l of process
type p.

6. VERIFICATION

We now elaborate our verification procedure outlined earlier in Figure 1. It proceeds on
the abstract state representation discussed in the preceding.

6.1 Model Checking

We use linear-time temporal logic (LTL) [Manna and Pnueli 1991] for specifying the prop-
erties to be verified. This decision is influenced by our use of model checker SPIN [Holz-
mann 2003] for implementing our verification framework. SPIN uses LTL as a prop-
erty specification language. Properties in LTL are specified using atomic-propositions,
boolean-operators (¬, ∨, ∧), and temporal-operators (G, F , X , U , R).

As described earlier in Section 5, our system model may also contain process-count
variables (denoted as V arω), such that a variable v ∈ V arω is used for counting processes
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of a given type, say p, with its domain ranging over [0, cutp)∪{ω}. Then, for LTL property
specification, we restrict the boolean expressions involving a global process-count variable
v to be of the form v Relop c, such that c ∈ [0, cutp) and Relop is any relational
operator. This restriction ensures deterministic evaluation of boolean expressions involving
the process-count variables.

Since we use SPIN as our underlying implementation framework, we are able to take
advantage of its model checking capabilities. SPIN performs on-the-fly (explicit) state-
space construction, while trying to find a counterexample trace violating the property being
verified. If such a trace cannot be found, it means that the property holds true in the given
system model. Otherwise, a counterexample trace indicating property violation is reported
by SPIN. Our abstract execution semantics allow us to verify a family of concrete systems
as follows.

Suppose a LTL property ϕ is satisfied in our abstract verification with Na
p processes of

type p, where Na
p ∈ N ∪ {ω}. Then, from Theorem 1, ϕ is also satisfied by all concrete

systems having N c
p ≤ Na

p processes of type p, where N c
p ∈ N.

6.2 Spurious counter-example detection

Our abstract execution semantics is an over-approximation in terms of allowed execution
traces. Thus, a counter-example trace obtained from model checking over the abstract
state space may be spurious, i.e. it cannot be exhibited in any concrete system with a finite
number of processes (less-than or equal-to the number of processes in the abstract execu-
tion for each process type). In the following, we present an approach for detecting spu-
rious counter-examples in the absence of process-count variable, and discuss abstraction-
refinement for eliminating them in the next section. The result also holds in the presence
of process-count variable with spuriousness elmination introduced in section 5.3.

We now introduce some definitions on finite traces. Note that our spurious counter-
example detection and abstraction-refinement work for finite as well as infinite counter-
example traces. The notions we introduce now, will work on finite prefixes of counter-
example traces obtained from model checking.

Let σ = α1 . . . αn ∈ Σ∗ be a finite execution trace s.t., action αi is executed by a
process moving from execution state si ∈ SP to state s′i ∈ SP . We set src(αi) = si and
dst(αi) = s′i. For a state s ∈ SP , we define:

in(s, σ) = |{i | dst(αi) = s, i ∈ [1, n]}|
out(s, σ) = |{i | src(αi) = s, i ∈ [1, n]}|

Here, in(s, σ) (out(s, σ)) gives the number of processes moving in to (out of) state
s during the execution of σ. We use new(s, σ) (del(s, σ)) to represent the number of
processes that are created (deleted) during execution of σ such that, they start (termi-
nate) their execution in state s. For convenience, we also define the following terms:
enter(s, σ) = in(s, σ) + new(s, σ), and leave(s, σ) = out(s, σ) + del(s, σ). Finally,
we define predicate valid(s, σ) as:

init(s) + enter(s, σ)− leave(s, σ) > 0 (3)

Further, for a given finite trace σ and a process type p we define the quantity np,σ as
follows. We first determine leave(spin, σ), the number of p processes that move out from
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the initial p-state spin ∈ Sp during the execution of σ. Then, we define

np,σ = min(Np, leave(s
p
in, σ)) (4)

whereNp ∈ N∪{ω} is the initial number of processes of type p in the abstract verification
run, i.e. Np = init(spin). Note that np,σ ∈ N. Let Pre(σ) denote the set of all prefixes of
σ (excluding σ). We now consider two cases, based on whether a counter-example is finite
or infinite.

Case-A: σ is finite. Let σ = α0 . . . αn be a finite counter-example trace obtained from an
abstract verification run s.t., action αi is executed by a process moving from state si ∈ SP
to state s′i ∈ SP , i.e. src(αi) = si and dst(αi) = s′i. We show that σ is non-spurious
⇔ ∀γ ∈ Pre(σ), valid(s|γ|, γ) is true in abstract execution.

PROOF. A.1 ⇐: Assume that ∀γ ∈ Pre(σ), valid(s|γ|, γ) is true in the abstract ex-
ecution. We now show σ to be non-spurious, by showing that σ can be exhibited in the
concrete execution of a system where each process type p initially has np,σ processes. The
proof proceeds by induction on the length of σ.
Base case: It holds trivially for |σ| = 0.
Induction hypothesis: Trace σ1 = α0 . . . αk−1 can be exhibited in a concrete execution
with initially np,σ number of p-processes. Further, for all 0 ≤ i < k, action αi has
the same source state src(αi) and destination state dst(αi) in both concrete and abstract
execution.
Inductive step: We now consider execution of σ1 · αk. Since, σ1 is a prefix of σ and
∀γ ∈ Pre(σ), valid(s|γ|, γ) is true in the abstract execution, valid(sk, σ1) also holds in
the abstract execution. Here, k = |σ1| and sk is the state from which a process executes
αk in the abstract execution. Thus, init(sk) + enter(sk, σ1) − leave(sk, σ1) > 0 in the
abstract execution (see Eq. (3)). Note that, both leave(sk, σ1) and enter(sk, σ1) depend
on the source and destination states of processes executing various actions in σ1. Since
σ1 is also exhibited in concrete execution (from induction hypothesis), the value of these
quantities in concrete execution will be the same as in the abstract execution. We now
consider following two cases for execution of αk in the concrete execution.

1. If sk ∈ Sp is not the initial p-state (sk 6= spin), then init(sk) = 0 in both abstract
and concrete executions. Since, valid(sk, σ1) is true in the abstract execution, we get
enter(sk, σ1) > leave(sk, σ1), which will also hold in the concrete execution. Hence,
there is at least one process in state sk in concrete execution (after σ1) which can be cho-
sen to execute αk.

2. If sk = spin is the initial p-state, then in the concrete execution there will be initially
np,σ = min(Np, leave(sk, σ)) processes in state sk. Since valid(sk, σ1) holds true in the
abstract execution, we get init(sk)(= Np) + enter(sk, σ1) > leave(sk, σ1). Recall that
np,σ = min(Np, leave(sk, σ)), as we are considering the case sk = spin. If np,σ = Np in
concrete execution, since values of enter(sk, σ1) and leave(sk, σ1) in concrete execution
are same as in the abstract execution, valid(sk, σ1) is also true in the concrete execution
– a process can then be chosen from sk to execute αk in concrete execution. Otherwise,
np,σ = leave(sk, σ). Since in abstract execution αk is executed by a process in state sk
(after occurrence of σ1), we have leave(sk, σ) ≥ leave(sk, σ1) + 1. Thus, in the concrete
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execution valid(sk, σ1) also holds since, init(sk)(= leave(sk, σ)) + enter(sk, σ1) >
leave(sk, σ1), and a process from state sk can be chosen to execute αk.

A.2 ⇒: We show this by contradiction. Assume that σ = α0 . . . αn is non-spurious.
Then σ can be exhibited in a concrete execution with N c

p ≤ Np (N c
p ∈ N) number of

processes of type p, s.t. src(αi) = si and dst(αi) = s′i. Now assume that there exists a
γ = α0 . . . αk−1 ∈ Pre(σ) such that for j ∈ [0, k − 1] src(αj) = sj , dst(αj) = s′j , and
valid(sk, γ) (k = |γ|) is false. This implies init(sk)+enter(sk, γ)− leave(sk, γ) ≤ 0 in
the abstract execution. If sk = spin is the initial state of a type p, then initially there are Np
processes in state sk in the abstract execution (i.e. init(sk) = Np in abstract execution).
In concrete execution init(sk) will be equal to N c

p ≤ Np. Otherwise, if sk is not an initial
state of any process type, then initially there are zero processes in sk in both abstract and
concrete executions (i.e. init(sk) = 0).

Therefore, in either case, the value of init(sk) in concrete execution is less than or
equal to that in abstract execution. Further, since both leave(sk, γ) and enter(sk, γ)
depend on the source and destination states of processes executing various actions in
γ, their value in concrete execution will be same as in the abstract execution. Hence,
init(sk) + enter(sk, γ)− leave(sk, γ) ≤ 0 in the concrete execution, and there can be no
process in state sk after the occurrence of γ that can be chosen to execute αk, which is a
contradiction.

Case-B: σ is infinite. In this case, σ is of the form σpr(σsx)ω . Here σpr and σsx are finite
action sequences s.t., (σsx)ω represents an unbounded repetition of σsx, and the abstract
configurations before and after each iteration of σsx are same in abstract execution. Let
Sσsx ⊆ SP denote the execution states from/to which processes move during an iteration
of σsx. Then, we show that: σ is non-spurious⇔ (i) σprσsx is non-spurious, and (ii) ∀s ∈
Sσsx

· enter(s, σsx) = leave(s, σsx).

PROOF. B.1 ⇐: Suppose conditions (i) and (ii) hold above. Let σ′ = σprσsx. From
condition-(i) we get that σ′ can be exhibited in a concrete system. In fact, by reusing the
arguments from Case-A.1 described earlier, we get that σ′ can be exhibited in a concrete
system with initially np,σ′ ∈ N processes for each process type p.

Further, condition-(ii) ensures that the number of processes residing in state s ∈ Sσsx

before and after each iteration of σsx are same. Hence, σsx can be repeated infinitely often
in the concrete execution. This means σ = σpr(σsx)ω is also exhibited in a concrete exe-
cution with np,σ′ processes for each process type p

B.2 ⇒: Assume that σ is non-spurious. Then σprσsx is also non-spurious (i.e. condi-
tion (i) holds), and it can be exhibited in a concrete execution. We use contradiction to
show that condition (ii) also holds. Assume that there exists a state s′ ∈ Sσsx such that
enter(s′, σsx) 6= leave(s′, σsx). Consider the following two cases: (a) enter(s′, σsx) <
leave(s′, σsx), and (b) enter(s′, σsx) > leave(s′, σsx).

Case (a) above implies that after each iteration of suffix σsx, the number of processes in
state s′ will be strictly less than what it was before the occurrence of σsx. Hence, after a
finite number of iterations of σsx in concrete execution, the number of processes in s′ will
become 0. Therefore, σsx cannot iterate infinitely often.

Case (b) above implies that after each iteration of suffix σsx, the number of processes in
state s′ will be strictly greater than what it was before the occurrence of σsx. Hence, the
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number of processes in s′ will grow unboundedly as σsx is repeated infinitely often. If s′ is
a state of process type p, the number of processes in s′ is no greater than the total number
of processes of type p. However, in a concrete execution, the total number of processes
of each process type is bounded. Thus, σ cannot occur in a concrete execution (i.e. it is
spurious), which contradicts our assumption.

6.3 Abstraction Refinement

We now discuss an abstraction-refinement approach for eliminating spurious counter-examples.

Finite counter-example. Let σ = α0 . . . αn be a finite spurious counter-example such
that, action αi is executed by a process moving from state si ∈ SP to state s′i ∈ SP in the
abstract verification, i.e. src(αi) = si and dst(αi) = s′i. Recall that, Pre(σ) is the set
of all execution prefixes of σ, excluding σ itself. Since, σ is spurious, there exists a prefix
γ ∈ Pre(σ) such that valid(s|γ|, γ) is false (see Section 6.2, Case-A). We determine the
smallest prefix σm = α0 . . . αk−1 such that, in abstract execution: (i) ¬valid(sk, σm),
where k = |σm|, and (ii) ∀γ ∈ Pre(σm) · valid(s|γ|, γ). Since, valid(sk, σm) (k = |σm|)
is false, this implies init(sk) + enter(sk, σm) − leave(sk, σm) ≤ 0. Hence, after the
occurrence of σm in abstract execution there can be no processes in state sk. However,
αk is executed by a process from sk after the occurrence of σm in abstract execution –
this is only possible, if process count in sk becomes unbounded (i.e. ω) during execution
of σm. Assuming sk is a state of process type p, its process count can become ω only
if number of processes in sk becomes cutp (the cutoff number of p) during execution of
σm. In order to prevent the process count in sk from becoming ω in abstract execution,
we determine the maximum number of processes that can reside in sk during execution of
σm, i.e. max(sk, σm) = max{init(sk) + enter(sk, γ) − leave(sk, γ)|γ ∈ Pre(σm)}.
Consequently, we set cutp = max(sk, σm) + 1 to prevent the occurrence of spurious trace
σ in subsequent abstract verification runs.

For illustration, consider the system model with a single process type p1 as shown in Fig-
ure 2 and the LTL property ¬(α0∧Xα1∧XXα2), specifying that the trace α0α1α2 never
occurs. As shown earlier in Section 2, with cutp1 = 1, σ can be exhibited in the abstract ex-
ecution s.t., src(α0) = (l0, ε), dst(α0) = (l1, ε), src(α1) = src(α2) = (l1, ε), dst(α1) =
(l2, ε) and dst(α2) = (l3, ε). Our check finds σ to be spurious, as there exists σm = α0.α1

s.t. valid(s|σm|, σm) is false, where s|σm| = s2 = src(α2) = (l1, ε). This is because,
during execution of σm, we have init(s2) = 0 and enter(s2, σm) = leave(s2, σm) = 1.
Considering all prefixes of σm, we can easily find that max(s2, σm) = 1. Then, if cutp1
is set to 2, the execution sequence σ can no longer be exhibited in the abstract execution.

Infinite counter-example. Here σ = σpr(σsx)ω . From Case-B in Section 6.2, σ is spuri-
ous if either–
(i) σprσsx is spurious. This case is similar to that of the finite spurious counter-example
discussed in the preceding.
(ii) σprσsx is not spurious, but there exists a state s belonging to some process type p,
from which a p-process executes one of the actions appearing in σsx s.t. enter(s, σsx) 6=
leave(s, σsx) in abstract execution.

For case (ii), since suffix σsx is repeated infinitely often in the abstract execution of σ,
the abstract configuration, and hence, the process counts in state s are the same during
repeated execution of σsx in σ. As enter(s, σsx) 6= leave(s, σsx), this is only possible if
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the count of processes in s is approximated to ω sometime during the repeated execution
of σsx. We consider two sub-cases.

(ii-a) The process count in s is ω at the beginning/end of every execution of σsx (in the
abstract execution of σ).

(ii-b) The process count in s is a natural number n0 at the beginning/end of every exe-
cution of σsx (in the abstract execution of σ). However, it grows to ω during execution of
σsx (and shrinks back to n0 before next execution of σsx).

For case (ii-a), the process count in s is ω at the beginning of the first execution of
σsx while executing σ = σpr(σsx)ω , that is, at the end of σpr itself. Our abstraction
refinement sets the cutoff number of process type p to the maximum value of 1+ init(s)+
enter(s, γ) − leave(s, γ), where γ ∈ {σpr} ∪ Pre(σpr). This bounds the maximum
number of processes in state s after execution of σpr.

For case (ii-b), our abstraction refinement similarly prevents the process count from
becoming ω in s during the execution of σsx in σ. Here we set the cutoff number of
process type p to 1 +max{n0 + enter(s, γ)− leave(s, γ)|γ ∈ Pre(σsx)}.

6.4 Deriving a finite-state system for a non-spurious counter-example

Finally we discuss the derivation of a system with finite number of processes that can
exhibit a given non-spurious counter-example trace σ. Thus, trace σ is obtained from
our abstract verification with unbounded number of processes, and then shown to be non-
spurious (as per our spuriousness check). We consider two cases.

(i) σ is finite. Then from Section 6.2, Case-A.1, we know that σ can be exhibited in a fi-
nite state system with initially np,σ ∈ N number of processes of type p. From Eqn. (4) page
19, when the number of processes of type p is unbounded, np,σ is equal to leave(sinp , σ)
— the number of processes exiting the initial state of p while executing σ.

(ii) σ is infinite and hence is of the form σpr · (σsx)ω . Let σ′ = σprσsx. Since σ is
non-spurious, from Section 6.2, Case-B.1, σ can be exhibited in a finite state system with
initially np,σ′ ∈ N number of processes of type p.

7. IMPLEMENTATION

SPIN [Holzmann 2003; 1997] is a popular open-source linear-time temporal logic (LTL)
model checker for software verification. In this section, we describe our modifications
involving process abstractions to SPIN, and for convenience call the modified version as
SPIN++.

7.1 Abstract State Representation

In SPIN, the state of each active process in the system is maintained separately during
verification. The information maintained corresponding to each process consists of its
current control state and a valuation of its local variables. In addition, a unique process id
is used to identify each process in the system.

We modify the default SPIN state representation by introducing abstraction over process
identities in SPIN++, such that process instantiations of the same process-type (declared
using keyword proctype in SPIN) are no longer distinguished based on their process
ids. Moreover, we no longer maintain the state of each process separately. Instead, pro-
cesses corresponding to the same process-type, say p, are grouped into partitions during
execution. Each such partition is identified by a p-state in Sp, consisting of a control state
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Fig. 7. State representation in SPIN and SPIN++

in TSp and a valuation of p’s local variables. Then, at runtime, corresponding to each pro-
cess type we maintain a set of its partitions, and the number of processes currently residing
in each partition. Note that, the partition set of a process type only contains partitions with
at least one process in them; if the process count of a partition becomes zero after some
action at run time, then this partition is removed from the partition set.

State Storage and Matching. In SPIN, each system state in the current exploration graph
is stored for state matching during verification. In the SPIN state representation, the order
of processes is fixed for all the states, and comparison of any two states is done byte by
byte, with time complexity linear in the size of a system state. Consider the example shown
in Figure 7(a), where type p has two actions α1 and α2, and no local variables (hence, p’s
execution state is characterized by its local control state). Two processes o1 and o2 of
type p are created, and a sequence of actions σ = α1α1α2 occurs. This results in the
generation of four global states as shown in Figure 7(b), with V iG (i ∈ [0, 4]) representing
the valuations of global variables. We assume that α1, α2 do not modify global variables.

However, with process abstraction in SPIN++, although the order of active process types
in each system state is fixed, the order of partitions within a process type p (representing p’s
execution states, i.e. a subset of Sp with non-zero processes) may vary. This occurs due to
the addition or deletion of partitions, as processes move in or out4 of partitions. Therefore,
to be able to use the default SPIN state matching algorithm, we first sort the partitions
corresponding to each process type before storing them in the state vector. Consider the
same example in Figure 7(a). The abstract system states visited during the execution of σ
are shown in Figure 7(c). Among the four abstract global states generated, two of them
(namely, AS1 and AS3) differ only in the permutation of partitions of type p. This is due
to the dynamic addition and deletion of partitions as illustrated. As shown, sorting the
partitions in AS3 results in state AS1 and hence, AS3 is not stored as a new state in the
state space.

4A partition is deleted when its process count becomes zero.
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Fig. 8. Partial Order Reduction in SPIN++

7.2 Preservation of SPIN Optimizations

Optimization techniques in SPIN fall into two categories– (a) reducing the number of reach-
able system states that must be searched to verify properties (e.g. partial order reduction
and statement merging), and (b) reducing the amount of memory needed to store each state
(eg. collapse compression and bitstate hashing).

Partial Order Reduction. The partial order reduction and statement merging techniques
are based on the knowledge of dependency relations among different transitions in a system
model. In SPIN [Holzmann 2003], to avoid any run-time overheads, these dependency
relations are computed off-line, before a model checking run is initiated. In our case,
we only modify the state representation in SPIN without affecting the syntax or semantics
of other operations. Hence, the dependency relations, and consequently the partial order
reduction and statement merging are preserved with process abstractions in SPIN++. For
illustration, consider a system consisting of a global variable g and a process type P with
local variable x as shown in Figure 8(a). The state exploration graph for this example
in SPIN++ with two instantiations of process type P is shown in Figure 8(b). Note that,
for any two instantiations of P , transitions labeled x = 1 and g = g + 2 are mutually
independent, and their different inter-leavings would lead to the same system state. For
example, in Figure 8(b) the two paths –S1.S2.S4 and S1.S3.S4– between system states S1

and S4 are considered equivalent. Hence, with partial order reduction enabled in SPIN++,
the dashed path (S1.S2.S4) in Figure 8(b) is not explored.

Collapse compression. In addition, SPIN++ can also take advantage of state compres-
sion techniques such as collapse compression and bit-state hashing. Collapse compression
addresses the state space explosion problem by dividing a system state into several “com-
ponents”. These “components” are then assigned a unique index number and stored sepa-
rately. This technique tries to exploit the observation that most of the components of two
distinct system states may be the same. When collapse compression is enabled in SPIN, the
global data objects and each active process in a system state are identified as system com-
ponents. For example, in Figure 7(c), the global state S1 of original SPIN consists of three
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components: value of global variables, state of o1 and state of o2. In SPIN++, we consider
the following as system “components” in a global system state — value of global variables,
and the count of processes in each local state of each process type. For example, for the
abstract global stateAS1 in SPIN++ as shown in Figure 7(c), the “components” would be –
global information, and partitions s0 = (l0, ε), s1 = (l0, ε) of type P (ε denotes emptiness
of local variables). In other words, each local state (with process count greater than 0) of a
process type is considered as a system component in our state representation. This enables
the designer to use SPIN’s collapse compression optimization on our abstract state space.

Bitstate hashing. In SPIN, each system state is represented as a sequence of bits (i.e,
a bitvector). With bitstate hashing enabled, a hash table containing single bit entries is
used to store the visited states information. Further, a parameter k is used such that, k
independent hash functions are applied to a system state, with each function pointing to
an entry in the hash table. Then, if all the k entries in the hash table corresponding to
some state are found to be 1, it indicates that the state has already been visited. Otherwise,
the state has not been visited and any of the corresponding k bits that are 0 are set to 1.
In SPIN the default value of k is 2 and can be set to other values using runtime options.
Since several system states can map to the same hashtable entry, state space search with
bitstate hashing may not be exhaustive. Of course, any counter-examples found can still be
used for debugging. In our tool SPIN++, we also allow the designer the flexibility of using
bitstate hashing. The only change is in how the bitvector representation of a system state is
constructed. As mentioned earlier, a system state in the abstract state space consists of (a)
the state of global variables and (b) process counts for all local states of all process types
(for those local states where the process count is greater than 0). This state representation
gets converted into a bitvector. The rest of the state space traversal — applying hash
function(s) to the bitvector, looking up the hashtable, and storing 0/1 in a hash table entry
depending on whether the state is visited – remains unchanged, allowing the designer to
use bitstate hashing if he/she wants to.

8. EXPERIMENTS

In this section, we first describe our restrictions on PROMELA for system specification, and
on LTL properties for property specification. We then discuss various experimental results
involving the use of SPIN++ for verification. All our experiments were done on a Pentium-
IV 3 GHz machine with 2 GB of main memory. We have made our parameterized checker
available from http://www.comp.nus.edu.sg/˜abhik/SPIN++/

8.1 Restrictions

Our proof method is applicable to verification of arbitrary LTL properties for any PROME-
LA model, subject to the following restrictions. Recall that PROMELA is the input language
of the SPIN model checker [Holzmann 2003; 1997] which allows system modeling via
concurrent processes communicating by shared variables and/or message passing.

Restrictions on PROMELA model. Below, we summarize our restrictions on model spec-
ifications described in PROMELA.

—Since we suppress the use of process ids in our abstraction, we disallow the use of special
SPIN variables pid and last, which can refer to individual process ids. For the same
reason, we avoid accessing or checking the value returned by a run statement (which
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Table I. PROMELA modeling results
Example # Global Process # Local # Local

Vars type Vars Control Loc.
Client 0 26

CTAS 1 CM 2 77
WCP 0 8
Env 2 6

MOST 3 NS 0 5
NM 5 37

Handoff 0 4
Meta-lock 3 Shared Obj. 0 10

Thread 1 7
Futurebus+ 17 Cache 0 11

creates a process and returns the process id in PROMELA).
—Only channels of size 0 can be declared, i.e. communication via message passing is

synchronous. In addition, we allow inter-process communication via shared variables.

Any PROMELA model satisfying these two restrictions can be verified in our parameter-
ized verification framework. Thus, the user can now model parameterized systems using a
rich and popular modeling language like PROMELA, rather than having to construct FSMs
for each process type. Note that dynamic process creation and annihilation is allowed in
our system model.

Restrictions on LTL property. Given a PROMELA model satisfying the above restric-
tions, we verify any LTL property with the following restrictions.

—Atomic propositions in the LTL property do not refer to process identifiers. For example
we cannot have an atomic proposition of the form pid == 1 where pid is a local variable
capturing process identifiers. This restriction stems from our count abstraction which
does not keep track of process identifiers.

—Recall that our system model may also contain process-count variables (denoted as
V arω), such that a variable v ∈ V arω is used for counting processes of a given type, say
p, with its domain ranging over [0, cutp) ∪ {ω}. Then, for LTL property specification,
we restrict the boolean expressions involving a process-count variable vp (which counts
processes of type p) to be of the form vp Relop c, such that c ∈ [0, cutp) and Relop
is any relational operator. This restriction ensures deterministic evaluation of boolean
expressions involving the process-count variables.

8.2 Examples Modeled

For experiments, we modeled the following four examples. In Table I, we summarize the
key statistics of the PROMELA models for each of these examples.

The first example is a weather update controller, which is an important component of
the Center TRACON Automation System (CTAS) automation tools developed by NASA for
controlling air-traffic in large airports [CTA ]. It consists of a central controller (CM), a
weather-control panel (WCP), and several Client processes. Clients first get connected to
the CM. Subsequently, all connected clients are updated with the latest weather information
from WCP via CM.
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The second example models part of the Media Oriented Systems Transport (MOST) pro-
tocol [MOS ], which is a networking standard designed for interconnecting various mul-
timedia components in automobiles. The main components consist of a network-manager
(NM) and several network-slaves (NS). We model the network management part of this
protocol which ensures secure communication between various applications in the MOST
network.

The third example is the Java-metalock [Agesen et al. 1999] protocol, a distributed al-
gorithm ensuring mutually exclusive access to a shared object (S) among arbitrary number
of Java Threads. A hand-off process (H) handles the race between the releasing thread and
several threads waiting to acquire S. If the object S is not-busy (i.e, no thread currently
owns it), then a requesting thread is immediately granted access to it. Otherwise, S is busy
and the owner thread releases access of S to one of the requesting threads via the hand-off
process.

As the final example, we modeled the cache coherence part of the IEEE Futurebus+
Protocol [IEEE Computer Society 1992], where we restrict our model to contain only a
single bus segment with one shared-memory module and multiple caches.

8.3 Reachability Analysis

The initial set of experiments involved doing a reachability analysis for the examples mod-
eled using both SPIN and SPIN++. The main aim of these experiments was to– (i) com-
pare the run-time and memory usage between SPIN and SPIN++, and (ii) experimentally
evaluate the benefits of partial order reduction and collapse-compression optimizations in
SPIN++. For each example we created several versions differing in number of processes.

The experimental results for state space exploration are shown graphically in Figure 9.
As we can observe, SPIN++ clearly outperforms SPIN by a significant margin as the number
of processes in the system increases. Moreover, with the increasing number of processes,
while almost linear growth is observed for both run-time and memory usage for SPIN++,
the growths are exponential in case of SPIN. The results with ω number of processes using
SPIN++ are also shown (the last entry in these graphs).

In Figure 10, we show the reduction in the number of states explored due to partial order
reduction (POR) for MOST and Java Meta-lock protocols in SPIN++. We are able to take
significant advantage of POR using SPIN++ on these two protocols. The results for CTAS
and Futurebus+ are omitted here, as they do not exhibit a significant improvement with
POR enabled. For CTAS, there is almost no concurrency among Client processes, and they
interact with the controller in a synchronous manner one by one; for Futurebus+ protocol,
most transitions involve modification of shared global variables (used for communication)
and hence, are not independent.

Finally, with collapse compression enabled in SPIN++, we could verify larger models
which would otherwise run out of memory (see Table II). For example, CTAS with 200
Clients and MOST with 700 Slaves cannot be explored without using collapse compres-
sion. Both these instances ran out of memory as indicated by O.M. In case of Futurebus+
protocol, we observe less memory reduction as compared with the other two protocols.
This is because, its model contains no local variables and a process state only consists of a
control location. Hence, no significant reduction can be obtained using collapse compres-
sion.
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Fig. 9. State space exploration results.
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Table II. Collapse compression in SPIN++.
Example # of No Collapse Compr. Collapse Compr.

(Proc. Type) Proc. Mem(MB) Time(s) Mem(MB) Time(s)
CTAS 100 489.62 39.41 236.60 64.95

(Clients) 200 O.M. – 1512.67 1037.00
MOST 350 699.04 40.04 298.87 57.36
(Slaves) 700 O.M. – 1367.03 354.44

Metalock 1.5× 105 653.29 56.27 479.93 86.67
(Threads) 3× 105 1304.38 119.67 959.40 190.19

Futurebus+ 50 26.88 2.07 26.47 3.24
(Caches) 100 190.42 16.74 186.94 29.16

O.M. indicates Out of Memory.

8.4 Verification of LTL properties

We verified our examples against some interesting LTL properties using SPIN++. Here, we
consider one property for each example and present the verification results. The verifica-
tion results for our examples appear in Table III.

For CTAS, the weather-panel (WCP) is disabled each time there is an interaction initi-
ated between Clients and the central-controller (CM), and is enabled once the interaction
is over. Hence, for CTAS we specify a liveness property: whenever WCP is disabled, it
will eventually be enabled (property P1, Tab. III).

In case of MOST, we verify the property — whenever network-manager receives a valid
registration message from any slave, its registry gets updated (property P2, Tab. III).

For the Java meta-lock protocol, we verify the invariant property that at most one thread
can own a shared object at any point of time (property P3, Tab. III).

For Futurebus+, we verify the property — if a cache holds an exclusively-modified copy
of data, then no other caches can hold an exclusively-unmodified copy of the same data
(property P4, Tab. III).

As we can observe from Table III, all examples satisfied the respective properties with
initially a concrete number of processes for various process types. For these experiments,
the choice of cutoff number is not an issue — since the number of processes is fixed initially
and there is no unbounded process creation in these examples. In other words, the process
counts never become ω, thus avoiding any spurious behaviors during abstract verification.

For experiments with an unbounded (ω) number of processes for some process type,
spurious counter-examples may be reported by abstract verification. During abstract veri-
fication, the CTAS and MOST protocols satisfied their respective properties, with a cutoff
number 1. For Futurebus+ protocol, a finite counter-example of length 34 was obtained,
with cutoff number 1. However, our spuriousness check procedure (see Sec. 6.2) found this
counter-example to be spurious. Using our abstraction-refinement approach (see Sec. 6.3),
we obtained a new cutoff number of 2 for process-type Cache. Subsequently, verifica-
tion with an unbounded number of caches in Futurebus+ protocol also succeeded. For the
Java meta-lock protocol also, verification of mutual exclusion of shared object access by
unbounded number of threads succeeded.

9. RELATED WORK

Verification of parameterized systems is undecidable [Apt and Kozen 1986]. There are two
possible remedies to this problem: either we look for restricted subsets of parameterized
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Table III. LTL property verification in SPIN++.
Example # Proc. Mem (MB) Time Result Cutoff

P1: G(disabled ⇒ F(¬disabled))
10 Clients 4.97 0.23s

√
—

CTAS 20 Clients 14.09 1.23s
√

—
ω Clients 3.31 0.06s

√
1

P2: G(regValid ⇒ F(regUpdtd))

10 Slaves 4.27 0.08s
√

—
MOST 20 Slaves 7.96 0.28s

√
—

ω Slaves 3.31 0.02s
√

1
P3: G(abs Thread isOwner ≤ 1)

Java 50 Threads 3.28 0.03s
√

—
Metalock 100 Threads 3.41 0.05s

√
—

ω Threads 3.26 0.01s
√

2
P4: G(abs Cache em > 0⇒ abs Cache eu == 0)

10 Caches 3.36 0.03s
√

—
Futurebus+ 20 Caches 4.81 0.17s

√
—

ω Caches 3.62 0.09s
√

2

systems for which the verification problem becomes decidable, or we look for sound but
not necessarily complete methods.

The first approach tries to identify a restricted subset of parameterized systems and tem-
poral properties, such that if a property holds for a system with up to a certain number of
processes, then it holds for every number of processes in the system. Moreover, the veri-
fication for the reduced system can be accomplished by model checking. Systems that are
verified with this approach include systems with a single controller and arbitrary number
of user processes [German and Sistla 1992], rings with arbitrary number of processes com-
municating by passing tokens [Emerson and Namjoshi 2003; Emerson and Kahlon 2004],
systems formed by composing an arbitrary number of identical processes in parallel [Ip and
Dill 1999], and systems formed by unbounded processes of several process types where the
communication mechanism between the processes is restricted to conjunctive / disjunctive
transition guards [Emerson and Kahlon 2000].

The sound but incomplete approaches include methods based on synthesis of invisi-
ble invariant (e.g., [Fang et al. 2006]) which can be viewed as a combination of assertion
synthesis techniques with abstraction for verification; methods based on network invari-
ant (e.g., [Lesens et al. 1997]) that relies on the effectiveness of a generated invariant and
the invariant refinement techniques; regular model checking [Jonsson and Saksena 2007;
Kesten et al. 1997] that requires acceleration techniques. Compositional proof methods
have been studied in [Basu and Ramakrishnan 2003], while explicit induction based proof
methods for parameterized families have been discussed in [Roychoudhury and Ramakr-
ishnan 2001].

Parameterized verification of extended system models having data variables with un-
bounded domains have been studied (e.g., see [Abdualla et al. 2007; Betin-Can et al.
2005]). In comparison, our focus has been to link up our work with a mature system
modeling and verification tool (we have chosen SPIN for this purpose). We do not define
a new modeling language, whatever features are supported in PROMELA can appear in our
system models. This frees the user from learning a new modeling language or tool for
parameterized system verification.
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The works closest to ours are the methods based on counter abstraction (e.g., [Delzanno
2000; Pong and Dubois 1995; Pnueli et al. 2002]). These works also employ process
count abstraction. The verification of safety properties is discussed in [Delzanno 2000],
the verification of liveness properties is addressed in [Pnueli et al. 2002]. Unlike previous
works which perform one run of verification in the abstract state space, we use abstraction
refinement to gradually discover cutoff numbers. To the best of our knowledge, ours is the
first work to use abstraction refinement for parameterized system verification.

Murphi is an explicit-state model checker with extensions to support parameterized sys-
tem verification [Ip and Dill 1999]. However, parameterized verification in Murphi is re-
stricted to systems where only one process type has unbounded number of processes. SPIN
is also an explicit-state model checker, whose enhancements have been studied for combat-
ting state space explosion. Different techniques have been proposed to remedy state space
explosion, including – compositional verification methods as studied in [Pasareanu and Gi-
annakopoulou 2006], and Symmetric SPIN, a symmetry reduction package for PROMELA
programs [Bosnacki et al. 2000]. These approaches are not applicable to parameterized
verification of systems with unbounded number of processes.

Counter-example guided abstraction refinement has earlier been studied for verification
of large finite-state or infinite-state systems [Clarke et al. 2003; Beyer et al. 2007; Chaki
et al. 2003; Ball and Rajamani 2002]. A common thread among these works is that they
abstract the domains of variables which appear in the program being verified. However,
if the program being verified is infinite-state because of having infinitely many processes
— it is not clear how to employ abstraction refinement methods. In this paper, we have
developed an abstraction refinement method on the previously studied counter-abstraction
[Delzanno 2000; Pnueli et al. 2002], and used it for parameterized system verification.

10. DISCUSSION

In this paper, we have presented a pragmatic approach for verifying parameterized systems
— concurrent systems with large / unbounded number of behaviorally similar processes.
Our checker modifies the verification engine of the popular model checker SPIN by intro-
ducing process count abstractions. Since we do not modify PROMELA, the input language
of SPIN, there is no learning curve involved for users. We can detect spurious counter-
examples (introduced by our abstraction) and eliminate them via abstraction-refinement.
Thus abstraction refinement seeks to discover the cutoff number of processes to be kept
track of, for each process type with unboundedly many processes. For a non-spurious
counter-example trace, we can construct a finite-state system which exhibits the same
trace. We have made our parameterized checker available from http://www.comp.
nus.edu.sg/˜abhik/SPIN++/

In future, we plan to augment our parameterized verifier with data-abstraction refine-
ment methods, which have been implemented in sequential software verifiers such as
BLAST [Beyer et al. 2007], MAGIC [Chaki et al. 2003] and SLAM [Ball and Rajamani
2002]. This will allow us to verify systems with unbounded number of similar processes,
as well as data variables with unbounded domains.
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