Practice S03P06: Count pairs of coprime numbers

http://www.comp.nus.edu.sg/~cs1010/4 misc/practice.html

Week of release: Week 4
Objective: Repetition statement

Task statement:

Write a program countCoprimes.c to read in a positive integer larger than 2, and smaller than or equal to 1000. Let's call this limit. There is no need for you to do input data validation.

Your program is to determine the number of pairs of integers in the range [2, limit] which are coprime.

Two positive integers a and b are said to be coprime (or relatively prime) if the only positive integer that divides both a and b is 1 . Hence, 4 and 9 are coprime, but 24 and 15 are not.

For example, if limit is 7 , then there are 11 pairs of coprime integers: $(2,3),(2,5),(2,7),(3,4)$, $(3,5),(3,7),(4,5),(4,7),(5,6),(5,7)$ and $(6,7)$.

Note that the pairs $(2,3)$ and $(3,2)$ are considered the same, so they are counted as one pair.
Your program should contain a function

```
count_coprimes(int limit)
```

that takes in limit and computes the number of pairs of integers in the range [2, limit] that are coprime.

The skeleton program provided contains a function $\mathbf{g c d}()$ that computes the Greatest Common Divisor of two integers. This function works, but is badly designed (and runs very slowly!). In Week 6 discussion session, we will discuss this and you will be shown a better version.

Because of the bad $\mathbf{g c d}()$ function given, your program will be tested with inputs not more than 1000.

Sample runs:

```
Enter limit: 7
Answer = 11
Enter limit: 100
Answer = 2944
```

