
CS1020 Lecture Note #7:

Object Oriented Programming

Inheritance

Like father, like son

Objectives

2

 Introducing inheritance through

creating subclasses

 Improve code reusability

 Allowing overriding to replace the

implementation of an inherited method

[CS1020 Lecture 7: Inheritance]

References

3

Textbook
• Chapter 1: Section 1.4 (pg 54 – 56)

• Chapter 9: Section 29.1 (pg 480 – 490)

CS1020 website 
Resources  Lectures

• http://www.comp.nus.edu.sg/
~cs1020/2_resources/lectures.html

[CS1020 Lecture 7: Inheritance]

http://www.comp.nus.edu.sg/~cs1020/2_resources/lectures.html

Outline
1. Overriding Methods (revisit)

2. Creating a Subclass

2.1 Observations

2.2 Constructors in Subclass

2.3 The “super” Keyword

2.4 Using SavingAcct

2.5 Method Overriding

2.6 Using “super” Again

3. Subclass Substitutability

4. The “Object” Class

5. “is-a” versus “has-a”

6. Preventing Inheritance (“final”)

7. Constraint of Inheritance in Java

8. Quick Quizzes

4[CS1020 Lecture 7: Inheritance]

0. Object-Oriented Programming

5

 Four fundamental concepts of OOP:

 Encapsulation

 Abstraction

 Inheritance

 Polymorphism

 Inheritance allows new classes to inherit

properties of existing classes

 Main concepts in inheritance

 Subclassing

 Overriding

[CS1020 Lecture 7: Inheritance]

1. Overriding Methods (revisit) (1/2)

6

 Recall in lecture #4 that a user-defined class

automatically inherits some methods – such as

toString() and equals() – from the Object class

 The Object class is known as the parent class (or

superclass); it specifies some basic behaviours

common to all kinds of objects, and hence these

behaviours are inherited by all its subclasses

(derived classes)

 However, these inherited methods usually don’t

work in the subclass as they are not customised

[CS1020 Lecture 7: Inheritance]

1. Overriding Methods (revisit) (2/2)

7

 Hence, to make them work, we customised these

inherited methods – this is called overriding

/***************** Overriding methods ******************/

// Overriding toString() method

public String toString() {

return "[" + getColour() + ", " + getRadius() + "]";

}

// Overriding equals() method

public boolean equals(Object obj) {

if (obj instanceof MyBall) {

MyBall ball = (MyBall) obj;

return this.getColour().equals(ball.getColour()) &&

this.getRadius() == ball.getRadius();

}

else

return false;

}

}

Lecture #4: MyBall/MyBall.java

[CS1020 Lecture 7: Inheritance]

2. Creating a Subclass (1/6)

8

 Object-oriented languages allow inheritance

 Declare a new class based on an existing class

 So that the new class may inherit all of the attributes

and methods from the other class

 Terminology

 If class B is derived from class A, then class B is called

a child (or subclass or derived class) of class A

 Class A is called a parent (or superclass) of class B

[CS1020 Lecture 7: Inheritance]

2. Creating a Subclass (2/6)

9

 Recall the BankAcct class in lecture #4

class BankAcct {

private int acctNum;

private double balance;

public BankAcct() { }

public BankAcct(int aNum, double bal) { ... }

public int getAcctNum() { ... }

public double getBalance() {... }

public boolean withdraw(double amount) { ... }

public void deposit(double amount) { ... }

public void print() { ... }

}

lect4/BankAcct.java

[CS1020 Lecture 7: Inheritance]

2. Creating a Subclass (3/6)

10

 Let’s define a SavingAcct class

 Basic information:

 Account number, balance

 Interest rate

 Basic functionality:

 Withdraw, deposit

 Pay interest

 Compare with the basic bank account:

 Differences are highlighted above

 SavingAcct shares more than 50% of the code with BankAcct

 So, should we just cut and paste the code from BankAcct

to create SavingAcct?

New requirements

[CS1020 Lecture 7: Inheritance]

2. Creating a Subclass (4/6)

11

 Duplicating code is undesirable as it is hard to

maintain

 Need to correct all copies if errors are found

 Need to update all copies if modifications are required

 Since the classes are logically unrelated if the

codes are separated:

 Code that works on one class cannot work on the other

 Compilation errors due to incompatible data types

 Hence, we should create SavingAcct as a

subclass of BankAcct

[CS1020 Lecture 7: Inheritance]

[CS1020 Lecture 7: Inheritance]

2. Creating a Subclass (5/6)

12

class BankAcct {

protected int acctNum;

protected double balance;

//Constructors and methods not shown

}

class SavingAcct extends BankAcct {

protected double rate; // interest rate

public void payInterest() {

balance += balance * rate;

}

}

The “extends”
keyword indicates
inheritance

SavingAcct.java

BankAcct.java

The “protected” keyword
allows subclass to access
the attributes directly

This allows subclass of SavingAcct to
access rate. If this is not intended,
you may change it to “private”.

2. Creating a Subclass (6/6)

13

 The subclass-superclass relationship is known as an

“is-a” relationship, i.e. SavingAcct is-a BankAcct

 In the UML diagram, a solid line with a closed unfilled

arrowhead is drawn from SavingAcct to BankAcct

 The symbol # is used to denoted protected member

SavingAcct

rate

+ getRate()

+ payInterest()

+ print()

BankAcct

acctNum

balance

+ getAcctNum()

+ getBalance()

+ withdraw()

+ deposit()

+ print()

[CS1020 Lecture 7: Inheritance]

2.1 Observations

14

 Inheritance greatly reduces the amount of

redundant coding

 In SavingAcct class,

 No definition of acctNum and balance

 No definition of withdraw() and deposit()

 Improve maintainability:

 Eg: If a method is modified in BankAcct class, no

changes are needed in SavingAcct class

 The code in BankAcct remains untouched

 Other programs that depend on BankAcct are

unaffected  very important!

[CS1020 Lecture 7: Inheritance]

2.2 Constructors in Subclass

15

 Unlike normal methods, constructors are NOT

inherited
 You need to define constructor(s) for the subclass

class SavingAcct extends BankAcct {

protected double rate; // interest rate

public SavingAcct(int aNum, double bal, double rate){

acctNum = aNum;

balance = bal;

this.rate = rate;

}

//......payInterest() method not shown

}
SavingAcct.java

[CS1020 Lecture 7: Inheritance]

2.3 The “super” Keyword

16

 The “super” keyword allows us to use the methods

(including constructors) in the superclass directly

 If you make use of superclass’ constructor, it must be the

first statement in the method body

class SavingAcct extends BankAcct {

protected double rate; // interest rate

public SavingAcct(int aNum, double bal, double rate){

super(aNum, bal);

this.rate = rate;

}

//......payInterest() method not shown

}
SavingAcct.java

Using the constructor
in BankAcct class

[CS1020 Lecture 7: Inheritance]

2.4 Using SavingAcct

17

public class TestSavingAcct {

public static void main(String[] args) {

SavingAcct sa1 = new SavingAcct(2, 1000.0, 0.03);

sa1.print();

sa1.withdraw(50.0);

sa1.payInterest();

sa1.print();

}

}

TestSavingAcct.java

Inherited method from BankAcct

Method in SavingAcct

How about print()?
Should it be the one in BankAcct class,
or should SavingAcct class override it?

[CS1020 Lecture 7: Inheritance]

2.5 Method Overriding (1/2)

18

 Sometimes we need to modify the inherited method:

 To change/extend the functionality

 As you already know, this is called method overriding

 In the SavingAcct class:

 The print() method inherited from BankAcct should be

modified to include the interest rate in output

 To override an inherited method:

 Simply recode the method in the subclass using the

same method header

 Method header refers to the name and parameters type

of the method (also known as method signature)

[CS1020 Lecture 7: Inheritance]

2.5 Method Overriding (2/2)

19

 The first two lines of code in print() are exactly the

same as print() of BankAcct

 Can we reuse BankAcct’s print() instead of recoding?

class SavingAcct extends BankAcct {

protected double rate; // interest rate

public double getRate() { return rate; }

public void payInterest() { ... }

public void print() {

System.out.println("Account Number: " + getAcctNum());

System.out.printf("Balance: $%.2f\n", getBalance());

System.out.printf("Interest: %.2f%%\n", getRate());

}

}

SavingAcct.java

[CS1020 Lecture 7: Inheritance]

2.6 Using “super” Again

20

 The super keyword can be used to invoke superclass’

method

 Useful when the inherited method is overridden

class SavingAcct extends BankAcct {

. . .

public void print() {

super.print();

System.out.printf("Interest: %.2f%%\n", getRate());

}

}

SavingAcct.java

To use the print()
method from BankAcct

[CS1020 Lecture 7: Inheritance]

3. Subclass Substitutability (1/2)

21

 An added advantage for inheritance is that:

 Whenever a super class object is expected, a sub

class object is acceptable as substitution!

 Caution: the reverse is NOT true (Eg: A cat is an animal;

but an animal may not be a cat.)

 Hence, all existing functions that works with the

super class objects will work on subclass objects

with no modification!

 Analogy:

 We can drive a car

 Honda is a car (Honda is a subclass of car)

 We can drive a Honda
[CS1020 Lecture 7: Inheritance]

3. Subclass Substitutability (2/2)

22

public class TestAcctSubclass {

public static void transfer(BankAcct fromAcct,

BankAcct toAcct, double amt) {

fromAcct.withdraw(amt);

toAcct.deposit(amt);

};

public static void main(String[] args) {

BankAcct ba = new BankAcct(1, 234.56);

SavingAcct sa = new SavingAcct(2, 1000.0, 0.03);

transfer(ba, sa, 123.45);

ba.print();

sa.print();

}

}

TestAcctSubclass.java

transfer() method can work
on the SavingAcct object sa!

[CS1020 Lecture 7: Inheritance]

4. The “Object” Class

23

 In Java, all classes are descendants of a
predefined class called Object

 Object class specifies some basic behaviors common

to all objects

 Any methods that works with Object reference will

work on object of any class

 Methods defined in the Object class are inherited in all

classes

 Two inherited Object methods are
 toString() method

 equals() method

 However, these inherited methods usually don’t work

because they are not customised

[CS1020 Lecture 7: Inheritance]

5. “is-a” versus “has-a” (1/2)

24

 Words of caution:

 Do not overuse inheritance

 Do not overuse protected

 Make sure it is something inherent for future subclass

 To determine whether it is correct to inherit:

 Use the “is-a” rules of thumb

 If “B is-a A” sounds right, then B is a subclass of A

 Frequently confused with the “has-a” rule

 If “B has-a A” sounds right, then B should have an A

attribute (hence B depends on A)

[CS1020 Lecture 7: Inheritance]

5. “is-a” versus “has-a” (2/2)

25

 UML diagrams

class BankAcct {

...

}

class SavingAcct extends BankAcct {

...

}

Inheritance: SavingAcct IS-A BankAcct

class BankAcct {

...

};

class Person {

private BankAcct myAcct;

};

Attribute: Person HAS-A BankAcct

SavingAcct BankAcct

Solid arrow

Person BankAcct

Dotted arrow

[CS1020 Lecture 7: Inheritance]

6. Preventing Inheritance (“final”)

26

 Sometimes, we want to prevent inheritance by

another class (eg: to prevent a subclass from corrupting the

behaviour of its superclass)

 Use the final keyword

 Eg: final class SavingAcct will prevent a subclass to be

created from SavingAcct

 Sometimes, we want a class to be inheritable, but

want to prevent some of its methods to be overridden

by its subclass

 Use the final keyword on the particular method:

public final void payInterest() { … }

will prevent the subclass of SavingAcct from overriding

payInterest()
[CS1020 Lecture 7: Inheritance]

7. Constraint of Inheritance in Java

27

 Single inheritance: Subclass can only have a single

superclass

 Multiple inheritance: Subclass may have more than

one superclass

 In Java, only single inheritance is allowed

 (Side note: Java’s alternative to multiple inheritance can be achieved

through the use of interfaces – to be covered later. A Java class may

implement multiple interfaces.)

[CS1020 Lecture 7: Inheritance]

8. Quick Quiz #1 (1/2)

28

class ClassA {

protected int value;

public ClassA() { }

public ClassA(int val) { value = val; }

public void print() {

System.out.println("Class A: value = " + value);

}

}

class ClassB extends ClassA {

protected int value;

public ClassB() { }

public ClassB(int val) {

super.value = val – 1;

value = val;

}

public void print() {

super.print();

System.out.println("Class B: value = " + value);

}

}

ClassA.java

ClassB.java

ClassA

value

+ print()

ClassB

value

+ print()

[CS1020 Lecture 7: Inheritance]

[CS1020 Lecture 7: Inheritance]

8. Quick Quiz #1 (2/2)

29

final class ClassC extends ClassB {

private int value;

public ClassC() { }

public ClassC(int val) {

super.value = val – 1;

value = val;

}

public void print() {

super.print();

System.out.println("Class C: value = " + value);

}

}

ClassC.java

public class TestSubclasses {

public static void main(String[] args) {

ClassA objA = new ClassA(123);

ClassB objB = new ClassB(456);

ClassC objC = new ClassC(789);

objA.print(); System.out.println("---------");

objB.print(); System.out.println("---------");

objC.print();

}

} TestSubclasses.java

What is the output?

ClassA

value

+ print()

ClassB

value

+ print()

ClassC

- value

+ print()

8. Quick Quiz #2 (1/2)

30

 Assume all methods print out message of the

form <class name>,<method name>

 Eg: method m() in class A prints out “A.m”.

 If a class overrides an inherited method,

the method’s name will appear in the class

icon. Otherwise, the inherited method

remains unchanged in the subclass.

 For each code fragment below, indicate whether:
 The code will cause compilation error, and briefly explain; or

 The code can compile and run. Supply the execution result.

Code fragment

(example)

Compilation error?

Why?

Execution result

A a = new A();

a.m();

A.m

A a = new A();

a.k();

Method k() not defined

in class A

A

+ m()
+ n()

B

+ n()
+ p()

C

+ m()

D

+ m()
+ n()
+ p()

[CS1020 Lecture 7: Inheritance]

8. Quick Quiz #2 (2/2)

31

Code fragment Compilation error? Execution result

A a = new C();

a.m();

B b = new A();

b.n();

A a = new B();

a.m();

A a;

C c = new D();

a = c;

a.n();

B b = new D();

b.p();

C c = new C();

c.n();

A a = new D();

a.p();



A

+ m()
+ n()

B

+ n()
+ p()

C

+ m()

D

+ m()
+ n()
+ p()

[CS1020 Lecture 7: Inheritance]

Summary

32

 Inheritance:

 Creating subclasses

 Overriding methods

 Using “super” keyword

 The “Object” class

[CS1020 Lecture 7: Inheritance]

Practice Exercise

33

 Practice Exercises

 #22: Create a subclass CentredCircle from a given

class Circle

 #23: Manage animals

[CS1020 Lecture 7: Inheritance]

End of file

