Image Warping and Morphing

CS5245 Vision & Graphics for Special Effects

Leow Wee Kheng

Department of Computer Science School of Computing National University of Singapore

4 0 3 4 4 5 3 3 3 4 5 3

 \rightarrow \equiv \rightarrow

Image Warping

Objective: Change appearance of image by performing geometric transformation, i.e., change the position of a point in the image to a new position.

Example:

(□) (/ [□])

Note:

- Only the positions of the points are changed.
- The colors (or intensities) of the corresponding points in the two images are the same.

Earliest work on image warping comes from remote sensing.

- Capture images at various positions and/or angles.
- Then, stitch them together, i.e., image mosaicking (see CS4243 Computer Vision and Pattern Recognition).
- Camera lens often has distortion. So, need to undistort.

(a) Viking Lander 2 image distorted due to downward tilt.

(b) Undistorted image.

K ロ ⊁ K 倒 ≯ K

In image warping, want to purposely distort images.

Image Warping

Given source image I and the correspondence between the original position $\mathbf{p}_i = (u_i, v_i)^T$ of a point in I and its desired new position $\mathbf{q}_i = (x_i, y_i)^T$, $i = 1, \ldots, n$, generate a warped image I' such that $I'(\mathbf{q}_i) = I(\mathbf{p}_i)$ for each point i. I and I' represent the intensities or colors of the images.

The idea of correspondence is defined by a mapping function f.

K ロ > K @ → K 할 > K 할 > H 할 → K 9 Q Q

$$
\mathbf{q} = f(\mathbf{p}) \tag{1}
$$

K ロ K K 何 K K ミ K K ミ K

- f maps a point \bf{p} in I into a point \bf{q} in I'.
- $I'(\mathbf{q}) = I(\mathbf{p}).$
- Problem: $\mathbf{q} = (x, y)$ has real-valued coordinates.
- If round off (x, y) to integer coordinates, will have error and misalignment.

$$
\mathbf{p} = f(\mathbf{q})\tag{2}
$$

 (0×10^5)

- f maps an *integer*-coordinate point q in I' into a *real*-coordinate point p in I .
- \bullet Use the colors of neighboring integer-coordinate points in I to estimate $I(\mathbf{p})$: bilinear interpolation (see CS4243 Computer Vision and Pattern Recognition).
- Then, $I'(\mathbf{q}) = I(\mathbf{p}).$
- Advantage: No round-off error.

Notes:

- In practice, correspondence is given for only a small number of points.
- Need to derive the correspondence for the other points.
- \bullet General idea: determine f using the known corresponding points.
- Geometric transformation is most conveniently expressed as a matrix operation:

$$
\mathbf{p} = \mathbf{T} \mathbf{q} \tag{3}
$$

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

where **T** is the transformation matrix.

Affine Transformation

$$
\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}
$$

- **p** and **q** are homogeneous coordinates.
- Affine transformation is a linear transformation.

• How many corresponding pairs needed t[o s](#page-7-0)[olv](#page-9-0)[e](#page-14-0) [fo](#page-8-0)[r](#page-26-0) [t](#page-7-0)[h](#page-8-0)e [p](#page-0-0)[a](#page-27-0)ra[me](#page-0-0)[ter](#page-30-0)s?

(4)

Method 1

From Eq. [4,](#page-8-1)

$$
u_i = a_{11} x_i + a_{12} y_i + a_{13}
$$

\n
$$
v_i = a_{21} x_i + a_{22} y_i + a_{23}
$$
\n(5)

for $i = 1, \ldots, n$.

Now, we have two sets of linear equations of the form

$$
\mathbf{M}\,\mathbf{a} = \mathbf{b} \tag{6}
$$

メロト メタト メモト メモト

First set:

$$
\begin{bmatrix} x_1 & y_1 & 1 \\ \vdots & \vdots & \vdots \\ x_n & y_n & 1 \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{12} \\ a_{13} \end{bmatrix} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}
$$

重

(7)

Second set:

$$
\begin{bmatrix} x_1 & y_1 & 1 \ \vdots & \vdots & \vdots \ x_n & y_n & 1 \end{bmatrix} \begin{bmatrix} a_{21} \\ a_{22} \\ a_{23} \end{bmatrix} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}
$$

 \bullet Can compute best fitting a_{kl} for each set independently using standard methods.

重

 4 ロ) 4 何) 4 ミ) 4 \pm)

(8)

Method 2

Compute the sum-squared error E as

$$
E = \sum_{i=1}^{n} \|\mathbf{p}_i - \mathbf{T}\,\mathbf{q}_i\|^2 \tag{9}
$$

If E is small, then the fit is good.

So, we want to find the best fitting \bf{T} that minimizes E . So, do the usual thing: $\partial E/\partial \mathbf{T} = 0$

$$
\frac{\partial E}{\partial \mathbf{T}} = -2 \sum_{i} (\mathbf{p}_i - \mathbf{T} \mathbf{q}_i) \mathbf{q}_i^T = 0
$$

$$
\sum_{i} \mathbf{T} \mathbf{q}_i \mathbf{q}_i^T = \sum_{i} \mathbf{p}_i \mathbf{q}_i^T
$$
 (10)

メロト メタト メモト メモト

重

That is,

$$
\sum_{i} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} [x_i \ y_i \ 1] = \sum_{i} \begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} [x_i \ y_i \ 1]
$$
\n(11)

Rearranging terms yield

$$
\begin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{0} & \mathbf{M} \end{bmatrix} \mathbf{a} = \mathbf{b} \tag{12}
$$

メロト メタト メモト メモト

重

where

$$
\mathbf{M} = \begin{bmatrix} \sum_{i} x_{i}^{2} & \sum_{i} x_{i}y_{i} & \sum_{i} x_{i} \\ \sum_{i} x_{i}y_{i} & \sum_{i} y_{i}^{2} & \sum_{i} y_{i} \\ \sum_{i} x_{i} & \sum_{i} y_{i} & \sum_{i} 1 \\ 0 & = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ \mathbf{a} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{21} & a_{22} & a_{23} \end{bmatrix}^{T} \\ \mathbf{b} = \begin{bmatrix} \sum_{i} u_{i}x_{i} & \sum_{i} u_{i}y_{i} & \sum_{i} u_{i} & \sum_{i} v_{i}x_{i} & \sum_{i} v_{i}y_{i} \\ \sum_{i} u_{i}x_{i} & \sum_{i} u_{i}y_{i} & \sum_{i} u_{i} & \sum_{i} v_{i}y_{i} & \sum_{i} v_{i} \end{bmatrix}^{T} \\ \text{Now, we again have a linear system of equations to solve for } a_{ij}.
$$

Perspective Transformation

$$
\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}
$$

Eq. [13](#page-14-1) is a set of linear equations.

- But, perspective transformation is a nonlinear transformation. \bullet
- Linear equations describe nonlinear transformation. Seems paradoxical, but there is nothing wrong. Why?

K ロ ⊁ K 何 ≯ K ヨ ⊁ K ヨ ⊁

(13)

Examples:

メロメ メ御 メメ きょうくきょ

重

Polynomial Transformation

In general, any polynomial transformation can be expressed as follows:

$$
u = \sum_{k} \sum_{l} a_{kl} x^{k} y^{l}
$$

$$
v = \sum_{k} \sum_{l} b_{kl} x^{k} y^{l}
$$
 (14)

イロト イ団 ト イヨ ト イヨ トー

Example: 2nd-order polynomial transformation.

$$
u = a_{20}x^{2} + a_{02}y^{2} + a_{11}xy + a_{10}x + a_{01}y + a_{00}
$$

\n
$$
v = b_{20}x^{2} + b_{02}y^{2} + b_{11}xy + b_{10}x + b_{01}y + b_{00}
$$
\n(15)

重

In matrix form, we have

$$
\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} a_{20} & a_{02} & a_{11} & a_{10} & a_{01} & a_{00} \\ b_{20} & b_{02} & b_{11} & b_{10} & b_{01} & b_{00} \end{bmatrix} \begin{bmatrix} x^2 \\ y^2 \\ xy \\ x \\ y \\ y \\ 1 \end{bmatrix}
$$
 (16)

If $a_{20} = a_{02} = a_{11} = b_{20} = b_{02} = b_{11} = 0$, then it becomes an affine transformation.

Again, given a set of corresponding points \mathbf{p}_i and \mathbf{q}_i , can form a system of linear equations to solve for the a_{kl} and b_{kl} . (Exercise)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → K 9 Q Q*

Example polynomial transformations due to lens distortion:

←ロト ←何ト

重

 $\leftarrow \equiv +$

 \leftarrow \sim

Global Transformation

The methods described in the previous sections all perform global transformation: a single function relates all the points in the whole image.

Solving for the transform parameters can be regarded as a surface fitting problem:

Given a set of corresponding points $\mathbf{p}_i = (u_i, v_i)$ and $\mathbf{q}_i = (x_i, y_i), i = 1, \dots, n$, determine the best fitting surface $U(x,y)$ that passes through the points (x_i,y_i,u_i) , and the best fitting surface $V(x,y)$ that passes through the points (x_i, y_i, v_i) .

KID KAR KERKER E KORO

Example surface:

重

メロメ メ御 メメ きょうくきょ

Local Transformation

- Global transformation imposes a single mapping function on the whole image.
- It is not convenient for describing local distortions that differ at different locations.
- Local transformation applies a different mapping function to a different part of the image.

イロメ イ御メ イヨメ イヨメ

Basic Ideas:

- First, perform triangulation to partition the image into triangular regions based on the control points \mathbf{p}_i and \mathbf{q}_i (see CS4235) Computational Geometry, CS5237 Computational Geometry and Applications).
- \bullet Estimate partial derivatives of U (and similarly of V) with respect to x and y at each control point. This is required only if the local surface patches are to be joined smoothly.
- For each triangular region, fit a smooth surface (low-order bivariate polynomial) through the vertices satisfying the constraints imposed by the partial derivatives.
- For each point (x, y) , determine its enclosing triangle and compute the corresponding (u, v) using the fitted surface parameters.

 4 ロ) 4 6) 4 3) 4 3 4 3 4

Sample triangulation of an image:

(a) Initial control points. (b) Displaced control points.

K ロ ▶ K 伊 ▶

Image warping example:

(c) Initial image. (d) Warped image.

 \mathbf{p} Э×

K ロ ▶ | K 伊 ▶ | K ヨ

Linear Triangular Patch

Fit a plane in each triangular region.

Given three vertices $\mathbf{u}_i = (x_i, y_i, u_i), i = 1, 2, 3$, the plane that passes the vertices is given by the equation:

$$
[(\mathbf{u}_2 - \mathbf{u}_1) \times (\mathbf{u}_3 - \mathbf{u}_2)] \cdot (\mathbf{u}_1 - \mathbf{u}_3) = 0 \tag{17}
$$

- For a more detailed equation, refer to [\[2\]](#page-30-1), p. 78.
- Piecewise linear mapping functions do not provide a smooth transition across patches. **←ロ ▶ → 何 ▶ → ヨ ▶**

Cubic Triangular Patch

Fit a cubic surface in each triangular patch.

Many algorithms using N-degree polynomials, $N = 2$ to 5 [\[2\]](#page-30-1).

The following is a bivariate cubic patch:

$$
U(x,y) = a_1 + a_2x + a_3y + a_4x^2 + a_5xy + a_6y^2 + a_7x^3 + a_8x^2y + a_9xy^2 + a_{10}y^3
$$
 (18)

Solve equation for parameters a_k using the following constraints:

- Coordinates of the 3 vertices (3 constraints).
- Partial derivatives with respect to x and y at the three vertices $(6$ constraints).
- Partial derivatives of two neighboring patches are the same in the direction normal to the common edge (3 constraints).
- Total 12 constraints, enough to solve for [th](#page-25-0)[e](#page-27-0) [1](#page-25-0)[0 p](#page-26-0)[a](#page-27-0)[r](#page-25-0)[a](#page-26-0)[m](#page-27-0)[et](#page-0-0)[e](#page-1-0)[r](#page-26-0)[s](#page-27-0)[.](#page-0-0)

Image Morphing

Given two images I and J, generate a sequence of images $M(t)$, $0 \leq t \leq 1$ that changes smoothly from I to J.

Basic Ideas:

- Select the corresponding points \mathbf{p}_i in I and \mathbf{q}_i in J.
- The corresponding point $\mathbf{r}_i(t)$ in $M(t)$ lies in between \mathbf{p}_i and \mathbf{q}_i , e.g.,

$$
\mathbf{r}_i(t) = (1-t)\,\mathbf{p}_i + t\,\mathbf{q}_i \tag{19}
$$

- Compute mapping functions between I and $M(t)$ and between J and $M(t)$.
- Use the mapping functions to warp I to $I(t)$ and J to $J(t)$.
- Blend $I(t)$ and $J(t)$:

$$
M(t) = (1 - t) I(t) + t J(t)
$$
\n(20)

KID KAR KERKER E KORO

- Repeat for different values of t from 0 to 1.
- When the sequence is played, $\mathbf{r}_i(t)$ moves from \mathbf{p}_i to \mathbf{q}_i , and $M(t)$ changes from I to J.

For more advanced methods, refer to [\[1\]](#page-30-2).

 $\left\{ \begin{array}{ccc} 1 & 1 & 1 & 1 \ 1 & 1 & 1 & 1 \end{array} \right.$, $\left\{ \begin{array}{ccc} 1 & 1 & 1 \ 1 & 1 & 1 \end{array} \right.$

If J is a warped version of I , then can do 2D animation.

(a) Original image. (b) Displaced control points. (c) Warped image.

 $+$ $+$ $+$ $+$ $-$

References

- S.-Y. Lee and S. Y. Shin. 晶 Warp generation and transition control in image morphing. In Interactive Computer Animation. Prentice Hall, 1996.
	- G. Wolberg. Digital Image Warping. IEEE Computer Society Press, 1990.

(□) (_①)

ALCOHOL:

メ ヨ ト