Software Modeling Techniques and the Semantic Web

Jin Song DONG
(www.comp.nus.edu.sg/~dongjs)
Computer Science Department

National University of Singapore

(Joint work with Yuan Fang LI, Hai WANG and others)

May 2004

Objectives

e To learn Software Modeling Techniques, i.e., Z, Alloy ...
e To learn Semantic Web Languages, i.e., RDF, DAML ...

e To study the Connections Between the Two Areas.

Semantic Web

“The Semantic Web is an extension of the current Web in which information is
given well-defined meaning, better enabling computers and people to work in
cooperation. It is the idea of having data on the Web defined and linked in a way
that it can be used for more effective discovery, automation, integration, and reuse

across various applications.” — W3C (www.w3.org/2001/sw)

Semantic Web is the main focus of WWW’04 May 18-22 2004 (last week at NYC).

Overview

e Introduction to Software Modeling Techniques

— UML, Z, Alloy and CSP

Introduction to Semantic Web
— RDF, DAML+OIL, OWL and ORL

Semantic Web Environment for Specifications
— Linking Different Specification Languages through Semantic Web
— Specification Comprehension via RDF Query

Software Design Method/Tools for Semantic Web

— Extracting DAML ontology from UML/Z models

— Semantics of DAML+OIL in Z/Alloy

— Combined Approach to Reasoning about Semantic Web

e Conclusion and Further Work

Unified Modeling Language

The Unified Modeling Language (UML) is the industry-standard language
for specifying, visualizing, constructing, and documenting the artifacts of
software systems.

e UML =
— Booch (G. Booch) + OMT (J. Rumbaugh ...) + OOSE (I. Jacobson) +
— Statechart (D. Harel) + Syntropy (S. Cook ...) + Catalysis (A. Wills) ...

e Diagrams: Class diagrams, Statechart diagrams, Sequence diagrams,
Collaboration diagrams, ...

e Formalism: Object Constraint Languages, like VDM /Z.

Use Case Diagram

e Use case is a pattern of behavior the system exhibits. Each use case is a
sequence of related transactions performed by an actor and the system in a
dialogue. Actors are examined to determine their needs. Use case diagrams are
created to visualise the relationships between actors and use cases

%ct MoveDirection

user \O

SelectDestinaton

Class Diagram

e A class diagram shows the existence of classes and their relationships in the
logical view of a system. It consists of classes and their structure and behavior,
association, aggregation, dependency, and inheritance relationships,
multiplicity and navigation indicators, and role names

Lifts Lift
1.* 1 1
1
1 1
1 1 1 1
Internal_Q LiftControl Shaft Door

Collaboration Diagram — dynamic behavior, message-oriented

e A collaboration diagram displays object interactions organised around objects

and their links to one another

Statechart Diagram — dynamic behavior, event-oriented

e A statechart diagram shows the life history of a given class, the events that
cause a transition from one state to another, and the actions that result from a

state change

The Z Specification Language
e developed originally at Programming Research Group, Oxford University
e based on set theory and predicate logic

e system described by introducing fixed sets and variables and specifying the
relationships between them using predicates

e declarative, not procedural

e system state determined by values taken by variables subject to restrictions

imposed by state invariant

e operations expressed by relationship between values of variables before, and

values after, the operation
e variable declarations and related predicates encapsulated into schemas

e schema calculus facilitates the composition of complex specifications

e J. Woodcock and J. Davies, Using Z: Specification, Refinement, and Proof. Prentice-Hall, 1996

Types

7 is strongly typed: every expression is given a type.
Any set can be used as a type.
The following are equivalent within set comprehension

(z,y): Ax B
z:A;y:B
z,y: A (when B = A)

Notice that

VS:PAe... not VSCAe...

10

Relations

A relation R from A to B, denoted
by

R: A+ B,
is a subset of 4 x B.

R istheset {(c,z),(c,2),(d,z),(d,y),(d, 2)}

Notation: the predicates
(c,2)€R and c¢+—2z€R and cRz

are equivalent.

domR istheset {a:A | 3b:BeaRb}
ranR istheset {b:B | Ja:AeaRb}

Examples

11

‘ _<_:N&N

Vz,y:Ne
z<y < dk:Nex+k=y

i.e. the relation < is the infinite subset
{(0,0),(0,1),(1,1),(0,2),(1,2),(2,2),...}

of ordered pairs in N x N.

‘ divides : N; & N

Vz:Nj; y:Ne
rdividesy <& dk:Nezk=y

3 divides6 but — (3 divides 7)

12

Domain and Range Restriction/Subtraction

Suppose R: A+ Band S C A and T C B; then

S<1R istheset {(a,b):R | a€ S}
R>T istheset {(a,b):R | be T}

S<R istheset {(a,b):R | a¢ S}
ReT istheset {(a,b):R | bg T}

e.g. if
has_sibling : People <» People then

female < has_sibling is the relation is_sister_of
has_sibling > female is the relation has_sister

female < has_sibling is the relation is_brother_of
has_sibling & female is the relation has_brother

13

Relational Image

Suppose R: A< Band S C A
R(S)={b:B | Ja:SeaRb}
R(S)CB
divides({8,9} |

={z:N | Jk:Nez =8k V z =9k}
= {numbers divided by 8 or 9}

has_sibling(| male) = {people who have a brother}

14

Relational Composition

Suppose R: A+» Band S: B+ C

RgS
={(a,c):AxC | 3b:BeaRb N bSc}

S
A
RgSeAC

e.g.

is_parent_of § is_parent_of = is_grandparent_of

R°=id[4], R'=R, R*=R3R, R*=R3R3R,...

15

Functions
A (partial) function f from a set A to a set B, denoted by
f:A-+ B,

is a subset f of A x B with the property that for each a € A there is at most one
b € B with (a, b) € f. The function f is a total function, denoted

f:A— B,
if and only if dom f is the set A.
The predicates

(a,b) e f and f(a)=1b

are equivalent.

16

Sequences

A sequence s of elements from a set A, denoted
s:seqd,

is a function s : N + A where dom s = 1.. n for some natural number n. For
example,

(b, a,c,b) denotes the sequence (function){l — 5,2 +— a,3 — ¢, 4+ b}

The empty sequence is denoted by ().

The set of all sequences of elements from A is denoted seq A and is defined to be
seqA=={s: N+ A | 3n:Nedoms=1..n}
We define seq; A to be the set of all non-empty sequences, i.e.

seq A == seq A — {()}

Notice that: {a, b, a)# (a, a,b)# (a, b)

17

Special Functions for Sequences
Concatenation
(a,0)7(b, a,c)=(a,b,b,a,c)

Head, Last
‘ head, last : seq; A — A
‘ Vs :seq; A e head(s) = s(1) A last(s) = s(#s)

head{c,b,b)= ¢ last{c,b,b)y=1b

Tail
‘ tail : seq; A — seq A

‘ Vs :seq, A e (head(s)) tail(s) = s

tail(c, b, b)= (b, b)

18

Z Schemas: A Message Buffer Example

_Leve | Bifer Join

A number of messages are transmitted from one location to another.

Because of other traffic on the line each message for transmission is placed in a
buffer which outputs the message when the line is free.

This buffer may contain several messages at any time, but there is a fixed
upper limit on the number of messages the buffer may contain.

e The buffer operates on a first in/first out (FIFO) principle.

19

Formal Specification

The State Schema

[MSG] (The exact nature of these messages is not important)

is the set of all possible messages that could ever be transmitted.

| maz:N (The actual value of maz is not important)

is the constant maximum number of messages that can be held in the buffer at any

one time.

_ Buffer
items : seq MSG

#items < max

declaration

predicate

e.g. suppose MSG = {mq, my, mg} and maz =4

Then items = (my, ms) is an instance, but items = (mg, my, my, mg, Mma)

20

is not

Schema Inclusion and Operation/Initial Schemas

_ A Buffer _ A Buffer

Buffer items, items’ : seq MSG

B d .

uffer #items < maz A #items’ < maz
_Join _ Leave - Bufferyyyp ———
A Buffer A Buffer Buffer
2. 1.

msg? : MSG msg! : MSG items = ()

#items < maz items # &

items’ = items ™ (msg?) | items = (msg!) "items’

21

Combining Formal Specification with Object-Oriented Design

goes against the conventional view of separating the concerns of functionality and

design, but
e adds clarity and leads to simplification of large systems;

e helps with system abstraction and suggests a refinement into object-oriented

code.

Object-Z is an extension to Z developed at the University of Queensland. It
supports the design of object-oriented design.

e R. Duke and G. Rose, Formal Object Oriented Specification Using Object-Z. Cornerstones of
Computing Series (editors: R. Bird, C.A.R. Hoare), Macmillan Press, March 2000.

e G. Smith, The Object-Z Specification Language, Kluwer Academic Publishers, 2000.

22

Object-Z Basics: Buffer Example

__ Buffer[X]
INIT

maz : N liz'tems ={()
items : seq X
A
size : N
Fitems = size N size < max

_Join _ Leave
A(items) A(items)
i7: X il X
items’ = (i?) " items size # 0 A items = items’ ™ (il)

23

Exercise: For this Buffer class specify:

(a)

(b)

(©)

an operation count which, given a message, outputs the number of times that

message occurs in the buffer;

an operation duplicate which appends to the buffer the message currently at
the head of the buffer, provided the buffer is not empty or already full;

an operation titanic whereby a sequence of messages is appended to the buffer
except those messages for which there is no room are discarded (the buffer is
like a life-boat on the Titanic: people queue to get on, but once the boat is full

all the remaining people are left behind);

an operation penguin whereby, like the operation titanic, a sequence of
messages is input to the buffer, but this time the messages on the end of the
sequence are accepted while those at the front are discarded if there is no room
(the messages are acting like penguins, pushing out the messages already in the
buffer once the buffer is full).

24
Solution
_ count _ duplicate
m?: X A(items)
t': N .
coun #items € 1.. (maz — 1)
count! = #(items > {m?}) items’ = items " (head items)
_ titanic _ penguin
A(items) A(items)
s?:seq X s?:seq X
items' = (1..maz) < (items ™ s7) ds:seqX o
s " items’ = items 7 s?
s# () = Fitems' = maz

25

Two Linked Buffers (single thread)

— TwoBuffers[X]
IniT
by, by : Buffer|X] ’7b1.INIT A by INTT
b1 # bo

Join = by.Join
Leave = by.Leave
Transfer = by.Leave || by.Join

26

Alloy Overview

Alloy (developed at MIT by D. Jackson’s group) is a structural modelling language
based on first-order logic (a subset of Z) and specifications organised in a tree of
modules

Signature: A signature (sig) paragraph introduces a basic type and a collection
of relation (called field) in it along with the types of the fields and constraints
on their value. A signature may inherit fields and constraints from another
signature.

Function: A function (fun) captures behaviour constraints. It is a parameterised
formula that can be “applied” elsewhere,

Fact: Fact (fact) constrains the relations and objects. A fact is a formula that

takes no arguments and need not to be invoked explicitly; it is always true.

Assertion: An assertion (assert) specifies an intended property. It is a formula
whose correctness needs to be checked, assuming the facts in the model.

27

Alloy Analyser (AA)

e Constraint solver with automated simulation & checking
e Transforms a problem into a (usually huge) boolean formula

e A scope (finite bound) must be given

28

Alloy Basics

x (a scalar), {x} (a singleton set containing a scalar), (x) (a tuple) and {(x)} (a
relation) are all treated as the same as {(x)}. The relational composition (or join)

and product:

{x1, .., Xm, S)}.{(S, Y1,.., Ym)} = {(X1, .., Xm, Y1, .., Yn)}
{x1, .., Xm, SO} -> {(s, ¥1,.., o)} = {(X1, .., Xm, S, S, Y1, .., Yo}

29

Alloy Expression Examples

children = “parents
ancestors = “parents
descendants = “ancestors

Man = Person - Woman

mother = parents & (Person->Woman)
father = parents & (Person->Man)
siblings = parents. parents - iden [Person]

cousins = grandparents. grandparents - siblings - iden [Person]

30
Alloy Logical Operators
'F // negation: not F
F & G // conjunction: F and G
F || G // disjunction: F or G
F => G // implication: F implies G; same as !F || G
F <=> G // biimplication: F when G; same as F =>G && G => F
F => G,H // if F then G else H; same as F => G && !F => H
Quantifiers

all x: e | F

some x: e | F
no x: e | F
sole x: e | F

one x: e | F
one x:e, y:f | F
all disj x,y: e | F

31

Examples

// no polygamy

all p: Person | sole p.spouse

// a married person is his or her spouse’s spouse

all p: Person | some p.spouse => p.spouse.spouse = p

// no incest

no p: Person | some (p.spouse.parents & p.parents)

// a person’s siblings are those persons with the same parents
all p: Person | p.siblings = {q: Person | q.parents = p.parents} - p
// everybody has one mother

all p: Person | one p.parents & Woman

// somebody is everybodys ancestor

some x: Person | all p: Person | x in p.*parent

32
Alloy, UML and Z
Given the UML Class diagram
A B
X <<assoc>> Y

The corresponding Alloy expression:

assoc: A x ->y B

Given the Z expressions, the corresponding Alloy expressions:
inzZ: Ty — Ts

in Alloy: T1 —>! T2

inZ: T+ Ty

in Alloy: T1 ->7 T2

33

Module, Sig, Fact, Fun and Assert (example)

module CeilingsAndFloors

sig Platform {}

sig Man {ceiling, floor: Platform}

fact {all m: Man | some n: Man | Above (n,m)}

fun Above (m, n: Man) {m.floor = n.ceiling}

assert BelowToo {all m: Man | some n: Man | Above (m,n)}
run Above for 2

check BelowToo for 2

34

CSP/Timed CSP

e Hoare’s CSP (Communicating Sequential Processes) an event based notation
primarily aimed at describing the sequencing of behaviour within a process and
the synchronisation of behaviour (or communication) between processes.

e Timed CSP extends CSP by introducing a capability to quantify temporal
aspects of sequencing and synchronisation.

e S. Schneider. Concurrent and Real-time Systems: The CSP Approach, Wiley, 1999.

e A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.

e C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.

35

Prefix

A process which may participate in event a then act according to process
description P is written

a@t — P(t).

Other CSP/Timed-CSP primitives:

e P; @ (sequential composition)

P|[X]| Q (synchronous), P ||| @ (asynchronous)

e ¢ — P0Ob— @ (external choice), a = P M b — @ (internal choice)

P; V e — P, (interrupt process)

WarT t; P (delay), a — P >{t} @ (time-out)

36

Channel

A channel is a collection of events of the form c.n: the prefix c is called the channel
name and the collection of suffixes is called the wvalues of the channel.

When an event c.n occurs it is said that the value n is communicated on channel c.
When the value of a communication on a channel is determined by the environment
(external choice) it is called an input and when it is determined by the internal
state of the process (internal choice) it is called an output.

Recursion

Recursion is used to given finite representations of non-terminating processes. The

process expression
uPeal?ln:N— blf(n)— P

describes a process which repeatedly inputs a natural on channel a, calculates some
function f of the input, and then outputs the result on channel b.

37

Recall Overview

e Introduction to Software Modeling Techniques
— UML, Z, Alloy and CSP
V' Introduction to Semantic Web

— RDF, DAML~+OIL, OWL and ORL

e Semantic Web Environment for Software Specifications
— Linking Different Specification Languages through Semantic Web
— Specification Comprehension via RDF Query
e Software Design Method/Tools for Semantic Web
— Extracting DAML ontology from UML/Z models
— Semantics of DAML+OIL in Z/Alloy
— Combined Approach to Reasoning about Semantic Web

e Conclusion and Further Work

38

Semantic Web

e Goals

— Realizing the full potential of the Web

— Making it possible for tools (agents) to effectively process information.

— Ultimate goal - effective and efficient global information/knowledge
exchange

e Building on proven ideas

— Combines XML, RDF, hypertext and metadata approaches to linked

information

— Focuses on general principles of Web automation and data aggregation

39

Semantic Web Architectural Dependencies

Rules Trust
H M
. wc

Ontology vocabulary

Digital Signature

www.w3c.org (by Tim Berners-Lee)

40

WWW’04 Observations

e Semantic Web is the most popular topic (Tim attended every Semantic Web
session)

e More tools are reported with major companies involved (IBM, HP ...)

e Some showcase applications are demonstrated (magazine, museum, biomedical

e New companies in specializing Semantic Web appeared (e.g. Semagix)

41

RDF, DAML+OIL and OWL

e Resource Description Framework (RDF) — 1999

— An RDF document is a collection of assertions in subject verb object form
for describing web resources

— Provides interoperability between applications that exchange
machine-understandable information on the Web

— Use XML as a syntax, include XMLNS, and URIs
e DARPA Agent Markup Language (DAML+OIL) — 2001
— Semantic markup language based on RDF, and
— Extends RDF(S) with richer modelling primitives
— DAML combines Ontology Interchange Language (OIL).
e OWL Web Ontology Language — 2003 (become W3C rec)
— Based on DAML+OIL
— Three levels support: Lite, DL, Full

42

HTML and XML

e HTML

<H1> Semantic Web and Formal Methods</H1>

 Teacher: Jin Song Dong
 Students: s19908, s20015
 Requirements: discrete maths

o XML

<course>
<title> Semantic Web and Formal Methods </title>
<teacher> Jin Song Dong </teacher>
<students> s19908, s20015 </students>
<req> discrete maths </req>
</course>

43

Lack semantics in XML

e The XML is accepted as the emerging standard for data interchange on the
Web. XML allows authors to create their own markup (e.g. <course>), which

seems to carry some semantics.

e However, from a computational perspective tags like <course> carries as much
semantics as a tag like <H1>. A computer simply does not know, what a

course is and how the concept course is related to other concepts.

e XML may help humans predict what information might lie “between the tags”
in the case of <students> </students>, but XML can only help.

e Only feasible for closed collaboration, e.g., agents in a small and stable

community/intranet

44

RDF Basics

e Resources — Things being described by RDF expressions. Resources are
always named by URIs, e.g.

— HTML Document
— Specific XML element within the document source.

— Collection of pages

e Properties — Specific aspect, characteristic, attribute or relation used to
describe a resource, e.g. Creator, Title ...

o Statements —
Resource (Subject) + Property (Predicate) + Property Value (Object)

45

RDF Statement Example 1
Dong, Jin Song is the creator of the web page
http://www.comp.nus.edu.sg/cs4211
e Subject (Resource) - http://www.comp.nus.edu.sg/cs4211
e Predicate (Property) - Creator
e Object (Literal) Dong, Jin Song

Creator -
http://www.comp.nus.edu.sg/cs4211 Dong, Jin Song

46

RDF Statement Example 2

Dong, Jin Song whose e-mail is dongjs@comp.nus.edu.sg is the creator of the web
page http://www.comp.nus.edu.sg/cs4211

http://www.comp.nus.edu.sg/cs4211

Dong, Jin Song

‘ dongjs@comp.nus.edu.sg

47

RDF in XML syntax

<rdf:RDF xmlns:rdf="http://wuw.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description about="http://www.comp.nus.edu.sg/cs4211">
<dc:creator>Dong, Jin Song</dc:creator>
<dc:title>Advanced Software Engineering</dc:title>
<dc:date>2000-07-01</dc:date>

</rdf:Description>

</rdf :RDF>

48

RDF Containers

e Bag - An unordered list of resources or literals
e Sequence - An ordered list of resources or literals

e Alternative - A list of resources or literals that represent alternatives for the

value of a property

49

Container example: Sequence

Statement: The students of the course CS4211 in alphabetical order are Yuanfang
Li, Jun Sun and Hai Wang .

<rdf:RDF xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax—ns#
xmlns:s="http://www.schemas.org/Course/">
<rdf:Description about=http://www.comp.nus.edu.sg/"cs4211>
<s:students>
<rdf:Seqg>
<rdf:1i rdf:resource="http://www.comp.nus.edu.sg/ " liyf"/>
<rdf:1i rdf:resource="http://www.comp.nus.edu.sg/ sunj"/>
<rdf:1i rdf:resource="http://www.comp.nus.edu.sg/ wangh"/>
</rdf:Seq>
</s:students>
</rdf:Description>
</rdf :RDF>

50

RDF Schema

e Basic vocabulary to describe RDF vocabularies, e.g.,

Class, subClass0f, Property, subProperty0f, domain, range
e Defines properties of the resources (e.g., title, author, subject, etc)
e Defines kinds of resources being described (books, Web pages, people, etc)

e XML Schema gives specific constraints on the structure of an XML document
RDF Schema provides information about the interpretation of the RDF
statements

e RDF schema uses XML syntax, but could theoretically use any other syntax

51

RDF Schema Example (Class)

<?xml version="1.0"7>
<rdf:RDF xmlns:rdf="http://wuw.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="Person">
<rdfs:comment>Person Class</rdfs:comment>
<rdfs:subClass0f
rdf:resource="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Resource" />
</rdfs:Class>

<rdfs:Class rdf:ID="Student">
<rdfs:comment>Student Class</rdfs:comment>
<rdfs:subClass0f rdf:resource="#Person"/>
</rdfs:Class>

52

RDF Schema Example (Property)

<rdf :Property rdf:ID="teacher">
<rdfs:comment>Teacher of a course</rdfs:comment>
<rdfs:domain rdf:resource="#Course"/>
<rdfs:range rdf:resource="#Person"/>

</rdf :Property>

<rdf :Property rdf:ID="students">
<rdfs:comment>List of Students in alphabetical order</rdfs:comment>
<rdfs:domain rdf:resource="#Course"/>
<rdfs:range rdf:resource="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Seq"/
</rdf:Property>

53

Why RDF(S) is not enough

Only range/domain constraints on properties (need others)

e No properties of properties (unique, transitive, inverse, etc.)

No equivalence, disjointness, etc.

e No necessary and sufficient conditions (for class membership)

54

DAML+OIL

e Europe: Ontology Inference Language (OIL) extends RDF Schema to a
fully-fledged knowledge representation language.

e US: DARPA Agent Markup Language (DAML)
e Merged as DAML+OIL in 2001

logical expressions
— data-typing

— cardinality

quantifiers

e Becomes OWL — W3C 2004

55

DAML: Setting up the namespaces

<rdf :RDF
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:xsd ="http://www.w3.o0rg/2000/10/XMLSchema#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"

56

DAML: Define Classes

<rdfs:Class rdf:ID="Animal"> <rdfs:label>Animal</rdfs:label> </rdfs:Class>
<rdfs:Class rdf:ID="Male">
<rdfs:subClassOf rdf:resource="#Animal"/>
</rdfs:Class>
<rdfs:Class rdf:ID="Female">
<rdfs:subClassOf rdf:resource="#Animal"/>
<daml:disjointWith rdf:resource="#Male"/>
</rdfs:Class>
<rdfs:Class rdf:ID="Man">
<rdfs:subClass0f rdf:resource="#Person"/>
<rdfs:subClass0f rdf:resource="#Male"/> </rdfs:Class>

57

DAML: Define Properties

<rdf :Property rdf:ID="hasParent">
<rdfs:domain rdf:resource="#Animal"/>
<rdfs:range rdf:resource="#Animal"/>

</rdf :Property>

<rdf :Property rdf:ID="hasFather">
<rdfs:subProperty0f rdf:resource="#hasParent"/>
<rdfs:range rdf:resource="#Male"/>

</rdf :Property>

58

DAML: Define Restrictions

<rdfs:Class rdf:ID="Person"> <rdfs:subClass0f rdf:resource="#Animal"/>
<rdfs:subClass0f>
<daml:Restriction>
<daml:onProperty rdf:resource="#hasParent"/>
<daml:toClass rdf:resource="#Person"/>
</daml:Restriction> </rdfs:subClass0f>
<rdfs:subClass0f>
<daml:Restriction daml:cardinality="1">
<daml:onProperty rdf:resource="#hasFather"/>
</daml:Restriction> </rdfs:subClass0f>
<rdfs:subClass0f>
<daml:Restriction daml:maxcardinality="1">
<daml:onProperty rdf:resource="#hasSpouse"/>
</daml:Restriction> </rdfs:subClass0f>
</rdfs:Class>

59

DAML: UniqueProperty and Transitive

<daml:UniqueProperty rdf:ID="hasMother">
<rdfs:subProperty0f rdf:resource="#hasParent"/>
<rdfs:range rdf:resource="#Female"/>
</daml:UniqueProperty>

<daml:TransitiveProperty rdf:ID="hasAncestor">

<rdfs:label>hasAncestor</rdfs:label>
</daml:TransitiveProperty>

60

DAML: oneOf

<rdf :Property rdf:ID="hasHeight">
<rdfs:range rdf:resource="#Height"/>
</rdf:Property>

<rdfs:Class rdf:ID="Height">
<daml:one0f rdf:parseType="daml:collection">
<Height rdf:ID="short"/>
<Height rdf:ID="medium"/>
<Height rdf:ID="tall"/>
</daml :one0f>
</rdfs:Class>

61

DAML: hasValue and intersectionOf

<rdfs:Class rdf:ID="TallThing">
<daml:sameClassAs>
<daml:Restriction>
<daml:onProperty rdf:resource="#hasHeight"/>
<daml:hasValue rdf:resource="#tall"/>
</daml:Restriction>
</daml :sameClassAs>
</rdfs:Class>
<rdfs:Class rdf:ID="TallMan">
<daml:intersectionOf rdf:parseType="daml:collection">
<rdfs:Class rdf:about="#TallThing"/>
<rdfs:Class rdf:about="#Man"/>
</daml:intersectionOf>
</rdfs:Class>

62

DAML: instances

<Person rdf:ID="Adam">
<rdfs:label>Adam</rdfs:label>
<rdfs:comment>Adam is a person.</rdfs:comment>
<hasHeight rdf:resource=#medium/>

</Person>

63

OWL: The three sublanguages

OWL Lite supports those users primarily needing a classification hierarchy and
simple constraints. For example, while it supports cardinality constraints, it

only permits cardinality values of 0 or 1.

OWL DL supports those users who want the maximum expressiveness while
retaining computational completeness and decidability. OWL DL includes all
OWL language constructs, but they can be used only under certain restrictions
(for example, while a class may be a subclass of many classes, a class cannot be

an instance of another class).

OWL Full is meant for users who want maximum expressiveness and the
syntactic freedom of RDF with no computational guarantees. For example, in
OWL Full a class can be treated simultaneously as a collection of individuals

and as an individual in its own right.

64

OWL: Changes from DAML+OIL

With respect to the three sublanguages, the DAML+OIL semantics is closests
to the OWL DL semantics.

The namespace was changed to http://www.w3.0rg/2002/07/owl
Cyclic subclasses are now allowed
multiple rdfs:domain and rdfs:range properties are handled as intersection

Various properties and classes were renamed, e.g., daml:UniqueProperty is

replaced by owl:FunctionalProperty

... http://www.w3.org/TR/owl-ref/

65

Beyond OWL: Ontology Rule Language (ORL)

e Decidability vs Expressiveness
e OWL is weak in express composite properties

e ORL extends OWL DL with a form of rules while maintaining compatibility

with OWLs existing syntax and semantics.

e 1. Horrocks and P. F. Patel-Schneider, A Proposal for an OWL Rules
Language, ACM WWW’04, NY, May 2004

66

ORL Example

<owlx:Rule>
<owlx:antecedent>
<owlx:individualPropertyAtom owlx:property="hasParent">
<owlx:Variable owlx:name="x1" />
<owlx:Variable owlx:name="x2" />
</owlx:individualPropertyAtom>
<owlx:individualPropertyAtom owlx:property="hasBrother">
<owlx:Variable owlx:name="x2" />
<owlx:Variable owlx:name="x3" />
</owlx:individualPropertyAtom>
</owlx:antecedent>
<owlx:consequent>
<owlx:individualPropertyAtom owlx:property="hasUncle">
<owlx:Variable owlx:name="x1" />
<owlx:Variable owlx:name="x3" />
</owlx:individualPropertyAtom>
</owlx:consequent>
</owlx:Rule>

67

Other Rule Languages at WWW?’04

Rule system examples presented at WWW’04 conference in May 2004:
e cwm rules and SweetRules (MIT/W3C)
e Jena2 rules (HP)
e CommonRule (IBM)
¢ ROWL (CMU)

68

Recall Overview

e Introduction to Software Modeling Techniques

— UML, Z, Alloy and CSP

e Introduction to Semantic Web
— RDF, DAML+OIL, OWL and ORL
v' Semantic Web Environment for Software Specifications
— Linking Different Specification Languages through Semantic Web
— Specification Comprehension via RDF Query
e Software Design Method/Tools for Semantic Web
— Extracting DAML ontology from UML/Z models
— Semantics of DAML4OIL in Z/Alloy
— Combined Approach to Reasoning about Semantic Web

e Conclusion and Further Work

69

Specification Languages and Their Integrations

e Many formal specification techniques exist for modeling different aspects of

software systems, however,

e it is difficult to find a single notation that can model all functionalities of a

complex system.

e E.g., B/VDM/Z are designed for modeling system data/states, while
CSP/m-calculus are designed for modeling system behaviour /interactions.

e Various formal notations are often extended and combined for modeling large
and complex systems. In recent years, integrated formal method (IFM) has

been a popular research topic, i.e.
IFM’99 (York), IFM’00 (Dagstuhl), IFM’02 (Turku), IFM’04 (Kent).

e Due to different motivations, there are possible different semantic links between

two formalisms, which can lead to different integrations between the two.

70

Integrated Formal Methods

e Unlike UML, an industrial effort for standardising diagrammatic notations, a
single dominating integrated formal method may not exist in the near future.
The reason may be partially due to the fact that

— there are many different well established individual schools,

— the open nature of the research community, i.e. FME, which is different

from the industrial ‘globalisation’ community, i.e. OMG.

e Regardless of whether there will be or there should be an ultimate integrated
formal method (like UML), diversity seems to be the current reality for formal
methods and their integrations. Such a diversity may have an advantage, that
is, different formal methods and their combinations may be suitable for
different kinds of complex systems modeling.

e Challenge: to develop environment/tools for extending and combining various
formal specification techniques — Semantic Web

71

Semantic Web environment for Z

<rdf :RDF
xmlns:rdfs = "http://www.w3.org/2000/01/rdf-schema#"
xmlns:daml = "http://www.daml.org/2001/03/daml+oil#"
xmlns:z = "http://nt-appn.comp.nus.edu.sg/fm/zdaml/Z#">
<l-- .. ==
<rdfs:Class rdf:ID="Schemadef">
<rdfs:label>Schemadef</rdfs:label> </rdfs:Class>
<rdfs:Class rdf:ID="Schemadefbox">
<rdfs:label>Schemadefbox</rdfs:label>
<rdfs:subClass0f rdf:resource="#Schemadef"/>
<rdfs:subClass0f>
<daml:Restriction daml:cardinalityQ="1">
<daml:onProperty rdf:resource="#name"/></daml:Restriction></rdfs:subClass0f>
<rdfs:subClass0£f>
<daml:Restriction daml:minCardinality="0">
<daml:onProperty rdf:resource="#delta"/>
<daml:toClass rdf:resource="#Schemadef"/></daml:Restriction></rdfs:subClass0f>
<l-— ... >
72

Example: Semantic Web environment for Z

_ Buffer
Mazx : 7Z
items : seq MSG rdf:type

Fitems < Mazx Zname » Buffer

z:pred

7 Semantic Web environments can be easily extended for Object-Z. Similarly, other
formalisms, i.e. CSP and TCSP, can be also constructed. Linking different

formalisms is an interesting issue.

73

Semantics Links

e Various modeling methods can be used in an effective combination for
designing complex systems if the semantic links between those methods can be
clearly established and defined.

— e.g. ‘mapping sets of Z operations into CSP actions’ A. Hall [FME’02]

e Given two sets of formalisms, say state-based ones and event-based ones, it’s
not too surprising to see that different possible integrations are more than the
cross-product of the two sets. This is simply because the different semantic
links between the two formalisms lead to different integrations.

e Furthermore, the semantic links can be directional and bi-directional.

74

Object-Z ™ CSP : class = process (Smith and Derrick, FME’97)

__ Buffer
IntT
maz : N; items : seq MSG liitems =()
F#items < max
_Join — Leave
A(items) A(items)
i7: MSG il MSG
#items < mazx #items # 0
items’ = (i?)"items items = items’ ™ (i!)

Buffer; = Buffer|Transfer / Leave]
Buffer, = Buffer|Transfer/Join]
TwoLinkedBuffers = Buffer, || Transfer || Buffers

75

Object-Z ™ CSP : operation <= process (Mahony and Dong, ICSE’98)

__ TBuffer
Buffer

left, right : chan [input and output channels]

MAIN = 1 Q o ([i : MSG] e left?i — Join O
[#items # 0] e rightllast(items) — Leave); Q

Two Communicating Buffers

TwoLinkedBuffers,

[: TBuffer[middle/right]
r : TBuffer[middle/left]

MAIN = [|[middle]| r

76

Semantic Web for linking Object-Z and CSP

class = process

<daml:0Ontology rdf:about="">
<daml:imports rdf:resource="http://nt-appn.comp.nus.edu.sg/fm/zdaml/0Z"/>
<daml:imports rdf:resource="http://nt-appn.comp.nus.edu.sg/fm/zdaml/CSP"/>
</daml:0Ontology>
<rdfs:Class rdf:about="oz:Classdef">
<rdfs:subClass0f rdf:resource="csp:Pro"/> </rdfs:Class>

operation <= process

<daml:0bjectProperty rdf:ID="MAIN">

<rdfs:range rdf:resource="csp:Process"/>

<rdfs:domain rdf:resource="#Classdef"/> </daml:0bjectProperty>
<rdfs:Class rdf:about="oz:0P">

<daml:sameClassAs rdf:resource="csp:Process"/> </rdfs:Class>

77

= RDF Query Analyzer - [tbuffer.rql] |[‘$Z|
5| x

@ File Edit Wew Server Query Window Help = [I=}
== P ®
s=elect all class name derived from Buffer ~

==lect Yc_name using buffer where
{[http:~www w3 org-1999-02-22—rdf —syntaz-n=#type]
?c [http:“nt—appn.comnp.nus.edu. sg-fnzdanl - 0Z¥Classdefl]}
and {[http: »nt—appn.comnp.nus.edu.sg fn zdanl-Z#namns] 7c 'Buffer'?}
and {[http:-nt—appn.comp.nus.edu. sg inzdanl - 0Z#inherit] ?derivedc ?c}
and {[http: " nt—appn.comp.nus.edu. sg fn zdanl-Z#nane] 7Tderivedc ?c_namel}

il ! b4
c_name -~
Toutier

completed: 1 records in 0.0 seconds o
< | 5
|R-|;ady Ln 44, Col 1

Find all the sub-classes of the Buffer

Specification Comprehension

78

Recall Overview

e Introduction to Software Modeling Techniques

— UML, Z, Alloy and CSP

e Introduction to Semantic Web
— RDF, DAML+OIL, OWL and ORL
e Semantic Web Environment for Software Specifications
— Linking Different Specification Languages through Semantic Web
— Specification Comprehension via RDF Query
V' Software Design Method/Tools for Semantic Web
— Extracting DAML ontology from UML/Z models
— Semantics of DAML4OIL in Z/Alloy
— Combined Approach to Reasoning about Semantic Web

e Conclusion and Further Work

79

Problems in designing Semantic Web ontology /services

e Semantic Web languages are not expressive enough for designing Semantic Web
complex ontology properties and service/agents.

Require a systematic design process with expressive high level modeling techniques

Solution: software specifications

80

Some DAML constructs in Abstract Form

Abstract DAML constructs | Description

daml_class classes

daml_subclass|C] subclasses of C

daml_objectproperty|D < R] relation properties with domain D, range R
daml_objectproperty[D — R] function properties with domain D, range R
daml_subproperty|P] sub properties of P

instanceof [C] instances of the DAML class C

81

Extracting DAML ontology from UML Models

There are a few approaches (e.g. [2, 10]) to transform UML class models to DAML

ontology. One particular approach [1] is to extend UML meta model to directly

include the notion of ‘Property’ and ‘Restriction’. For example, a property

restriction ‘work_for’ can be represented as:

Employee

Company

work_for p»

82

Extracting DAML ontology from the Z model

Z can be used to model web-based ontology at various levels. The Z conceptual
domain models can be transformed to DAML+OIL ontology via XSLT technology.

Given type transformation

[T]

T € daml_class

e.g.
[Author]

<daml:class rdf:ID="author">

<rdfs:label>Author</rdfs:label> </daml:Class>

83

Z schema transformation

S
{X:Tl; Y :PTs

T, T2 € daml_class

S € daml_class, X € daml_objectproperty[S — T1], Y € daml_objectproperty[S < T3]

Paper
Ftitle : Title; authors : P Author

<daml:class rdf:ID="paper"> <rdfs:label>Paper</rdfs:label> </daml:Class>
<daml:0bjectProperty rdf:ID="paper_title"> <rdf:type rdf:resource="
http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>

<rdf:domain rdf:resource="#paper"/>

<rdf:range rdf:resource="#title"/> </daml:0bjectProperty>
<daml:0bjectProperty rdf:ID="paper_authors">

<rdf :domain rdf:resource="#paper"/>

<rdf:range rdf:resource="#author"/> </daml:0bjectProperty>

84

Z axiomatic definition transformation (relation/functions)

R:B <+ (—,+)C B, C € daml_class

R € daml_objectproperty[B + (—,+)C]

| reference : Paper <+ Paper <daml:0bjectProperty rdf:ID="paper_reference">
<rdfs:domain rdf:resource="#paper"/>
<rdfs:range rdf:resource="#paper"/>
</daml:0bjectProperty>

85

Z axiomatic definition transformation (subset)

M:PN N € daml_class

M € daml_subclass[N]

Biannual : P ConfSeries <daml:class rdf:ID="biannual">
<rdfs:subClass0f rdf:resource="#confseries"/>

</daml:class>

86

Exercise: Convert Z spec to DAML

[Students, Code, Title] Course_____ | GraduateCourse : P Course
code : Code enrolment : Students <> Course
title : Title

Convert the Z spec to DAML:

87

<daml:class rdf:ID="student"> <rdfs:label>Student</rdfs:label> </daml:Class>
<daml:class rdf:ID="code"> <rdfs:label>Code</rdfs:label> </daml:Class>
<daml:class rdf:ID="title"> <rdfs:label>Title</rdfs:label> </daml:Class>

<daml:class rdf:ID="course"> <rdfs:label>Course</rdfs:label> </daml:Class>

<daml:0bjectProperty rdf:ID="course_code">

<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdf:domain rdf:resource="#course"/> <rdf:range rdf:resource="#code"/>

</daml :0bjectProperty>

<daml:0bjectProperty rdf:ID="course_title">

<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdf:domain rdf:resource="#course"/> <rdf:range rdf:resource="#coursetitle"/>

</daml :0bjectProperty>

<daml:class rdf:ID="graduatecourse">

<rdfs:subClass0f rdf:resource="#course"/> </daml:class>
<daml:0bjectProperty rdf:ID="enrolment">

<rdfs:domain rdf:resource="#student"/> <rdfs:range rdf:resource="#course"/>
</daml :0bjectProperty>

88

Improve the ontology quality through Z tools

Z/EVES tool is an interactive system for composing, checking, and analyzing Z
specifications. It supports the analysis of Z specifications in several ways: syntax
and type checking, schema expansion, precondition calculation, domain checking,
and general theorem proving. Some ontology related flaws in Z model can be
detected and removed with the assistance of Z/EVES so that the transformed
DAML ontology from checked Z model will have better quality.

Alternatively, one can develop reverse transformation tools from DAML ontology
to the formal specifications then to use formal specification tools to detect domain

and logical errors that the current DAML reasoner is not able to detect.

89

Checking Military Plan Ontology Experience

e Singapore DSO has developed an IE engine which has been used to generate
ontologies (in DAML) from military formation and plan (in natural language).
e A military ontology is made up of the following four main ingredient sets.

— military operations and tasks, which define the logic order, type , and
phases of a military campaign.

— military units, which are the participants of the military operations and
tasks,

— geographic locations, where such operations take place and
— time points for constraining the timing of such operations.
e We have developed an auto transformation tool that takes DAML document

and produces Z specifications, then we use Z/EVES tool to check the type
errors and ontology consistency issues.

e Checking beyond web ontology (e.g. one military unit assigned two different
tasks at the same time period)

90

A Real Military Case Study Statistics in Z/EVES

Items Numbers
Resources 138
Operations, tasks, phases 56

Units 47
Geographic areas 35
Statements (in RDF) 592

Transformed Axiomatic Defs (in Z) | 138

Transformed Predicates (in Z) 410
Type errors 22
DAML related ontology errors 0
errors beyond DAML 2

91

Recall Overview

e Introduction to Software Modeling Techniques

— UML, Z, Alloy and CSP

Introduction to Semantic Web

— RDF, DAML~+OIL, OWL and ORL

Semantic Web Environment for Software Specifications
— Linking Different Specification Languages through Semantic Web
— Specification Comprehension via RDF Query

Software Design Method/Tools for Semantic Web

— Extracting DAML ontology from UML/Z models

v" Semantics of DAML~+OIL in Z/Alloy

— Combined Approach to Reasoning about Semantic Web

e Conclusion and Further Work

92

Ontology Tools: A Brief Survey

e RDF reasoner: Cwm, Triple

e Fast Classification of Terminologies (FaCT)
— Supports consistency & subsumption reasoning (TBox)

— Does not support instantiation reasoning (ABox)

Renamed ABox and Concept Expression Reasoner (RACER)
— Supports TBox & ABox reasoning

— Includes richer functionalities compared to FaCT

FaCT & RACER are fully automated

OilEd: graphical ontology editor that supports FaCT & RACER

93

Z/Alloy Semantics for DAML+OIL

Basic Concepts

e Resource

[Resource] sig Resource {}

e Class & instances

Class : IP Resource disj sig Class extends Resource

instances : {instances: set Resource}
Class — P Resource

e Property & sub_val

Property : P Resource
disj sig Property extends Resource

Class N Property = & {sub_val: Resource -> Resource}

sub_val : Property
— (Resource <> Resource)

94

Z/Alloy Semantics for DAML+OIL

Class Relationships

e subClassof & disjointWith

subClassOf : Class <+ Class
disjoint With : Class <> Class

Veci,co: Class @
¢1 subClassOf co < instances(c1) € Pinstances(cz)
¢y disjointWith cy < instances(c1) N instances(cz) = &

fun subClass0f(cl, c2: Class)
{c2.instances in c1.instances}
fun disjointWith (cl1, c2: Class)
{no cil.instances & c2.instances}

95

Z/Alloy Semantics for DAML+OIL

Class € Property

e toClass

‘ toClass : (Class x Property) <+ Class

V1, co : Class; p : Property o (c1,p) toClass ¢ &
(V a1, ap : Resource ® a; € instances(c1) <
((a1, a2) € sub_val(p) = ap € instances(cz2)))

fun toClass (p:Property, cl:Class, c2:Class)
{all al, a2: Resource | al in cl.instances <=>
a2 in al.(p.sub_val) => a2 in c2.instances}

— Example: Anything that breathes Fish, Gill : Class
by gill is a fish, including all Breathe_by : Property

those don’t breathe at all! (Fish, Breathe_by) toClass Gill

96

Z/Alloy Semantics for DAML+OIL

Class € Property (continued)

e hasValue

‘ hasValue : (Class x Property) <+ Resource

V¢ : Class; p : Property; r : Resource
(¢, p) hasValue r <
(Va : instances(c) o (a,r) € sub_val(p))

fun hasValue (p:Property, c:Class, r:Resource)
{all a:Resource |
a in c.instances => a.(p.sub_val) = r}

97

Z/Alloy Semantics for DAML+OIL

Property Relationships

e subPropertyOf
‘ subPropertyOf : Property <> Property

Y p1, p2 : Property e
p1 subPropertyOf ps <
sub_val(p1) € P sub_val(ps)

fun subProperty0f (pl, p2:Property)
{pl.sub_val in p2.sub_val}

98

Import Mechanism & Proof Support for Z/EVES

e Import mechanism
— 7 definitions are put into a section daml2z
— Alloy definitions are put into a module DAML

— Other transformed ontologies have these definitions as parents

e Proof support for Z/EVES
— Definitions alone are not adequate
— Trivial proof goals should be automated

— A section DAML2ZRules of rewrite, assumption & forward rules are
constructed

99

Military Plan Ontology
e Developed by DSO Singapore, defining concepts in military domain:
military.daml
e Instance ontologies generated from plain text by IE engine

e Contains sets of

— Military operations & tasks

Military units

— Geographic locations

Time points

100

Transformation

e DAML+-OIL to Z
— Developed a Java tool for automatic transformation
— Supports both plan & instance ontologies

— A number of enhancements made
Z predicates marked by labels as (rewrite or assumption) rules
Time points modeled as natural numbers N
Domain-specific theorems are added
Supports Unique Name Assumption
Additional predicates added to facilitate proof

e DAML+4OIL to Alloy
— More straightforward

— Using an XSLT stylesheet

101

Transformation: Example

e DAML+4-OIL:

<daml:Class rdf:about="http://www.dso.org.sg/
PlanOntology#MilitaryTask">
<rdfs:label>MilitaryTask</rdfs:label>
<rdfs:subClass0f>

<daml:Class rdf:about="http://www.dso.org.sg/
PlanOntology#MilitaryProcess"/>

</rdfs:subClass0f>

</daml:Class>

o 7:
‘ MilitaryTask : Class
(grule MilitaryTask_subClassOf_MilitaryProcess))
(Military Task, MilitaryProcess) € subClassOf
e Alloy:

static disj sig MilitaryTask extends Class {}
fact{subClass(MilitaryProcess, MilitaryTask)}

102

Recall Overview

e Introduction to Software Modeling Techniques

— UML, Z, Alloy and CSP

Introduction to Semantic Web

— RDF, DAML~+OIL, OWL and ORL

Semantic Web Environment for Software Specifications
— Linking Different Specification Languages through Semantic Web
— Specification Comprehension via RDF Query

Software Design Method/Tools for Semantic Web

— Extracting DAML ontology from UML/Z models
— Semantics of DAML4OIL in Z/Alloy

v" The Combined Approach

Conclusion and Further Work

103

The Combined Approach

1. Transforms ontology to Z & type-check using Z/EVES

e Semi-automated
2. Use RACER & OilEd to check for ontological inconsistencies

3. If inconsistencies found, use AA to pinpoint them

o Iterate steps 2 & 3 until RACER finds no inconsistency

4. If an instance ontology, use Z/EVES to check for properties inexpressible in
DAML+OIL & Alloy

e Interactive...

104

Standard SW Reasoning
e Step 1: Z/EVES finds no type errors in (transformed) military.daml

e Step 2: RACER complains about an inconsistent class,
PrepareDemolition-MilitaryTask on the left

loix
File Log Reasoner Help Export
eeee «elviaa
e [P Pt T o A | NS
Classes Name Properties.
@ FrepareDemoliion-MiltanTask#1 [| [FrepareDemolifon-WiltanTask @ SubtlassOf
[E] Project-MilitaryTask #1 F ‘ o &
RelatireTimenlereal #6
Documentation

RelativaTimePoint #6
RelativeTimePosition #5
Reserve-MilitaryTask #1

I gl

SecuritgScreen-MilitaryTask #1 Classes
TargetMilitaryTask #1 [MintaryTask #1
[E] TimeDuration #3 L
[E] TimeMeasure #3 | X s X
7'”“““‘"‘” Resrictions
€] TurningMovement MilitaryTask #1

e d . property | [LI3 I]
W;mrmaﬂ | = to-class MiltaryTask: assignedTo#1 EngmeerUnit #7 -
s @ to-ciass WiltanTask assignedTo#1 Artillen ringUnit #7 -
‘ | B+ X
D:VACademiciRAVdemo- 2001 04 \ontologiesimilitary

| | R

105

Standard SW Reasoning (continued)

e However, RACER cannot tell where the inconsistency is
e Step 3: Extract fragment of ontology according to OilEd

e AA finds the inconsistency, and it gives the possible cause in red color

(beta release) =10 x|
File Edit Teols Commands . Help
[7] DeiAcademic RA'alloy_ucore_win on sacce-se (7] unsat core e .
static dis) sig ModernMilitaryUnit extends Class{} [111 Farmutas: { 11 unividema 1/ibraDAMUC s3] - dema tfibrany’
otatic dis) sig EngineerUnit, ArtilleryFiringUnit extends Clagl'® 31/ formwia for funclion dumimy
ifact {subl.ass0f (ModernMilitaryUnit, ArtilleryFiringlnit)} @ 3141 all non-excluded global consirainis
fact {subC_assOf (ModernMilitaryUnit, EngineerUnit)} ® 311 Formulas { unividema 1/ibrard DAMUC lass] - demao flibre
static dis) sig EngineeringMilitarySpeciality extends Resourc @[1/1 constraints for basic signature demo 1/ ibrandDAMLICY
static dis) sig speciality extends Property {} @[3 1/1 constraints for basic signature demo 1/ibrandDAMLPY
fact{hasVa ue(speciality, Engineerinit, EngineeringMilitarySp @[3 0i1 constraints for basic signature demo 1/ ibraryDAMLR
®- 3 01 Fact incansistency_militang_Fact_134
fact . ®- 3 01 Fact incansistency_militany_Fact_139
T A A BT ®- 3 01 Fact incansistency_militang_Fact_140
Preparebenolition MilitaryTask, ArcilleryFiringUnitibe. T~ (301 Factincansistency militand_Facl 143
% ~ L] _Fact
ek st e © 31111 Fact incansistency_military_Fact_144
s Pz"{’““"‘““““‘ HilitaryTodk, Engincerlit)} $——_ B “we-[9 111 Factinconsistency_mikary_Facl_145
o [%3 111 Fact incansstency_mili ;
A TN y_militarg_Fact_146
assignedTo.sub_val). [EngineerUnit.inscances) j¢——— |
! s x S 4 & 101 Factinconsistency_military’_Fact_147
e e e} © 7 1i1 instantiations of polymorphic fact, Fact stdiordy_Fact_1

Line 1, Column 1

106

More Advanced Reasoning

e Applied to instance ontology planA.daml: 954 RDF statements, 195 subjects

e Ontology fragment:

<rdf:Description rdf:about=’G. SMILAX’>

<rdf :type rdf:resource=’http://www.dso.org.sg/PlanOntology#AxisOfAdvance’/>
</rdf:Description>
<rdf:Description rdf:about=’InfantryBattalion_aab’>

<rdf :type rdf:resource=’http://www.dso.org.sg/PlanOntology#InfantryBattalion’/>
</rdf :Description>

G_SMILAX : Resource InfantryBattalion_aab : Resource

{(grule G_SMILAX_type)) {(grule InfantryBattalion aab_type))

G_SMILAX € InfantryBattalion_aab €
instances(AzisOfAdvance) instances(InfantryBattalion)

e 28 type errors discovered by Z/EVES: mostly caused by re-definition
e No ontological errors found by RACER

107

More Advanced Reasoning (continued)

e Use domain-specific theorems to systematically test the consistency of the
ontology

e E.g.. “no military task should be the sub task of itself and its start time should
be less than or equal to its end time”.

e Once a goal cannot be proved: negate the theorem and prove

e 14 hidden errors found by Z/EVES in step 4

2: military task’s start time greater than end time

— 4: military task doesn’t have end time defined

3: military unit assigned to different tasks simultaneously

5: military tasks with more than one start or end time point

108

Local Consistency

e “No military task should be the sub task of itself and its start time should be
less than or equal to its end time” — local consistency of military tasks

theorem MilitaryTaskTimeSubTaskTest1
Vz : instances(MilitaryTask) e
start(z) < end(z) A z & (sub_val(subTaskOf))({z} |
e Systematically test all instances of MilitaryTask
e Example: the remaining goal of one inconsistent example:ECA_P3_P3_S1

-z = FECA_P3_P3_51

e Apparent contradiction: negate the theorem & prove again

theorem negatedMilitary TaskTimeSubTaskTest1
dz : instances(MilitaryTask)
= (start(z) < end(z) A z & (sub_val (subTaskOf))({z})

109

Temporal Relationships Retween Tasks

o “Sub tasks’s duration must be within its super tasks’ durations”

theorem subTaskOfTimingTest2
Yz : instances(MilitaryTask) e
Vy : P(instances(Military Task)) |
y = (sub_val(subTaskOf))({z} | o
Vz:y e start(z) < start(z) A end(z) > end(z)

e y is the set of super tasks of z, z is any member of y

e Local consistency ensured by the previous theorem, hence
start(z) < start(z) A end(z) > end(z) is sufficient

110

Military tasks € units

o “No military task is to be assigned to 2 different tasks at the same time”

theorem MilitaryUnitTest
V z : instances(ModernMilitaryUnit) e Y y, z : instances(Military Task) |
z € (sub_val(assignedTo))({y} |) A z € (sub_val(assignedTo))({z}) ®
end(y) < start(z) V end(z) < start(y)

Since local consistency has been ensured for each military task, predicate
end(y) < start(z) V end(z) < start(y) is sufficient

Example: the remaining goal for military tasks ECA_P3_P5_S1 &
ECA_P3_P5_83 and military unit CHF_1

z = ECA_P3_P5_S1 A y = ECA_P3_P5_S3
= -z = CHF_1

e An obvious contradiction, negate the theorem & prove again

3 such errors were found

111

Summary of the Combined Approach

e The combination of SW & SE reasoning tools effectively checks
ontology-related properties

e Results of the synergy
— Automatedly find ontological inconsistencies using RACER
— Isolate & find the source of the inconsistencies using Alloy Analyser
— Interactively checks for more complex properties (inexpressible in

DAML+OIL) using Z/EVES

e Application to the second military-domain case study revealed 1 ontological
inconsistency & 14 hidden errors

112

Tool Environment for the Combined Approach (on going)

£ DAML Formal Environment - D\ Academic' RA' ontology' all.daml = =10l x|
Fle Edt Took Ervironments Help

| m|[alo|@|«=|E]|
ROFDAML Orioiogy | atoy Specitication| 2 Specificstion |
xml wersion="1,0" encoding="UTF-8"2> é
rdf:FDF xmlns:danl="heep: //www.daml. oxg/2001 /03/daml+oil "
®alns:de="http: //purl. org/de/elements/L. 1/~
xulna:ns0="htep: //www. dgo.org. sg/Planintology /Ontology/DAML funit_ech_ont. dauld™
xulns:oiled="hetp: //ing.cs,. man, ac.uk/oil/olleds™
xmlns:rdf="http://www.w3.org/1999,/02/22-rdf -syntax-nsf"
¥alns:rdfs="http: //www, w3.0rg/2000/01/rdf-schenad” xmlnsixsd="http://www, w3.org/2000/10/5MLSChenad >
<daml:0Ontology rdf:abour="">
<dc:titlerPlan Ontology</dc: title>
<dc:date></dc:date>
<dcicreator></dcicreator>
<dc:description></dc: descriptions
<do:subjecty</dot subjects
<danl:versionlnfo>< /daml:versionInfo>
</danl: ntology>
<daml:Class
lrdf: about="http: //wwr. dso. oLy, sg/Planintology/Ontology /DAML /mil_task_ont,daml#HastyDefend-MilitaryTask™>
<rdfs:label>HastyDefend-MilitaryTask< /rdfs: labal>
<rdfs:coument>A hasty defence is undertaken when enewy contact

is imminent.</rdfs:comment>
<oiled:creationbate>2002-03-05T09: 30: 25Z</0iled: creationDate>
<olled:creator>lchewhun</oiled: creator>
<rdfs:subClass0f>
<daml:Class
v df : about="htrp: / /www. dso. ory. sg/Planintology/Ontol ogy /DAML /mil_task_ont.danl#DefensiveNilitaryTask” />
</rdfs: subClass0f>
</daml:Class>
<daml:Class rdf:about="htep://teknovledge.com/ontology/Merge. txrélandirea™ L'J

Opered D A cadenioRArtoiogyal dami

113

Tutorial Conclusion

e Semantic Web
v' good support for automation, collaboration, extension and integration
x less expressive and no systematic design process for web ontology/agents
e Software Specifications
v’ expressive, diverse and can be combined effectively
X weak in linking various methods for collaborative design
e Approaches
v' Semantic Web environment for linking various formalisms (FME’02)
v Extracting web ontologies systematically from Z specifications (ICFEM’02)

v" Checking Semantic Web Using Software Tools (FME’03, ICSE’04,
WWW’04)

114

Possible Future Research

e Software Engineering for Semantic Web:
— Software specification languages (like Z) as Semantic Web languages
— Web Services (OWL-S) Specifications

— Model behaviors of intelligent Semantic Web agents using Z, process algebra
or integrated formal methods

e Semantic Web for Software Engineering
— Meta integrating environment for software modeling

— Intelligent Software Engineering Environment

115

Recent Publications

The research on Formal methods and Semantic Web has been investigated in
8,9, 7,12, 6, 4, 5|. The research on UML and Semantic Web has been investigated
in [3, 11, 1, 2, 10].

References

(1

2]

(3]

(4]

(5]

K. Baclawski, M. Kokar, P. Kogut, L. Hart, J. Smith, W. Holmes, J. Letkowski, and M. Aronson.
Extending UML to Support Ontology Engineering for the Semantic Web. In M. Gogolla and
C. Kobryn, editors, UML’01, Lect. Notes in Comput. Sci. Springer-Verlag, 2001.

S. Cranefield. Networked knowledge representation and exchange using uml and rdf. Journal of
Digital Information, 1(8), 2001.

S. Cranefield and M. Purvis. Uml as an ontology modeling language. In IJCAI Workshop of
Intelligent Information Integration, 1999.

J. S. Dong, C. H. Lee, H. B. Lee, Y. F. Li, and H. Wang. A Combined Approach to Checking Web
Ontology. In The 18th International World Wide Web Conference (WWW’04), refereed papers
track. ACM Press, May 2004.

J. S. Dong, C. H .Lee, Y. F. Li, and H. Wang. Verifying DAML+OIL and Beyond in Z/EVES. In
The 26th International Conference on Software Engineering (ICSE’04). IEEE Press, May 2004.

116

(6]

(7]

(8]

(9]

(10]

(1]

(12]

J. S. Dong, J. Sun, and H. Wang. Semantic Web for Extending and Linking Formalisms. In L.-H.
Eriksson and P. A. Lindsay, editors, Proceedings of Formal Methods Europe: FME’02, pages
587—606, Copenhagen, Denmark, July 2002. LNCS, Springer-Verlag.

J. S. Dong, J. Sun, and H. Wang. Z Approach to Semantic Web. In C. George and H. Miao,
editors, International Conference on Formal Engineering Methods (ICFEM’02), pages 156—167.
LNCS, Springer-Verlag, October 2002.

J. S. Dong, J. Sun, and H. Wang. Checking and Reasoning about Semantic Web through Alloy. In
Proceedings of 12th Internation Symposium on Formal Methods Europe: FM’03, pages 796-813,
Pisa, Italy, September 2003. LNCS, Springer-Verlag.

J. S. Dong, J. Sun, H. Wang, C. H. Lee, and H. B. Lee. Analysing Semantic Web: A Military Case
Study. In The 15th International Conference on Software Engineering and Knowledge
Engineering (SEKE’03), San Francisco, USA, June 2003.

K. Falkovych, M. Sabou, and H. Stuckenschmidt. Uml for the semantic web: Transformation-based
approaches, 2003. in B. Omelayenko and M. Klein: Knowledge Transformation for the Semantic
Web, I0S Press.

P. Kogut, S. Cranefield, L. Hart, M. Dutra, K. Baclawski, M. Kokar, and J. Smith. UML for
Ontology Development. Knowledge Engineering Review, 17, 2002.

Hai Wang. Semantic Web and Formal Design Methods. PhD thesis, National University of
Sinagpore, 2004. (to appear).

117

