
CS4234

NATIONAL UNIVERSITY OF SINGAPORE

CS4234 - Optimization Algorithms

(Semester 1 AY2015/16)

Time Allowed: 2 Hour

INSTRUCTIONS TO STUDENTS

a. Write your Student Number below, and on every page. Do not write your name.

b. The assessment contains SIX multi-part problems (and one just for fun). You have 120 minutes to
earn 100 points.

c. The assessment contains 18 pages, including the cover page and 4 pages of scratch paper.

d. The assessment is closed book. You may bring two double-sided sheet of A4 paper to the assessment.
You may not use a calculator, your mobile phone, or any other electronic device.

e. Write your solutions in the space provided. If you need more space, please use the scratch paper at the
end of the assessment. Do not put part of the answer to one problem on a page for another problem.

f. Show your work. Partial credit will be given. Please be neat.

g. You may use (unchanged) any algorithm or data structure that we have studied in class, without
restating it. If you want to modify the algorithm, you must explain exactly how your version works.

h. Draw pictures frequently to illustrate your ideas.

i. Good luck!

Student Number:

EXAMINER’S USE ONLY

Question Mark Score

1 Maximum Flow, Maximum Fun 16
2 Linear Programming 20
3 Hill Climbing 14
4 Short Proof 10
5 Hitting Set 20
6 Sharing the Work 20

TOTAL 100

Student. Num.: CS4234 Final Assessment: p. 2

Problem 1. Maximum Flow, Maximum Fun [16 points]

For both parts of this problem, consider the following flow network, consisting of a source s, a target t, and
four intermediate nodes {A,B,C,D}. Each edge is annoted with a label x/y where x refers to the flow and
y refers to the capacity.

8/20%
8/8%

0/5%

11/12%

11/11%

3/3%

3/3%

3/5%

0/3%

0/11%

s% t%

A% B%

C%

D%

Problem 1.a. [8 points] For the flow network above, draw the residual graph. (Below you will find
just the nodes—you need to add all the edges and their residual capacity. You may omit edges with zero
residual capacity.)

Solution:

12%

13%

1%

11%

3%

3%
2%

3%

11%

s% t%

A% B%

C%

D%

8%

3%

11%

The residual graph contains the edges drawn above. Note that we have omitted edges with zero residual
capacity.

Student. Num.: CS4234 Final Assessment: p. 3

Problem 1.b. [8 points] For the flow network depicted (which is identical to the flow network from
part (a)), execute one iteration of Ford-Fulkerson, using the Fattest Path heuristic to find an augmenting
path. Update the flow on the graph. What is the augmenting path? What is the value of the new flow?

Solution:

12%

13%

1%

11%

3%

3%
2%

3%
11%

s% t%

A% B%

C%

D%

8%

3%

11%

Fa#est'augmen,ng'path:'s'!'A'!'C'!'D'!'B'!'t'

Augmenting path =
{s,A,C,D,B,t}

New flow value =
14

Above we have drawn the augmenting path on the residual graph. Note that this is the fattest of the two
agumenting paths, with botleneck value of 3. The new augmenting path increases the flow by 3, leading to
a total flow with value 14.

Student. Num.: CS4234 Final Assessment: p. 4

Problem 2. Linear Programming [20 points]

Problem 2.a. [6 points] Assume you have a linear program P with n variables and m constraints (apart
from the natural non-negativity constraints). Assume P is a maximization problem. How many variables
and constraints do its dual have?

dual variables = # dual constraints =

What is the orientation of P ’s dual (i.e., maximization, minimization, or other):

Dual orientation =

Solution: The dual has m variables and n constraints, and is a minimization problem.

Problem 2.b. [4 points] Assume you are given a linear program with three variables x1, x2, x3 that
contains the constraint: x2 + x3 = 7. For example:

max(x1 + x2 + x3) subject to:

x1 + x3  10

x2 + x3 = 7

x1, x2, x3 � 0

How could you write this constraint x2 + x3 = 7 only in terms of  inequalities? That is, how would you
write the LP in “normal form” as described in class where all the inequalities (except the non-negativity
constraints) are ?
Solution: The constraint x2 + x3 = 7 is equivalent to the following two constrints:

x2 + x3  7

x2 + x3 � 7

The second of these constraints can be reversed by multiplying by �1, yielding the following two  con-
straints:

x2 + x3  7

�(x2 + x3)  �7

Student. Num.: CS4234 Final Assessment: p. 5

Problem 2.c. [10 points] Write down the dual of the following linear program on variables x1, x2, x3, x4.
Specify clearly the variables, the objective function, and the constraints.

min(4x1 � 9x2 + 17x4) subject to:
2x1 + 3x2 � 5x3 + x4 � 7

x2 � 1
x1 + x2 + x3 � 6x4 � 2

x1, x2, x3, x4 � 0

Solution: The dual will have three variables y1, y2, y3.

max(7y1 + y2 + 2y3) subject to:

2y1 + y3  4

3y1 + y2 + y3  �9
�5y1 + y3  0

y1 � 6y3  17

y1, y2, y3 � 0

Student. Num.: CS4234 Final Assessment: p. 6

Problem 3. Hill Climbing [14 points]

Problem 3.a. [4 points] Which of the following statements about gradient ascent are always true?
Circle the true statements and cross out the false statements.

Gradient ascent always finds a local minimum (or
an ✏-approximation of a local minimum) if run for
long enough.

Gradient ascent always finds a local maximum (or
an ✏-approximation of a local maximum) if run for
long enough.

Gradient ascent guarantees that it finds a solu-
tion x such that |x � x⇤|  ✏ when executed for
O( log 1/✏) iterations on a strongly convex func-
tion f with condition number  where x⇤ is the
input that minimizes f .

A function f is strongly convex (with parameter `)
if for any two inputs x and y:

f(y)  f(x) +rf(x) · (y � x) +
`

2
||y � x||2 .

Solution: All four statements are false.

a. Gradient ascent may find a point that is neither a local minimum or a local maximum, e.g., a saddle
point where rf = 0, but that is not a minimum or a maximum.

b. False, as above.

c. Gradient ascent guarantees that after O( log 1/✏) time, |x � x⇤|  ✏|x0 � x⇤|. However, if x0 is very

far away from x⇤, this may not guarantee a very good solution (e.g., if |x0 � x⇤| = 22
100/✏

).

d. This is the Lipschitz condition, not the condition for strong convexity. It is, in fact, exactly the reverse
of the definition of strong convexity.

Problem 3.b. [2 points] Briefly give one reason you might use gradient ascent to find the maximum
of a function f (instead of, for example, calculating the maximum in closed form using techniques from
calculus).

Student. Num.: CS4234 Final Assessment: p. 7

Solution: Often, it is quite di�cult to calculate a closed form solution for a function f , as it may be quite
a complicated function. Using gradient ascent allows you to find a maximum even for functions in which
computing the closed form solution is infeasible. (This is particularly true if the function is not convex, but
instead some very complicated high dimensional surface.)

The process of finding a maximum may also be faster (and easier to automate) using gradient ascent. It
can be accomplished numerically (instead of symbolically), for example.

In some cases the function f may not be provided as an equation. Instead, it may be that you can calculate
f for given values (e.g., by running a simulation of a physical system), but you are not provided a simple
equation for f . In that case, you can still determine the (approximate) gradient by calculating f at nearby
points, so you can still use gradient ascent. However, there is no way to solve the problem symbolically.

Problem 3.c. [8 points] Let f(x, y, z) = x3�xy2+ yz+4234 be a function of three variables x, y, and
z. Suppose you are using gradient ascent to find a maximum for this function.

Let (x, y, z) = (10, 20, 30). Assume the step size ↵ = 0.1. Execute one iteration of gradient ascent. What
is the new value of (x, y, z)?

x = y = z =

Solution: We first calculate the gradient of f at (10, 20, 30).

@f/@x = 3x2 � y2 = 300� 400 = �100
@f/@y = �2xy + z = �400 + 30 = �370
@f/@z = y = 20

So, we conclude that ↵rf (x, y, z) = (�10,�37, 2). Thus, x x+↵rf (x, y, z) yields (x, y, z) = (0,�17, 32).

As a sanity check, we observe that f(10, 20, 30) = 1000 � 4000 + 600 + 4234 = 1834. By contrast,
f(0,�17, 32) = 0� 0� 544 + 4234 = 3690. Thus, we have found a larger point for the function f . (Notice,
of course, that this will not always be true. But for a “smooth” function, if ↵ is su�ciently small, then it
will be. So it remains a good sanity check that you did the graident ascent in the direct direction.)

Student. Num.: CS4234 Final Assessment: p. 8

Problem 4. Short proof. [10 points]

Assume you are given a connected, undirected graph G = (V,E) where every node has degree 2k, for some
integer k � 1. An orientation of G assigns a direction to every edge in E, i.e., for each edge (u, v), it outputs
either (u! v) or (v ! u). The result is a directed graph orient(G).

Prove that there exists an orientation of the graph so that the directed graph orient(G) is strongly
connected. (Recall that in a strongly connected graph, there is a directed path between every pair of nodes
in both directions.)

Solution: Since graph G is connected and every node has even degree, there exists an Eulerian Cycle
that visits every edge in the graph. Orient the edge according to the Eulerian cycle. That is, assume the
Eulerian cycle is e1, e2, e3, . . . , em. Orient each edge toward the next edge in the cycle, e.g., if ei = (u, v)
and ei+1 = (v, w), then orient ei = (u! v).

Since the Eulerian cycle visits every node, we know that every pair of nodes are connected by a directed
path, i.e., the segment of the Eulerian cycle that connects them (in the correct direction).

Student. Num.: CS4234 Final Assessment: p. 9

Problem 5. Hitting Set [20 points]

Consider the following problem, known as 4-Hitting Set :

• You are given a set of elements P = p1, p2, . . . , pn.

• You are given a set of sets S1, S2, . . . , Sm where each Sj ✓ P .

• Each set Sj contains at most 4 elements.

The goal is to output the smallest set of elements H ✓ P that is a hitting set, i.e., where each set Sj contains
at least one element in P :

8j : 9pi 2 H such that pi 2 Sj

For example, if the sets are S1 = {1, 2, 3}, S2 = {2, 5, 7}, and S3 = {1, 9, 10}, then H = {2, 9} is a hitting
set: set S1 is hit by element 2, set S2 is hit by element 2, and set S3 is hit by element 9.

Problem 5.a. [8 points] Give an integer linear program that finds the minimum sized hitting set for a
given input of elements P and sets S1, . . . , Sm. (The ILP does not need to be in “normal form”.)

Solution: For variables x1, . . . , xn:

min
nX

j=1

xj such that 8j :
X

i:pi2Sj

xi � 1

xj 2 {0, 1}

Notice that the hitting set problem is essentially identical to the set cover problem, where the sets and
elements are reversed. (Notice it is also essentially identical to the problem of vertex cover on a hypergraph.)

Student. Num.: CS4234 Final Assessment: p. 10

Problem 5.b. [12 points] Show how to relax and round the integer linear program from part (a) so as
to find a 4-approximation algorithm for the hitting set problem. Prove that your algorithm is correct (i.e.,
returns a hitting set) and that it is a 4-approximation.

Solution: We relax the ILP by remove the constraint the xi 2 {0, 1} and replacing it with a simple
non-negativity constraint xi � 0.

We round the linear program as follows: If xi � 1/4, include it in the output hitting set H. (That is, set
yi = 1 if x�1/4, and otherwise set yi = 0. Include pi in the output set H if y1 = 1.) Notice that this is a
4-approximation since it increase each xi by at most a factor of 4:

OPT �
X

i

xi

�
X

i

yi/4

� |H|/4

That is, |H|  4OPT as required.

Next, we show that the resulting set H is a correct hitting set. Observe that for each set S = {p1, p2, p3, p4},
we know that x1 + x2 + x3 + x4 � 1, by the LP constraint. That means that at least one of these xi � 1/4,
and so is included in the hitting set. That is, the set S is properly hit.

Student. Num.: CS4234 Final Assessment: p. 11

Problem 6. Sharing the work. [20 points]

Suppose you and your partner are working together on a project. The project consists of n tasks 1, 2, . . . , n,
and task i takes time ti to accomplish. Let the total time of all the tasks M =

Pn
i=1 tj . Assume that no one

task is too big, i.e., for all j: tj  M
2 . You want to divide the tasks into two sets A and B that are as close

to the same size as possible. That is, define:

TA =
X

j2A

tj

TB =
X

j2B

tj

You want to minimize D = |TA�TB |. You decide to divide up the tasks into two sets in the following manner:

GreedyAllocation:

• Set A = ;, B = ;.

• Let L be the list of n task sizes (in some arbitrary order).

• For i = 1 to n do:

– If TA  TB , then add task L[i] to list A.

– Otherwise, add task L[i] to list B.

For example, imagine that the tasks sizes L = {5, 10, 25, 7, 3, 40}. Then, we add the task with size 5 to list
A, 10 to list B, 25 to list A, 7 and 3 and 40 to list B. In the end, the total is TA = 30 and TB = 75. Thus,
D = |TA � TB | = 45.

Problem 6.a. [4 points] Give a (simple) example that demonstrates the worst case for this allocation
algorithm: give a sequence of tasks where, when allocated in order greedily as above, we find that TA = 3TB .
(Be sure that your tasks obey the rule that for each task j: tj M/2.)

Solution: Consider the tasks with sizes {25, 25, 50}. The first task is allocated to A, the second task is
allocated to B, and the third task is allocated to A, yielding TA = 75 and TB = 25, i.e., TA = 3TB . Here,
M = 100, and no task is bigger than 50.

Student. Num.: CS4234 Final Assessment: p. 12

Problem 6.b. [8 points] Assume you run the algorithm, yielding sets A and B with times TA and TB .
Assume (without loss of generality) that TA � TB . Prove that TA  3TB .

Hint: Think about the last task that was added to set A. Assume for the sake of contradiction that
TA > 3M/4.

Solution: Let tj be the cost of the last task added to list A. Just prior to adding task tj , we know that
list A had less than list B (otherwise we would have added task j to list B). So we know that TB � TA� tj .

Assume for the sake of contradiction that TA > 3M/4. Recall that tj  M/2. Thus we conclude that
TB > 3M/4�M/2 = M/4. But TA + TB = M , so if TA > 3M/4, then TB M/4 which is a contradiction.

We conclude that TA  3M/4 and TB �M/4, and hence TA/TB  3, as desired.

Student. Num.: CS4234 Final Assessment: p. 13

Problem 6.c. [8 points] Your partner would like to find a more fair allocation and suggests that if
you sort the tasks first, then the greedy allocation algorithm will guarantee that TA  2TB . Is your partner
right? Circle the correct answer:

Yes: Sort from large to small. Yes: Sort from small to large. No: Does not help.

Either a give an example that justifies why it does not help, or prove that when the list is sorted properly,
then TA  2TB . As before, assume without loss of generality that TA � TB .

Solution: We show that sorting the tasks from largest to smallest works.

As before, let tj be the last task added to set A. We already know (see above) that TA � TB  tj . Our goal
is to show that, in this case, tj  TB .

Assume, for the sake of contradiction, that tj > TB . Since the tasks are added in sorted order from largest
to smallest, this implies that all the tasks in B are smaller than tj , and hence all the tasks in B are added
after task tj . Since list B is empty, this also implies that prior to task j, list A is also empty (otherwise we
would have added task j to list B). Thus, task j is the very first task added to the system.

Moreover, all the tasks after task j are added to list B, since j is the last task added to A. From this, we
conclude that TB = M � tj �M �M/2 �M/2. However, this contradicts our assumption that tj > TB .

Having shown that tj  TB , we conclude that since TA�TB  tj  TB , we know that TA  2TB , as desired.

Student. Num.: CS4234 Final Assessment: p. 15

Scratch Paper

Student. Num.: CS4234 Final Assessment: p. 16

Scratch Paper

Student. Num.: CS4234 Final Assessment: p. 17

Scratch Paper

Student. Num.: CS4234 Final Assessment: p. 18

Scratch Paper

End of Paper

