
CS4234: Optimization Algorithms

Week 7 Questions: answered!

Week 7 Questions

Here I try to give some answers to the questions that were asked in the IVLE survey. This week, there were
only a couple questions.

Question 1 In the flow decomposition lemma, when a flow F is split into flows f1 to fk, is each fj a single
path from s to t?

Yes. The idea of the flow decomposition lemma is that the initialy flow F is split into flows f1, . . . , fk
where each fj is a st-path. Also important, the sum

∑
|fj | = |F |, the total flow. Finally, there are ≤ m

such flows, i.e., k ≤ m.
As we talked about in tutorial, there is also an efficient algorithm that finds the flow decomposition, and

if the capacities are all integral and if F is integral, then the resulting decomposed flows are also integral.
The basic idea of the algorithm is to start with a flow F and de-augment: find any st-path with positive

flow; create a new fj from that path, and subtract that from the flow. You can repeat that until all the flow
is gone. (There may be left circulations, i.e., flow going in circles in the network. But these circulations do
not matter as they do not change the overall st-flow.)

Question 2 For the maximum flow problem, what if the capacity is not on the vertex but on the nodes?

As we saw in tutorial, we can often change vertex limitations to edge limitations by replacing every node
u with two nodes uin and uout: all incoming edges to u attach to uin, all outgoing edges from u leave from
uout and there is one directed edge from uin to uout. The capacity of the edge (uin, uout) is set equal to the
vertex capacity.

Question 3 How do we reduce the k-Clique problem to (n − k)-vertex-cover? For a general graph, is a
relation between minimum vertex cover and maximum matching?

See the notes for more details. The general idea in the reduction is to observe:

• Given a graph G, define a new graph G′ that is the inverse, i.e., there is an edge (u, v) ∈ G′ if an only
if there is no edges (u, v) ∈ G.

• Every clique in G is an independent set in G′. Every independent set in G′ is a clique in G′.

• There is an independent set of size k in G if and only if there is a vertex cover of size n − k in G.
Similarly, there is an independent set of size k in G′ if and only if there is a vertex cover of size n−k in
G′. Why? If a set of nodes C is a vertex cover, then the set V \ C is independent—any edge between
nodes in V \ C would not be covered by a node in C. Similarly, if a set of nodes I is an independent
set, then the set V \ I is a vertex cover, because every edge is adjacent to some node not in I.

• Putting these facts together, we conclude that there is a clique in G of size k if and only if there is an
independent set in G′ of size k if and only if there is a vertex cover of size n− k in G′. Similarly, there
is a vertex cover in G of size k if and only if there is an indepedent set in G of size n− k if and only if
there is a clique of size n− k in G′.

In general, we know that the size of the minimum vertex cover is always ≥ the size of the maximum
matching, for all graphs. That is always true.

Unfortunately, the converse is not true: the size of the minimum vertex cover is not always equal to the
size of the maximum matching. In fact, we know that they can differ by up to a factor of 2—which is the
integrality gap of the linear program for vertex cover.

When we look at duality, we will try to see why this is the case: vertex cover and matching are almost
duals (and they are duals in bipartite graphs), but not quite, not in general.

Question 4 How did people come up with the push relabel algorithm? Is this algorithm related to linear
programming? Can we represent the max flow problem as a linear programming problem?

Good question! I’m always curious how a given algorithm was invented.
The basic idea of trying to “push flow around” until it converges is, I think, a reasonably natural approach.

The breakthrough idea, I think, was to find a way to ensure that it converged, i.e., that eventually it reached
the target.

The idea of using heights to avoid cycles is actually a common one. There are a variety of routing
problems where it is useful to assign a unique height to every node in a graph, which yields a directed acyclic
graph. We can then use all our favorite DAG algorithms.

I would guess that the inventors of Push-Relabel started there: assign heights to ensure it is acyclic.
Then they experimented with different relabeling strategies until they found one that worked. Then they
simplified, until they observed that basically any relabeling scheme works! At least that’s my best guess.

We can use linear programming to represent maximum flow problems. It is, at first glance, an integer
linear program but we can show that it will always find integral solutions. We saw one example of this in
tutorial, where we looked at the minimum cost flow problem.

We will come back to this when talking about duality (and the relationship of max flow and min cut in
duality theory).

