
3 Mar 2004 CS 3243 - Chapter 8 1

First-Order Logic

Chapter 8

3 Mar 2004 CS 3243 - Chapter 8 2

Outline
� Why FOL?
� Syntax and semantics of FOL
� Using FOL
� Wumpus world in FOL
� Knowledge engineering in FOL

3 Mar 2004 CS 3243 - Chapter 8 3

Pros and cons of propositional logic
☺ Propositional logic is declarative
☺ Propositional logic allows partial/disjunctive/negated information

{ (unlike most data structures and databases)
☺ Propositional logic is compositional :

{ meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of
P1,2

☺ Meaning in propositional logic is context- independent
{ (unlike natural language, where meaning depends on context)

/ Propositional logic has very limited expressive power
{ (unlike natural language)
{ E.g., cannot say "pits cause breezes in adjacent squares“

� except by writing one sentence for each square

3 Mar 2004 CS 3243 - Chapter 8 4

First-order logic
� Whereas propositional logic assumes

the world contains facts,
� first-order logic (like natural language)

 assumes the world contains
{ Objects: people, houses, numbers,

 colors, baseball games, wars, …
{ Relations: red, round, prime, brother of,

bigger than, part of, comes between, …
{ Functions: father of, best friend, one

 more than, plus, …

3 Mar 2004 CS 3243 - Chapter 8 5

Syntax of FOL: Basic elements
� Constants KingJohn, 2, NUS,...
� Predicates Brother, >,...
� Functions Sqrt, LeftLegOf,...
� Variables x, y, a, b,...
� Connectives¬, ⇒, ∧, ∨, ⇔
� Equality =
� Quantifiers ∀, ∃

3 Mar 2004 CS 3243 - Chapter 8 6

Atomic sentences
Atomic sentence = predicate (term1,...,termn)

or term1 = term2

Term = function (term1,...,termn)
or constant or variable

� E.g., Brother(KingJohn,RichardTheLionheart) >
(Length(LeftLegOf(Richard)),
Length(LeftLegOf(KingJohn)))

3 Mar 2004 CS 3243 - Chapter 8 7

Complex sentences
� Complex sentences are made from

 atomic sentences using connectives
¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔S2,

E.g. Sibling(KingJohn,Richard) ⇒
Sibling(Richard,KingJohn)
>(1,2) ∨ ≤ (1,2)
>(1,2) ∧ ¬ >(1,2)

3 Mar 2004 CS 3243 - Chapter 8 8

Truth in first-order logic
� Sentences are true with respect to a model and an

interpretation

� Model contains objects (domain elements) and relations
 among them

� Interpretation specifies referents for
constant symbols → objects
predicate symbols → relations
function symbols → functional relations

� An atomic sentence predicate(term1,...,termn) is true
iff the objects referred to by term1,...,termn
are in the relation referred to by predicate

3 Mar 2004 CS 3243 - Chapter 8 9

Models for FOL: Example

3 Mar 2004 CS 3243 - Chapter 8 10

Universal quantification
� ∀<variables> <sentence >

Everyone at NUS is smart:
∀x At(x,NUS) ⇒ Smart(x)

� ∀x P is true in a model m iff P is true with x being
 each possible object in the model

� Roughly speaking, equivalent to the conjunction of
instantiations of P

At(KingJohn,NUS) ⇒ Smart(KingJohn)
∧ At(Richard,NUS) ⇒ Smart(Richard)
∧ At(NUS,NUS) ⇒ Smart(NUS)
∧ ...

3 Mar 2004 CS 3243 - Chapter 8 11

A common mistake to avoid
� Typically, ⇒ is the main connective with ∀
� Common mistake: using ∧ as the main

connective with ∀:
∀x At(x,NUS) ∧ Smart(x)
means “Everyone is at NUS and everyone is

 smart”

3 Mar 2004 CS 3243 - Chapter 8 12

Existential quantification
� ∃<variables> <sentence>

� Someone at NUS is smart:
� ∃x At(x,NUS) ∧ Smart(x)

� ∃x P is true in a model m iff P is true with x being
 some possible object in the model

� Roughly speaking, equivalent to the disjunction of
instantiations of P

At(KingJohn,NUS) ∧ Smart(KingJohn)
∨ At(Richard,NUS) ∧ Smart(Richard)
∨ At(NUS,NUS) ∧ Smart(NUS)
∨ ...

3 Mar 2004 CS 3243 - Chapter 8 13

Another common mistake to
avoid
� Typically, ∧ is the main connective with ∃

� Common mistake: using ⇒ as the main
connective with ∃ :

∃x At(x,NUS) ⇒ Smart(x)
is true if there is anyone who is not at

 NUS!

3 Mar 2004 CS 3243 - Chapter 8 14

Properties of quantifiers
� ∀x ∀y is the same as ∀y ∀x
� ∃x ∃y is the same as ∃y ∃x

� ∃x ∀y is not the same as ∀y ∃x
� ∃x ∀y Loves(x,y)

{ “There is a person who loves everyone in the world”
� ∀y ∃x Loves(x,y)

{ “Everyone in the world is loved by at least one person”

� Quantifier duality : each can be expressed using the other
� ∀x Likes(x,IceCream) ¬∃x ¬Likes(x,IceCream)
� ∃x Likes(x,Broccoli) ¬∀x ¬Likes(x,Broccoli)

3 Mar 2004 CS 3243 - Chapter 8 15

Equality
� term1 = term2 is true under a given

interpretation if and only if term1 and term2
 refer to the same object

� E.g., definition of Sibling in terms of
Parent :
∀x,y Sibling(x,y) ⇔ [¬(x = y) ∧ ∃m,f ¬ (m = f) ∧

Parent(m,x) ∧ Parent(f,x) ∧ Parent(m,y) ∧
Parent(f,y)]

3 Mar 2004 CS 3243 - Chapter 8 16

Using FOL
 The kinship domain:

� Brothers are siblings
∀x,y Brother(x,y) ⇒ Sibling(x,y)

� One's mother is one's female parent
∀m,c Mother(c) = m ⇔ (Female(m) ∧

Parent(m,c))
� “Sibling” is symmetric

∀x,y Sibling(x,y) ⇔ Sibling(y,x)

3 Mar 2004 CS 3243 - Chapter 8 17

Using FOL
 The set domain:

� ∀s Set(s) ⇔ (s = {}) ∨ (∃x,s2 Set(s2) ∧ s = {x|s2 })
� ¬∃x,s {x|s } = {}
� ∀x,s x ∈ s ⇔ s = {x|s }
� ∀x,s x ∈ s ⇔ [∃y,s2} (s = {y|s2} ∧ (x = y ∨ x ∈ s2))]
� ∀s1,s2 s1 ⊆ s2 ⇔ (∀x x ∈ s1 ⇒ x ∈ s2)
� ∀s1,s2 (s1 = s2) ⇔ (s1 ⊆ s2 ∧ s2 ⊆ s1)
� ∀x,s1,s2 x ∈ (s1 ∩ s2) ⇔ (x ∈ s1 ∧ x ∈ s2)
� ∀x,s1,s2 x ∈ (s1 ∪ s2) ⇔ (x ∈ s1 ∨ x ∈ s2)

3 Mar 2004 CS 3243 - Chapter 8 18

Interacting with FOL KBs
� Suppose a wumpus-world agent is using an FOL KB and perceives a

smell and a breeze (but no glitter) at t=5:

Tell(KB,Percept([Smell,Breeze,None],5))
Ask(KB,∃a BestAction(a,5))

� I.e., does the KB entail some best action at t=5 ?

� Answer: Yes, {a/Shoot} ← substitution (binding list)

� Given a sentence S and a substitution σ,
� Sσ denotes the result of plugging σ into S; e.g.,

S = Smarter(x,y)
σ = {x/Hillary,y/Bill}
Sσ = Smarter(Hillary,Bill)

� Ask(KB,S) returns some/all σ such that KB╞ σ

3 Mar 2004 CS 3243 - Chapter 8 19

Knowledge base for the
wumpus world
� Perception

{ ∀t,s,b Percept([s,b,Glitter],t) ⇒ Glitter(t)

� Reflex
{ ∀t Glitter(t) ⇒ BestAction(Grab,t)

3 Mar 2004 CS 3243 - Chapter 8 20

Deducing hidden properties
� ∀x,y,a,b Adjacent([x,y],[a,b]) ⇔

[a,b] ∈ {[x+1,y], [x-1,y],[x,y+1],[x,y- 1]}

Properties of squares:
� ∀s,t At(Agent,s,t) ∧ Breeze(t) ⇒ Breezy(s)

 Squares are breezy near a pit:
{ Diagnostic rule - infer cause from effect

∀s Breezy(s) ⇒ ∃r Adjacent(r,s) ∧ Pit(r)
{ Causal rule - infer effect from cause

∀r Pit(r) ⇒ [∀s Adjacent(r,s) ⇒ Breezy(s)]

3 Mar 2004 CS 3243 - Chapter 8 21

Knowledge engineering in
FOL
1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions,

 and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem

 instance
6. Pose queries to the inference procedure and get

 answers
7. Debug the knowledge base

3 Mar 2004 CS 3243 - Chapter 8 22

The electronic circuits domain
One- bit full adder

3 Mar 2004 CS 3243 - Chapter 8 23

The electronic circuits domain
1. Identify the task

{ Does the circuit actually add properly? (circuit
 verification)

2. Assemble the relevant knowledge
{ Composed of wires and gates; Types of gates

 (AND, OR, XOR, NOT)
{ Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary
{ Alternatives:

Type(X1) = XOR
Type(X1, XOR)
XOR(X1)

3 Mar 2004 CS 3243 - Chapter 8 24

The electronic circuits domain
4. Encode general knowledge of the domain

{ ∀t1,t2 Connected(t1, t2) ⇒ Signal(t1) = Signal(t2)
{ ∀t Signal(t) = 1 ∨ Signal(t) = 0
{ 1 ≠ 0
{ ∀t1,t2 Connected(t1, t2) ⇒ Connected(t2, t1)
{ ∀g Type(g) = OR ⇒ Signal(Out(1,g)) = 1 ⇔ ∃n

Signal(In(n,g)) = 1
{ ∀g Type(g) = AND ⇒ Signal(Out(1,g)) = 0 ⇔ ∃n

Signal(In(n,g)) = 0
{ ∀g Type(g) = XOR ⇒ Signal(Out(1,g)) = 1 ⇔

Signal(In(1,g)) ≠ Signal(In(2,g))
{ ∀g Type(g) = NOT ⇒ Signal(Out(1,g)) ≠ Signal(In(1,g))

3 Mar 2004 CS 3243 - Chapter 8 25

The electronic circuits domain
5. Encode the specific problem instance

Type(X1) = XOR Type(X2) = XOR
Type(A1) = AND Type(A2) = AND
Type(O1) = OR

Connected(Out(1,X1),In(1,X2)) Connected(In(1,C1),In(1,X1))
Connected(Out(1,X1),In(2,A2)) Connected(In(1,C1),In(1,A1))
Connected(Out(1,A2),In(1,O1)) Connected(In(2,C1),In(2,X1))
Connected(Out(1,A1),In(2,O1)) Connected(In(2,C1),In(2,A1))
Connected(Out(1,X2),Out(1,C1)) Connected(In(3,C1),In(2,X2))
Connected(Out(1,O1),Out(2,C1)) Connected(In(3,C1),In(1,A2))

3 Mar 2004 CS 3243 - Chapter 8 26

The electronic circuits domain
6. Pose queries to the inference procedure

What are the possible sets of values of all the
 terminals for the adder circuit?

∃i1,i2,i3,o1,o2 Signal(In(1,C1)) = i1 ∧ Signal(In(2,C1)) = i2 ∧
Signal(In(3,C1)) = i3 ∧ Signal(Out(1,C1)) = o1 ∧
Signal(Out(2,C1)) = o2

7. Debug the knowledge base
May have omitted assertions like 1 ≠ 0

3 Mar 2004 CS 3243 - Chapter 8 27

Summary
� First- order logic:

{ objects and relations are semantic
primitives

{ syntax: constants, functions, predicates,
 equality, quantifiers

� Increased expressive power: sufficient
to define wumpus world

