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First-Order Logic

Chapter 8
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Outline
� Why FOL?
� Syntax and semantics of FOL
� Using FOL
� Wumpus world in FOL
� Knowledge engineering in FOL
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Pros and cons of propositional logic
☺ Propositional logic is declarative 
☺ Propositional logic allows partial/disjunctive/negated information

{  (unlike most data structures and databases)
☺ Propositional logic is compositional  :

{ meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of 
P1,2 

☺ Meaning in propositional logic is context-  independent
{  (unlike natural language, where meaning depends on context)

/  Propositional logic has very limited expressive power
{ (unlike natural language)
{ E.g., cannot say "pits cause breezes in adjacent squares“

�  except by writing one sentence for each square
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First-order logic
� Whereas propositional logic assumes 

the world contains facts,
� first-order logic (like natural language) 

 assumes the world contains
{ Objects: people, houses, numbers, 

 colors, baseball games, wars, …
{ Relations: red, round, prime, brother of, 

bigger than, part of, comes between, …
{ Functions: father of, best friend, one 

 more than, plus, …
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Syntax of FOL: Basic elements
� Constants KingJohn, 2, NUS,... 
� Predicates Brother, >,...
� Functions Sqrt, LeftLegOf,...
� Variables x, y, a, b,...
� Connectives¬, ⇒, ∧, ∨, ⇔
� Equality = 
� Quantifiers  ∀, ∃
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Atomic sentences
Atomic sentence = predicate (term1,...,termn) 

or term1 = term2

Term            = function (term1,...,termn) 
or constant or variable

� E.g., Brother(KingJohn,RichardTheLionheart) > 
(Length(LeftLegOf(Richard)), 
Length(LeftLegOf(KingJohn)))
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Complex sentences
� Complex sentences are made from 

 atomic sentences using connectives
¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2, S1 ⇔S2,

E.g. Sibling(KingJohn,Richard) ⇒
Sibling(Richard,KingJohn)
>(1,2) ∨ ≤ (1,2)
>(1,2) ∧ ¬ >(1,2) 
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Truth in first-order logic
� Sentences are true with respect to a model and an 

interpretation

� Model contains objects (domain elements) and relations 
 among them

� Interpretation specifies referents for
constant symbols → objects 
predicate symbols → relations 
function symbols → functional relations 

� An atomic sentence predicate(term1,...,termn) is true
iff the objects referred to by term1,...,termn
are in the relation referred to by predicate 



3 Mar 2004 CS 3243 - Chapter 8 9

Models for FOL: Example
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Universal quantification
� ∀<variables> <sentence  >

Everyone at NUS is smart:
∀x At(x,NUS) ⇒ Smart(x  )

� ∀x P is true in a model m iff P is true with x being 
 each possible object in the model

� Roughly speaking, equivalent to the conjunction of 
instantiations of P 

At(KingJohn,NUS) ⇒ Smart(KingJohn) 
∧ At(Richard,NUS) ⇒ Smart(Richard) 
∧ At(NUS,NUS) ⇒ Smart(NUS) 
∧  ...
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A common mistake to avoid
� Typically, ⇒ is the main connective with ∀ 
� Common mistake: using ∧ as the main 

connective with ∀:
∀x At(x,NUS) ∧ Smart(x)
means “Everyone is at NUS and everyone is 

 smart”
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Existential quantification
� ∃<variables> <sentence>

� Someone at NUS is smart:
� ∃x At(x,NUS) ∧ Smart(x  )

� ∃x P is true in a model m iff P is true with x being 
 some possible object in the model

� Roughly speaking, equivalent to the disjunction of 
instantiations of P 

At(KingJohn,NUS) ∧ Smart(KingJohn) 
∨ At(Richard,NUS) ∧ Smart(Richard) 
∨ At(NUS,NUS) ∧ Smart(NUS) 
∨  ...
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Another common mistake to 
avoid
� Typically, ∧ is the main connective with ∃

� Common mistake: using ⇒ as the main 
connective with ∃  :

∃x At(x,NUS) ⇒ Smart(x  )
is true if there is anyone who is not at 

 NUS!
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Properties of quantifiers
� ∀x ∀y is the same as ∀y ∀x 
� ∃x ∃y is the same as ∃y ∃x  

� ∃x ∀y is not the same as ∀y ∃x 
� ∃x ∀y Loves(x,y)

{  “There is a person who loves everyone in the world”
� ∀y ∃x Loves(x,y)

{  “Everyone in the world is loved by at least one person”

� Quantifier duality  : each can be expressed using the other
� ∀x Likes(x,IceCream) ¬∃x ¬Likes(x,IceCream  )
� ∃x Likes(x,Broccoli) ¬∀x ¬Likes(x,Broccoli  )
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Equality
� term1 = term2 is true under a given 

interpretation if and only if term1 and term2
 refer to the same object

� E.g., definition of Sibling in terms of 
Parent  :
∀x,y Sibling(x,y) ⇔ [¬(x = y) ∧ ∃m,f ¬ (m = f) ∧

Parent(m,x) ∧ Parent(f,x) ∧ Parent(m,y) ∧
Parent(f,y)]
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Using FOL
 The kinship domain:

�  Brothers are siblings
∀x,y Brother(x,y) ⇒ Sibling(x,y) 

�  One's mother is one's female parent
∀m,c Mother(c) = m ⇔ (Female(m) ∧

Parent(m,c)) 
�  “Sibling” is symmetric

∀x,y Sibling(x,y) ⇔ Sibling(y,x) 
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Using FOL
 The set domain: 

� ∀s Set(s) ⇔ (s = {} ) ∨ (∃x,s2 Set(s2) ∧ s = {x|s2  })
� ¬∃x,s {x|s  } = {}
� ∀x,s x ∈ s ⇔ s = {x|s  }
� ∀x,s x ∈ s ⇔ [ ∃y,s2} (s = {y|s2} ∧ (x = y ∨ x ∈ s2  ))]
� ∀s1,s2 s1 ⊆ s2 ⇔ (∀x x ∈ s1 ⇒ x ∈ s2)
� ∀s1,s2 (s1 = s2) ⇔ (s1 ⊆ s2 ∧ s2 ⊆ s1  )
� ∀x,s1,s2 x ∈ (s1 ∩ s2) ⇔ (x ∈ s1 ∧ x ∈ s2  )
� ∀x,s1,s2 x ∈ (s1 ∪ s2) ⇔ (x ∈ s1 ∨ x ∈ s2)
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Interacting with FOL KBs
� Suppose a wumpus-world agent is using an FOL KB and perceives a 

smell and a breeze (but no glitter) at t=5:
 

Tell(KB,Percept([Smell,Breeze,None],5))
Ask(KB,∃a  BestAction(a,5))

� I.e., does the KB entail some best action at t=5  ?

� Answer: Yes, {a/Shoot}  ← substitution (binding list)
 

� Given a sentence S and a substitution σ,
� Sσ denotes the result of plugging σ into S; e.g.,

S = Smarter(x,y)
σ = {x/Hillary,y/Bill}
Sσ = Smarter(Hillary,Bill  )

� Ask(KB,S) returns some/all σ such that KB╞ σ  
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Knowledge base for the 
wumpus world
� Perception

{ ∀t,s,b Percept([s,b,Glitter],t) ⇒ Glitter(t  )

� Reflex
{ ∀t Glitter(t) ⇒ BestAction(Grab,t)
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Deducing hidden properties
� ∀x,y,a,b Adjacent([x,y],[a,b]) ⇔

[a,b] ∈ {[x+1,y], [x-1,y],[x,y+1],[x,y-  1]} 

Properties of squares:
� ∀s,t At(Agent,s,t) ∧ Breeze(t) ⇒ Breezy(s)

 

 Squares are breezy near a pit:
{ Diagnostic rule - infer cause from effect

∀s Breezy(s) ⇒ ∃r Adjacent(r,s) ∧ Pit(r  )
{ Causal rule - infer effect from cause

∀r Pit(r) ⇒ [∀s Adjacent(r,s) ⇒ Breezy(s  ) ]
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Knowledge engineering in 
FOL
1.  Identify the task
2.  Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, 

 and constants
4.  Encode general knowledge about the domain
5. Encode a description of the specific problem 

 instance
6. Pose queries to the inference procedure and get 

 answers
7.  Debug the knowledge base
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The electronic circuits domain
One-  bit full adder
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The electronic circuits domain
1.  Identify the task

{ Does the circuit actually add properly? (circuit 
 verification)

2.  Assemble the relevant knowledge
{ Composed of wires and gates; Types of gates 

 (AND, OR, XOR, NOT)
{  Irrelevant: size, shape, color, cost of gates

3.  Decide on a vocabulary
{  Alternatives:

Type(X1  ) = XOR
Type(X1, XOR)
XOR(X1  )
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The electronic circuits domain
4.  Encode general knowledge of the domain

{ ∀t1,t2 Connected(t1, t2) ⇒ Signal(t1) = Signal(t2)
{ ∀t Signal(t) = 1 ∨ Signal(t  ) = 0
{ 1 ≠  0
{ ∀t1,t2 Connected(t1, t2) ⇒ Connected(t2, t1  )
{ ∀g Type(g) = OR ⇒ Signal(Out(1,g)) = 1 ⇔ ∃n 

Signal(In(n,g  )) = 1
{ ∀g Type(g) = AND ⇒ Signal(Out(1,g)) = 0 ⇔ ∃n 

Signal(In(n,g  )) = 0
{ ∀g Type(g) = XOR ⇒ Signal(Out(1,g)) = 1 ⇔

Signal(In(1,g)) ≠  Signal(In(2,g))
{ ∀g Type(g) = NOT ⇒ Signal(Out(1,g)) ≠  Signal(In(1,g))
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The electronic circuits domain
5.  Encode the specific problem instance

Type(X1) = XOR Type(X2) = XOR
Type(A1) = AND Type(A2) = AND
Type(O1) = OR

Connected(Out(1,X1),In(1,X2)) Connected(In(1,C1),In(1,X1))
Connected(Out(1,X1),In(2,A2)) Connected(In(1,C1),In(1,A1))
Connected(Out(1,A2),In(1,O1)) Connected(In(2,C1),In(2,X1))
Connected(Out(1,A1),In(2,O1)) Connected(In(2,C1),In(2,A1))
Connected(Out(1,X2),Out(1,C1)) Connected(In(3,C1),In(2,X2))
Connected(Out(1,O1),Out(2,C1)) Connected(In(3,C1),In(1,A2))
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The electronic circuits domain
6.  Pose queries to the inference procedure

What are the possible sets of values of all the 
 terminals for the adder circuit? 

∃i1,i2,i3,o1,o2 Signal(In(1,C1)) = i1 ∧ Signal(In(2,C1)) = i2 ∧
Signal(In(3,C1)) = i3 ∧ Signal(Out(1,C1)) = o1 ∧
Signal(Out(2,C1)) = o2 

7.  Debug the knowledge base
May have omitted assertions like 1 ≠  0
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Summary
� First-  order logic:

{ objects and relations are semantic 
primitives

{ syntax: constants, functions, predicates, 
 equality, quantifiers

� Increased expressive power: sufficient 
to define wumpus  world 


