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Abstract 

The most recent advancements in computer hardware and 
communications make the mobile computing paradigm tangible 
and feasible. One of the major factors affecting mobile 
computing is ummumication protocols efficiency. This paper 
proposes and discusses an Adaptive Queuing Protocol which 
targets advanced mobile database applications. The protocol 
has two main objectives. Firstly, to compensate for the 
relatively slow speed of some existing mobile communication 
links. Secondly, to reduce the cost of communications by 
reducing link usage. In achieving these aims, our goal has been 
to reduce the total data volume that the link must carry, and at 
the same time ensure adequate response time for all classes of 
transactions. Results of computer simulation are presented and 
discussed. 

1. Introduction 

Recent advances in miniaturisation and cellular 
technology make the computing paradigm ubiquitous 
and are extending the scope of database applications. 
While distributed databases have been studied and 
researched for two decades, a new aspect of that same 
area is now being developed. Distributed databases that 
incorporate mobile components have opened new 
avenues of research into advanced applications. 
Although the technology has been available for 3 years, 
it has now become affordable, and this has been reflected 
in the number of new and advanced applications that it is 
being used for. For instance, in 1993, in the city of 
Melbourne, Victoria, Australia, taxi companies 
introduced the concept of a “Computer Cab”, a taxi 
which has an on-board computer that is linked with the 
database at central headquarters. Police in many 
countries is equipped now with portable car computers to 
access information on vehicles and criminals. 
Eventually, it will be possible for one’s pocket computer 
to communicate automatically with other databases 
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which reside on stationary and/or mobile computers 24 
hours a day. 

Operating costs of mobile technology, while shrinking, 
are still prohibitive for many applications. The capital 
investment required to obtain a mobile node has dropped 
dramatically, and may even has reached equilibrium in 
the market place. An avenue of even greater savings 
however still remains largely unexplored, and that is the 
cost of operating the link to/from the mobile node. While 
there are many flexible pricing schemes, which can 
reduce the cost of link operation (based on the time of 
day, number of calls made, etc), we intend to address the 
fundamental underlying problem, namely, to reduce the 
amount of data to be transferred. 

This paper proposes and discusses an Adaptive Queuing 
Protocol which targets advanced mobile database 
applications (a term “mobile databases” represents a 
class of multidatabase systems where constituent 
databases may reside on mobile computers and/or 
stationary computers). This protocol has two main 
objectives. Firstly, to compensate for the relatively slow 
speed of some existing mobile communication links. 
Secondly, to reduce the cost, by reducing link usage. In 
achieving these aims, our goal has been to reduce the 
total data volume that the link must carry, and at the 
same time ensure adequate response time for all classes 
of transactions. 

By the word “link” we mean any method of 
communication that a mobile platform might use, 
whether by satellite or mobile phone. We are most 
concerned with those that have some cost associated with 
use of the link, rather than those that have no cost that is 
directly proportional to the amount of data sent (eg., 
radio modems). For those mobile links that do charge in 
proportion to the data volume, charges can apply not 
only on a straight volume basis, but also on a connect 
time basis. 

The remainder of the paper is organised as follows. 
Section 2 presents a survey of related work and 
summarises those relatively few references that exist in 
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this highly commercial&d and rapidly emerging area. 
Section 3 discusses the proposed protocol and outlines 
some associated problems. Section 4 considers a method 
of obtaining a balanced mix of variables involved in the 
adaptation process. Section 5 addresses some 
implementation issues and compares different 
approaches that have been studied during the 
implementation phase. Finally, conclusions and a future 
directions are briefly discussed. 

2. Related Work 

There have been a number of studies relating to protocol 
buffering issues [4,5,7, 10, 11, 121. Most, however, tend 
to have involved relatively high speed local area 
networks and tend to emphasise performance rather than 
link usage cost. We denote this class of protocols as 
Send-on-Demand (SOD) protocols, because they 
transmit whenever the network is available. Some have 
investigated the cost of manipulating the buffers used in 
protocol processing, though once again in an 
environment where the cost of sending data over the 
network ranked very low. 

Other buffering issues regarding the delayed sending of 
information can be found in studies related to the 
implementation of network protocols in operating 
systems [3, 91. In these studies some analysis is made on 
the amount of buffering required for supporting network 
protocols (TCP/IP, in particular). 

Recent research papers [l, 21 demonstrate a growing 
demand for efficient and effective protocols which can he 
used in mobile computing. El Abbadi [4] talks about a 
family of adaptive protocols for maintaining replicated 
distributed databases. The paper places more emphasis 
on the integrity of the replicated data rather than the 
efficiency with which that dam is communicated between 
the distributed databases. Some researchers argue that 
the major factor which may determine the success or 
failure of mobile computing is the capacity of a battery 
and its life-time [8] and under such circumstances the 
development of efficient energy-saving technologies and 
robust protocols is especially important. Yeo & 
Zaslavsky [13] discuss transaction management issues in 
heterogeneous multidatabase environment with mobile 
components and propose a queuing mechanism which 
might be used to increase the efticiency and reliability of 
mobile applications. 

3. Adaptive Queuing Protocol 

The adaptive queuing protocol (AQP) has been 
developed as a result of research which shows that 

existing network communication protocols for stationary 
nodes (SN) are sub-optimal when applied to mobile 
nodes (MN) running database applications. Many 
existing protocols tend to emphasise the speed of data 
transfer rather than the cost involved. Viability of MN’s, 
however, is very sensitive to the cost of the link to an 
SN. AQP attempts to minim& this cost by reducing the 
number of packets that are transmitted from the MN to 
the SN across a communications link_AQP does not 
deal with data flowing in the reverse direction from the 
SN to the MN. 

AQP is built on top of the transport layer if looked at 
from the viewpoint of the OS1 seven layer model. While 
it assumes that the underlying link is at a transport layer 
and hence reliable, it does make allowances for the 
variations in the availability of that link. AQP makes the 
assumption that a reduction in traffic at higher layers of 
the path to the network connection, leads to reductions at 
the lower layers. While some existing distributed 
database systems attempt to minimise the cost of 
individual transactions, AQP attempts to minimise the 
cost of a batch of transactions, viewing them as a whole. 
Unreliability in the communications channel can cause 
excessive traffic due to error recovery methods. This 
situation is not specific to AQP however, and would 
generally require retransmission of the data regardless of 
the application type. While AQP could be altered to 
cater for lower layer error recovery this compromises it’s 
portability and flexibility. 

As an example of the saving that can be made, let us 
assume that our transport layer uses TCP, with IP being 
used at the network layer. A TCP header is 24 bytes 
and a ‘typical’ IP header is 24 bytes. Assuming that a 
textual query occupies on average 40 bytes, 6 such 
queries being sent in rapid succession, each in its own 
packet, would take 6 x (40 + 24 + 24) = 528 bytes. By 
collecting all the queries into one packet, however, (6 x 
40) + 24 +24 = 288, we make a saving of 240 bytes. 
While there is a saving in terms of the volume of dam 
sent, we should also consider several factors, namely: 
. Some networks charge in terms of the number of 

packets sent’, rather than actual data volume. In 
this case, assuming the aggregated packet in the 
above example can be sent without fragmentation, 
there is an -80% saving to be made. Even if the 
packet needs to be broken in two, a saving of better 
than 60% can still be made. 

l Battery life has been pointed out as being one of the 
ultimate determinants of mobile host usage [8]. 

’ The MobileData network in Australia is considering an 18 
cents per packet charging scheme. 
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Transmitters of data are one of the most expensive 
items in terms of battery power. Any reduction in 
the volume of data to be sent means an extension of 
battery life and prolonging the operational time of a 
mobile workstation. 

. There are some arguments that on error-prone 
transmission channels, reducing the time spent in 
transmitting the data also increases the chances that 
it will arrive at it’s destination error free. 

In the AQP model, transactions of varying priorities 
arrive at the input point, and eventually leave at the 
output point. When they leave depends on their priority 
and a number of global system parameters. These 
parameters can be adjusted while the model is running to 
adapt it to different situations. 

Figure 1 illustrates the AQP model. It consists of a 
number of input queues, one for each different level of 
priority that is supported. Although a large number of 
queues is possible, the task of assigning priorities to 
transactions in such a situation is difficult. As shown in 
this diagram priority n is the lowest priority, priority 0 is 
the highest priority. 

Fig. 1. Architecture of the AQP model 

As transactions arrive they are placed on the queue 
reserved for their particular priority. The queues have no 
predefined length and are always in a state where they 
are ready to accept another transaction. A global 
interval, freq (time units), specifies how often the queues 
are processed. Queues are processed in the following 
manner: 

Begin 
v’q;:(q;EQ,lliez) 

I qil+l f$ - 11 +I 4i - 11 

~w$Y(qd 

End 

where lqil is the number of elements in queue qi, and Q 
is the ordered set {qoql,...,q,J. 

This leads to a sort of a “waterfall” effect as the priority 
of transactions increases. On the way down the waterfall, 
other transactions are collected and the collection grows 
until it reaches priority 0. Upon reaching priority 0 
transactions wait keep * tie-units, where keep c @eq. 
Having keep 2freq diminishes the effect of the priorities. 
When keep time-units have expired, all transactions in 
the priority 0 queue are dispatched by packing them into 
as few packets as possible. In many situations this may 
mean one large packet is dispatched, though in others, 
underlying network limitations will require that a 
number of smaller packets be sent. Although keep is not 
essential, it avoids priority 0 transactions having to 
possibly wait for a full freq time units before they are 
dispatched. Their immediate dispatch can be simulated 
by setting keep to 0. A further benefit is apparent in 
systems that use the concept of virtual calls. By reducing 
the number of packets and their frequency, a reduction in 
the number of call setup operations is possible. As call 
setups are often charged for, this can also reduce 
operating costs. 

Care needs to be taken when choosing the values of keep 
andfreq. Large values of freq mean that transactions at 
priority n will take a relatively long time to be sent In 
general, providing freq and keep to remain constant, a 
transaction at priority A will take at most (n*ji-eq)+kmp 
time units to be sent. The value of keep is sensitive to the 
transmission speed and buffering at the mobile end. If 
the value of keep is large and transmission speed slow , 
the process of sending transactions in priority queue 0 
may still be happening when freq expires and the 
transactions from the priority 1 queue ‘fall’ down into the 
priority 0 queue. The adaptability of the AQP heavily 
depends on selecting the optimal values of keep andfreq, 
and may allow them to be calculated at run-time. 

As well as the priority of a transaction, the AQP system 
needs to kuow whether a response is required from the 
SN. In most situations this will be true, though in data 
collection situations where timeliness of data is 
important, and retransmissions might render the data 
useless, this might be set to false. The problem of how 
priorities might be assigned to transactions is the subject 
of further research, though we assume that priorities 
roughly equate to response time. 

The AQP model is relatively cheap to implement. It 
requires two timers, one forfreq and one for keep. It also 
requires space for the queues which might be represented 
in memory or on disk as files. Queues in memory would 
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consist of pointers to incoming transactions. The 
movement of queue from one priority to another can be 
implemented as a pointer manipulation. Queues kept on 
disk provide some degree of protection against power 
failures. If one file were used for each queue, then 
moving transactions from one priority to the next could 
be effected by renaming files (for all except the 
priority-l + priority-0 transition). Keeping the queues 
in files, however, would probably mean that the entire 
transaction would need to be swapped out to disk. 

As well as being cheap to implement, most protocols can 
implement AQP. Because it is format independent, the 
internal structure of the protocol does not need to be 
changed. One area where difficulties might arise, 
involves the timing constraints of protocols. Depending 
on how AQP is implemented it might be difficult to 
determine exactly when a packet will be transmitted. 
AQP, however, is positioned on top of a transport layer 
which should reduce the need for timing dependencies in 
protocols at this layer. 

4. Automating the Adaptation Process 

Although the application can select the suitable values of 
keep andfreq manually, a method of feedback to help set 
these values may be more appropriate. This takes various 
statistics kept about the queues and uses them to 
calculate new values offreq and keep. This is similar to 
the Quality-Of-Service (QOS) parameters used in the 
IS0 protocols. For example, if a statistic Packet-Per- 
Minute (PPM) was kept which counted the average 
PPMs transmitted, this could be used to vary freq. On a 
link which charged for each packet sent, a threshold cost 
could be set using PPM. If this threshold was exceeded, 
freq could be increased, until PPM came below the 
threshold. This would provide the system with the best 
link price/performance ratio. An alternative feedback 
method might use AVeraGe Delay (AVGD), the average 
time a packet spends in the priority queues before it is 
transmitted. When AVGD became too large, freq could 
be reduced. 

The feedback method is most useful when the types of 
query/data being sent across the link varies over time. 
For constant query/data types, constant optimal values of 
freq and keep might be calculated before hand. 

With the feedback method, some attention needs to be 
paid to when rhefreq and keep values are changed, and 
the way the rest of the system interacts with the priority 
queues. Typically in systems that employ some dynamic 
adaptation of parameters, there are mechanisms to query 

the current values of the parameters. If a time-sensitive 
transaction where to be in the priority queues (such as a 
real time data measurement sent every 5 seconds), when 
the values offreq and keep where changed, the variation 
in its transmission time (early or late) might render it 
useless. 

5. Implementation of an AQP Simulator 

Two simulations of AQP have been developed. Only the 
second has been used to perform the actual simulations 
after problems with the fast could not be resolved. We 
describe both below. 

5.1 A Multi-Tasking Simulation Technique 

This simulation is composed of three processes, contains 
about 2,000 lines of code, and runs under the Unix 
operating system. There is a process for each end of a 
mobile link, and to act as a virtual clock (VC); one of 
these is responsible for the mobile end of the link (MP - 
Mobile Process), the other process modelling the 
stationary end of the link (SP). The processes 
communicate via the socket mechanism provided by 
Unix. The architecture of the simulator is shown in 
Figure 2. 

Fig.2. Multi-tasking simulator 

The main barrier to the successful functioning of this 
simulation is the way in which each process receives its 
time slice from the operating system. Ideally, the SP and 
MN processes would receive equal amounts of time, and 
the VC process would be run frost (or last) in each 
iteration. If the time allocated to SP and MN differs, then 
one appears to race ahead of the other in virtual time, 
thus skewing the results. If the order of the processes is 
(SP, VC, MN) rather than (VC, SP, MN), then the SP 
and h4N processes start at different virtual times which 
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makes reconciling the amount of time they consume 
difficult. Because we did not have detailed control over 
the scheduling policy in the Unix we used, we 
determined that the results of this simulation could not 
be used to support any conclusions which we might draw 
from them. Newer variants of Unix (OSF/l, Solaris, 
UnixWare) allow tighter control over the scheduling 
policy used and might be a suitable environment for such 
a technique in future research. 

Ironically, the independence of the processes, as well as 
proving a problem, was also the main advantage of this 
method. The independent nature of the processes allowed 
them to communicate in an asynchronous manner which 
most closely approximates the real world. 

5.2 Non-Preemptive Multitasking 

A non-preemptive multi-tasking simulation is depicted 
in Figure 3 and is discussed below. 

Fig.3. An architecture of a non-preemptive 
multi-tasking simulator 

This simulation uses only one process which causes 
problems when trying to simulate the independent nature 
of the different ends of the link. The process runs the 
Virtual Clock (VC) and contains the simulation code for 
the Mobile Node (MN) and the Stationary Node (SN). A 
simple loop, where each iteration simulates a pre- 
determined number of time-units, might be represented 
Cl.% 

Begin Loop 
Update VC 
Run MN code 
Run SN code 

End Loop. 

This however will not work. Although it simulates any 
transmissions in the MN+SN link resulting from a run 
of the MobiZe Link End code, it does not cater for SN+ 
MN transmissions produced during the same time 
period. Instead the following loop must be used: 

Begin Loop 
Update VC 
Run MN code, transmit to SN 
Run SN code, transmit to MN 
Run MN code, receive SN transmissions 
Run SN code, receive MN transmissions 

End Loop 

This allows each end of the link to simulate both receive 
and send for the pre-determined time period. A few 
simple rules must be followed by each of the MN and SN 
code fragments for the simulation to be valid, namely: 
. Only those transmissions which fall inside the 

predetermined time period must occur. 
. All transmissions from the other end of the link 

must be accepted. This assumes that the 
propagation delay for the link is 0. 

. Transmissions which would occur as a result of 
receiving a transmission from the other end of the 
link, must be delayed until the next iteration of the 
loop. Another way of saying this is that the time 
period to be simulated for each loop iteration must 
be sufficiently small enough so that this does not 
happen. 

Both simulations are driven by ASCII files, each line of 
which constitutes a record. The first field of each record 
contains a timestamp, indicating the starting point of 
that event in the file. The files are sorted on ascending 
order based on this timestamp. At this stage there are 
two main input files, one containing generated 
transactions that will use the link, and the other listing 
those times when the link is available. This simulates 
situations where the link becomes unavailable due to 
hardware failure (rare), or poor quality of the 
communications channel (more common). Because the 
communications channel is assumed to provide a 
transport layer of service, these breaks in communication 
are not used to test error recovery but instead to measure 
the resultant effect on queue length. Certain assumptions 
have been made to simplify the implementation of the 
current version of AQP. These assumptions are discussed 
below. 

The other fde contains transactions that will use the link 
for some purposes. As well as the timestamp at the 
beginning of each record, there are four other white 
space delimited fields: 
. priority - the priority of this transaction; 
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. cargo - the size of the data begin carried across the 
link. This ignores the effects of mechanisms such as 
compression which can be applied to both this and 
other protocols with similar results; 

. con@mation - not all transactions require 
confutation. An example of such a situation is 
presented in one of the case studies below; 

. delay - associated with the processing of each 
transaction is an expected delay. Although this is 
only an estimate, the complexity of the possible 
networks and processing at the stationary point 
make accurate calculation (and simulation) of the 
delay infeasible. 

To provide a balanced outcome, a number of different 
cases have been simulated. Programs custom&d to a 
particular case are used to generate the input files for the 
simulation. These programs are able to generate a 
specified number of transactions, the attributes of which 
can be specified to follow a particular statistical 
distribution (eg. binomial, normal, etc ). The fust four of 
the cases that have been run through the simulator are 
listed below: 
l Constant High Priority Transactions - This case 

study favours the traditional SOD method of 
transmission. Transactions of the highest priority 
are continually arriving, and being immediately 
dispatched. 

. Uniform Priority Distribution (UPD) - In this case, 
all priorities have an equal chance of occurring. 
This tends to favour AQP, though is not as extreme 
in its bias as the Constant High Priority 
Transactions case. Samples of 1000, 10,000 and 
l,OOO,OOO were simulated. Results were generally 
independent of sample size. 

. Travelling Salesperson (23) - This case attempts to 
simulate a travelling salesperson that places orders 
while on site with clients (stationary order entry). 
Queries regarding those orders and other stock 
items are also made while both stationary and 
mobile. Because links are more reliable when both 
ends are stationary, the order entry situation suffers 
less from link unavailability. This salesperson stops 
and visits 6 clients. At each visit the salesperson 
performs IO->20 query transactions and finishes 
with a single write or update transaction. 

. Weather Data Collection Point (WDCP) - In this 
case study both ends of the link are stationary and 
so link availability is quite high. Such a situation 
might occur when it is prohibitively expensive or 
impossible to build a Iand line to the WDCP. The 
WDCP sends out transactions containing weather 
information. The frequency of the transactions is 

non-linear and they do not require a reply. 279 
transactions were simulated, representing a fme 
day, that turns cloudy in the evening. 

The length of the simulations varies with the case study. 
Generally speaking, higher transactions rates require 
short simulation runs, though a duration thought to be 
representative of the case study is the over-riding 
concern. 

As well as transmission cost over the link for each 
simulation a number of other figures are kept. Statistics 
on queue length (mitt, avg., max), the number of optimal 
packets sent vs. the number of sub-optimal packets, time 
from when a transaction is received to when it is actually 
transmitted (min, avg., max), as well as others, are also 
kept. 

Generally speaking, the simulation shows a saving in the 
number of packets sent for AQP in all simulations so far. 
This saving ranges from a few percent for cases biased 
towards the traditional SOD protocol, to approximately 
50% for cases biased towards AQP. As well as absolute 
transmission cost however, we are also looking at 
implementation costs, such as the memory consumed by 
the queues, and the overhead involved in processing the 
queues. 

ii. Result Analysis 

We have simulated a number of other cases with the 
protocol simulator though the four mentioned in the 
previous section are a representative cross section. We 
do not discuss results for the Constant High Priority 
Transactions case, as this is biased against the AQP and 
shows no significant savings. The high cost of operating 
in such a situation over a mobile link would tend to 
preclude mobile applications that generated a constant 
stream of high priority transactions. 

The results discussed here are for the: UPD, WDCP , and 
TS. For each of the simulations, two graphs are shown. 
Total number of packets sent vs.freq, and average delay 
each transaction incurs before it is transmitted vs.freq. It 
should be noted that each of these simulations was 
chosen to emphasise a particular aspect of the 
communication behaviour. UPD demonstrates the case 
where there is a constant stream of transactions each 
with a randomly chosen (though equally probable) 
priority. The WDCP illustrates a real time case, and 
simulates a day of clear weather, followed by some 
change in the evening. The TS represents a graph which 
peaks at various times during the day, the peaks 
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representing those times when the saiesmau is visiting 
with clients and querying the remote database. 

transaction rate. Send delay changes almost exactly in 
geometric proportion withfreq. 

The graphs, depicted in Figure 4, show the results of a 
UPD simulation of 2000 transactions. The frost 
represents the average number of packets sent vs. 
different values of j&q. This graph shows that as freq 
reduces, and hence the effect of the buffering becomes 
less, the number of packets sent increases, as expected. 
The most striking aspect of the first graph is that even 
though we have initiated 2000 transactions, only -1100 
packets are sent The second graph shows the average 
packet delay, also for different values offreq. What must 
be remembered when interpreting this graph is that this 
value represents the average of all packets in an equally 
probable distribution. In a distribution skewed towards 
higher priority packets, the send delay would be reduced. 
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Fig.4. UPD simulation results: Uniform Priority 
Distribution (2000 transactions) 

The results for the weather simulation are depicted in 
Figure 5, and are not as startling as those for the 
previous simulation. A total of 279 transactions were 
conducted during the simulated time. Although a freq 
value of 10 shows a significant saving in terms of the 
number of packets, it must be remembered that this 
saving occurred over a whole day at a relatively low 
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Fig.5 ‘Weather monitoring” appplication simulation 
results: Weather Data Collection Point 

Travelling salesmen could make a potential saving using 
AQP. Although the saving at first does not appear to be 
significant, it must be remembered that the main traflic 
in this simulation occurs in bursts (during a customer 
visit) rather than being a constant stream. A snapshot of 
these high volume bursts yields savings and behaviour 
similar to the IJPD above. A simulation of 96 
transactions produced the graphs illustrated in Figure 6. 

Simulations were also conducted that varied the time of 
keep. These showed that the average send delay was not 
greatly affected by varying the value of keep. 
Nonetheless this is au important variable that caters for 
real-time applications by ensuring the immediate 
dispatch of packets in the priority 0 queue. 

7. Conclusion 

Results from simulations of the AQP model have shown 
that for transmission costs it is never worse that the SOD 
model and in most cases better. Actual savings on 
packets sent range from a few percent to approximately 
50% in the case studies simulated. The simplicity of the 
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protocol lends itself to implementation on portable 
platforms which are often less powerful, due to power 
and cost constraints, than stationary nodes. Although it 
has been developed primarily for use on mobile nodes it 
is applicable to many other situations where transmission 
costs are high relative to the information content and 
priority of the data being sent. 

15 -- 
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freq 

Fig. 6. “Travelling Salesman” application simulation 
results: Travelling Salesman (6 visits) 

This simulation is part of an ongoing study into adaptive 
supporting mechanisms for protocols. Not only has the 
number of protocols grown, but also the number of 
environments in which they are used and tasks to which 
they are put. Adaptive mechanisms allow protocols to be 
better tailored to their environment, ultimately benefiting 
the user. The AQP simulation that has been carried out, 
is one example of the improvement that can be obtained 
using adaptive mechanisms. In future work we hope to 
be able to demonstrate further improvements. 
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