
Cost Efficient Adaptive Protocol with Buffering for Advanced
Mobile Database Applications

S.J. Lai, A. Zaslavsky, G.P. Martin, L.H. Yeo
Department of Computer Technology, Monash University, Melbourne

Emaik { SJLai, AZaslavs, GMartin, LHYeo} @broncho.ct.monash.edu.au

Abstract

The most recent advancements in computer hardware and
communications make the mobile computing paradigm tangible
and feasible. One of the major factors affecting mobile
computing is ummumication protocols efficiency. This paper
proposes and discusses an Adaptive Queuing Protocol which
targets advanced mobile database applications. The protocol
has two main objectives. Firstly, to compensate for the
relatively slow speed of some existing mobile communication
links. Secondly, to reduce the cost of communications by
reducing link usage. In achieving these aims, our goal has been
to reduce the total data volume that the link must carry, and at
the same time ensure adequate response time for all classes of
transactions. Results of computer simulation are presented and
discussed.

1. Introduction

Recent advances in miniaturisation and cellular
technology make the computing paradigm ubiquitous
and are extending the scope of database applications.
While distributed databases have been studied and
researched for two decades, a new aspect of that same
area is now being developed. Distributed databases that
incorporate mobile components have opened new
avenues of research into advanced applications.
Although the technology has been available for 3 years,
it has now become affordable, and this has been reflected
in the number of new and advanced applications that it is
being used for. For instance, in 1993, in the city of
Melbourne, Victoria, Australia, taxi companies
introduced the concept of a “Computer Cab”, a taxi
which has an on-board computer that is linked with the
database at central headquarters. Police in many
countries is equipped now with portable car computers to
access information on vehicles and criminals.
Eventually, it will be possible for one’s pocket computer
to communicate automatically with other databases

Proceedings of the Fourth international Conference on
Database Sytems for Advanced Applications (DASFA4’95)
Ed. Tok Wang Ung and Yoshifumi Masunaga
Singapore, April 10-13.1995
Q World Scientific Publishing Co. Pte Ltd

which reside on stationary and/or mobile computers 24
hours a day.

Operating costs of mobile technology, while shrinking,
are still prohibitive for many applications. The capital
investment required to obtain a mobile node has dropped
dramatically, and may even has reached equilibrium in
the market place. An avenue of even greater savings
however still remains largely unexplored, and that is the
cost of operating the link to/from the mobile node. While
there are many flexible pricing schemes, which can
reduce the cost of link operation (based on the time of
day, number of calls made, etc), we intend to address the
fundamental underlying problem, namely, to reduce the
amount of data to be transferred.

This paper proposes and discusses an Adaptive Queuing
Protocol which targets advanced mobile database
applications (a term “mobile databases” represents a
class of multidatabase systems where constituent
databases may reside on mobile computers and/or
stationary computers). This protocol has two main
objectives. Firstly, to compensate for the relatively slow
speed of some existing mobile communication links.
Secondly, to reduce the cost, by reducing link usage. In
achieving these aims, our goal has been to reduce the
total data volume that the link must carry, and at the
same time ensure adequate response time for all classes
of transactions.

By the word “link” we mean any method of
communication that a mobile platform might use,
whether by satellite or mobile phone. We are most
concerned with those that have some cost associated with
use of the link, rather than those that have no cost that is
directly proportional to the amount of data sent (eg.,
radio modems). For those mobile links that do charge in
proportion to the data volume, charges can apply not
only on a straight volume basis, but also on a connect
time basis.

The remainder of the paper is organised as follows.
Section 2 presents a survey of related work and
summarises those relatively few references that exist in

87

this highly commercial&d and rapidly emerging area.
Section 3 discusses the proposed protocol and outlines
some associated problems. Section 4 considers a method
of obtaining a balanced mix of variables involved in the
adaptation process. Section 5 addresses some
implementation issues and compares different
approaches that have been studied during the
implementation phase. Finally, conclusions and a future
directions are briefly discussed.

2. Related Work

There have been a number of studies relating to protocol
buffering issues [4,5,7, 10, 11, 121. Most, however, tend
to have involved relatively high speed local area
networks and tend to emphasise performance rather than
link usage cost. We denote this class of protocols as
Send-on-Demand (SOD) protocols, because they
transmit whenever the network is available. Some have
investigated the cost of manipulating the buffers used in
protocol processing, though once again in an
environment where the cost of sending data over the
network ranked very low.

Other buffering issues regarding the delayed sending of
information can be found in studies related to the
implementation of network protocols in operating
systems [3, 91. In these studies some analysis is made on
the amount of buffering required for supporting network
protocols (TCP/IP, in particular).

Recent research papers [l, 21 demonstrate a growing
demand for efficient and effective protocols which can he
used in mobile computing. El Abbadi [4] talks about a
family of adaptive protocols for maintaining replicated
distributed databases. The paper places more emphasis
on the integrity of the replicated data rather than the
efficiency with which that dam is communicated between
the distributed databases. Some researchers argue that
the major factor which may determine the success or
failure of mobile computing is the capacity of a battery
and its life-time [8] and under such circumstances the
development of efficient energy-saving technologies and
robust protocols is especially important. Yeo &
Zaslavsky [13] discuss transaction management issues in
heterogeneous multidatabase environment with mobile
components and propose a queuing mechanism which
might be used to increase the efticiency and reliability of
mobile applications.

3. Adaptive Queuing Protocol

The adaptive queuing protocol (AQP) has been
developed as a result of research which shows that

existing network communication protocols for stationary
nodes (SN) are sub-optimal when applied to mobile
nodes (MN) running database applications. Many
existing protocols tend to emphasise the speed of data
transfer rather than the cost involved. Viability of MN’s,
however, is very sensitive to the cost of the link to an
SN. AQP attempts to minim& this cost by reducing the
number of packets that are transmitted from the MN to
the SN across a communications link_AQP does not
deal with data flowing in the reverse direction from the
SN to the MN.

AQP is built on top of the transport layer if looked at
from the viewpoint of the OS1 seven layer model. While
it assumes that the underlying link is at a transport layer
and hence reliable, it does make allowances for the
variations in the availability of that link. AQP makes the
assumption that a reduction in traffic at higher layers of
the path to the network connection, leads to reductions at
the lower layers. While some existing distributed
database systems attempt to minimise the cost of
individual transactions, AQP attempts to minimise the
cost of a batch of transactions, viewing them as a whole.
Unreliability in the communications channel can cause
excessive traffic due to error recovery methods. This
situation is not specific to AQP however, and would
generally require retransmission of the data regardless of
the application type. While AQP could be altered to
cater for lower layer error recovery this compromises it’s
portability and flexibility.

As an example of the saving that can be made, let us
assume that our transport layer uses TCP, with IP being
used at the network layer. A TCP header is 24 bytes
and a ‘typical’ IP header is 24 bytes. Assuming that a
textual query occupies on average 40 bytes, 6 such
queries being sent in rapid succession, each in its own
packet, would take 6 x (40 + 24 + 24) = 528 bytes. By
collecting all the queries into one packet, however, (6 x
40) + 24 +24 = 288, we make a saving of 240 bytes.
While there is a saving in terms of the volume of dam
sent, we should also consider several factors, namely:
. Some networks charge in terms of the number of

packets sent’, rather than actual data volume. In
this case, assuming the aggregated packet in the
above example can be sent without fragmentation,
there is an -80% saving to be made. Even if the
packet needs to be broken in two, a saving of better
than 60% can still be made.

l Battery life has been pointed out as being one of the
ultimate determinants of mobile host usage [8].

’ The MobileData network in Australia is considering an 18
cents per packet charging scheme.

88

Transmitters of data are one of the most expensive
items in terms of battery power. Any reduction in
the volume of data to be sent means an extension of
battery life and prolonging the operational time of a
mobile workstation.

. There are some arguments that on error-prone
transmission channels, reducing the time spent in
transmitting the data also increases the chances that
it will arrive at it’s destination error free.

In the AQP model, transactions of varying priorities
arrive at the input point, and eventually leave at the
output point. When they leave depends on their priority
and a number of global system parameters. These
parameters can be adjusted while the model is running to
adapt it to different situations.

Figure 1 illustrates the AQP model. It consists of a
number of input queues, one for each different level of
priority that is supported. Although a large number of
queues is possible, the task of assigning priorities to
transactions in such a situation is difficult. As shown in
this diagram priority n is the lowest priority, priority 0 is
the highest priority.

Fig. 1. Architecture of the AQP model

As transactions arrive they are placed on the queue
reserved for their particular priority. The queues have no
predefined length and are always in a state where they
are ready to accept another transaction. A global
interval, freq (time units), specifies how often the queues
are processed. Queues are processed in the following
manner:

Begin
v’q;:(q;EQ,lliez)

I qil+l f$ - 11 +I 4i - 11

~w$Y(qd

End

where lqil is the number of elements in queue qi, and Q
is the ordered set {qoql,...,q,J.

This leads to a sort of a “waterfall” effect as the priority
of transactions increases. On the way down the waterfall,
other transactions are collected and the collection grows
until it reaches priority 0. Upon reaching priority 0
transactions wait keep * tie-units, where keep c @eq.
Having keep 2freq diminishes the effect of the priorities.
When keep time-units have expired, all transactions in
the priority 0 queue are dispatched by packing them into
as few packets as possible. In many situations this may
mean one large packet is dispatched, though in others,
underlying network limitations will require that a
number of smaller packets be sent. Although keep is not
essential, it avoids priority 0 transactions having to
possibly wait for a full freq time units before they are
dispatched. Their immediate dispatch can be simulated
by setting keep to 0. A further benefit is apparent in
systems that use the concept of virtual calls. By reducing
the number of packets and their frequency, a reduction in
the number of call setup operations is possible. As call
setups are often charged for, this can also reduce
operating costs.

Care needs to be taken when choosing the values of keep
andfreq. Large values of freq mean that transactions at
priority n will take a relatively long time to be sent In
general, providing freq and keep to remain constant, a
transaction at priority A will take at most (n*ji-eq)+kmp
time units to be sent. The value of keep is sensitive to the
transmission speed and buffering at the mobile end. If
the value of keep is large and transmission speed slow ,
the process of sending transactions in priority queue 0
may still be happening when freq expires and the
transactions from the priority 1 queue ‘fall’ down into the
priority 0 queue. The adaptability of the AQP heavily
depends on selecting the optimal values of keep andfreq,
and may allow them to be calculated at run-time.

As well as the priority of a transaction, the AQP system
needs to kuow whether a response is required from the
SN. In most situations this will be true, though in data
collection situations where timeliness of data is
important, and retransmissions might render the data
useless, this might be set to false. The problem of how
priorities might be assigned to transactions is the subject
of further research, though we assume that priorities
roughly equate to response time.

The AQP model is relatively cheap to implement. It
requires two timers, one forfreq and one for keep. It also
requires space for the queues which might be represented
in memory or on disk as files. Queues in memory would

89

consist of pointers to incoming transactions. The
movement of queue from one priority to another can be
implemented as a pointer manipulation. Queues kept on
disk provide some degree of protection against power
failures. If one file were used for each queue, then
moving transactions from one priority to the next could
be effected by renaming files (for all except the
priority-l + priority-0 transition). Keeping the queues
in files, however, would probably mean that the entire
transaction would need to be swapped out to disk.

As well as being cheap to implement, most protocols can
implement AQP. Because it is format independent, the
internal structure of the protocol does not need to be
changed. One area where difficulties might arise,
involves the timing constraints of protocols. Depending
on how AQP is implemented it might be difficult to
determine exactly when a packet will be transmitted.
AQP, however, is positioned on top of a transport layer
which should reduce the need for timing dependencies in
protocols at this layer.

4. Automating the Adaptation Process

Although the application can select the suitable values of
keep andfreq manually, a method of feedback to help set
these values may be more appropriate. This takes various
statistics kept about the queues and uses them to
calculate new values offreq and keep. This is similar to
the Quality-Of-Service (QOS) parameters used in the
IS0 protocols. For example, if a statistic Packet-Per-
Minute (PPM) was kept which counted the average
PPMs transmitted, this could be used to vary freq. On a
link which charged for each packet sent, a threshold cost
could be set using PPM. If this threshold was exceeded,
freq could be increased, until PPM came below the
threshold. This would provide the system with the best
link price/performance ratio. An alternative feedback
method might use AVeraGe Delay (AVGD), the average
time a packet spends in the priority queues before it is
transmitted. When AVGD became too large, freq could
be reduced.

The feedback method is most useful when the types of
query/data being sent across the link varies over time.
For constant query/data types, constant optimal values of
freq and keep might be calculated before hand.

With the feedback method, some attention needs to be
paid to when rhefreq and keep values are changed, and
the way the rest of the system interacts with the priority
queues. Typically in systems that employ some dynamic
adaptation of parameters, there are mechanisms to query

the current values of the parameters. If a time-sensitive
transaction where to be in the priority queues (such as a
real time data measurement sent every 5 seconds), when
the values offreq and keep where changed, the variation
in its transmission time (early or late) might render it
useless.

5. Implementation of an AQP Simulator

Two simulations of AQP have been developed. Only the
second has been used to perform the actual simulations
after problems with the fast could not be resolved. We
describe both below.

5.1 A Multi-Tasking Simulation Technique

This simulation is composed of three processes, contains
about 2,000 lines of code, and runs under the Unix
operating system. There is a process for each end of a
mobile link, and to act as a virtual clock (VC); one of
these is responsible for the mobile end of the link (MP -
Mobile Process), the other process modelling the
stationary end of the link (SP). The processes
communicate via the socket mechanism provided by
Unix. The architecture of the simulator is shown in
Figure 2.

Fig.2. Multi-tasking simulator

The main barrier to the successful functioning of this
simulation is the way in which each process receives its
time slice from the operating system. Ideally, the SP and
MN processes would receive equal amounts of time, and
the VC process would be run frost (or last) in each
iteration. If the time allocated to SP and MN differs, then
one appears to race ahead of the other in virtual time,
thus skewing the results. If the order of the processes is
(SP, VC, MN) rather than (VC, SP, MN), then the SP
and h4N processes start at different virtual times which

90

makes reconciling the amount of time they consume
difficult. Because we did not have detailed control over
the scheduling policy in the Unix we used, we
determined that the results of this simulation could not
be used to support any conclusions which we might draw
from them. Newer variants of Unix (OSF/l, Solaris,
UnixWare) allow tighter control over the scheduling
policy used and might be a suitable environment for such
a technique in future research.

Ironically, the independence of the processes, as well as
proving a problem, was also the main advantage of this
method. The independent nature of the processes allowed
them to communicate in an asynchronous manner which
most closely approximates the real world.

5.2 Non-Preemptive Multitasking

A non-preemptive multi-tasking simulation is depicted
in Figure 3 and is discussed below.

Fig.3. An architecture of a non-preemptive
multi-tasking simulator

This simulation uses only one process which causes
problems when trying to simulate the independent nature
of the different ends of the link. The process runs the
Virtual Clock (VC) and contains the simulation code for
the Mobile Node (MN) and the Stationary Node (SN). A
simple loop, where each iteration simulates a pre-
determined number of time-units, might be represented
Cl.%

Begin Loop
Update VC
Run MN code
Run SN code

End Loop.

This however will not work. Although it simulates any
transmissions in the MN+SN link resulting from a run
of the MobiZe Link End code, it does not cater for SN+
MN transmissions produced during the same time
period. Instead the following loop must be used:

Begin Loop
Update VC
Run MN code, transmit to SN
Run SN code, transmit to MN
Run MN code, receive SN transmissions
Run SN code, receive MN transmissions

End Loop

This allows each end of the link to simulate both receive
and send for the pre-determined time period. A few
simple rules must be followed by each of the MN and SN
code fragments for the simulation to be valid, namely:
. Only those transmissions which fall inside the

predetermined time period must occur.
. All transmissions from the other end of the link

must be accepted. This assumes that the
propagation delay for the link is 0.

. Transmissions which would occur as a result of
receiving a transmission from the other end of the
link, must be delayed until the next iteration of the
loop. Another way of saying this is that the time
period to be simulated for each loop iteration must
be sufficiently small enough so that this does not
happen.

Both simulations are driven by ASCII files, each line of
which constitutes a record. The first field of each record
contains a timestamp, indicating the starting point of
that event in the file. The files are sorted on ascending
order based on this timestamp. At this stage there are
two main input files, one containing generated
transactions that will use the link, and the other listing
those times when the link is available. This simulates
situations where the link becomes unavailable due to
hardware failure (rare), or poor quality of the
communications channel (more common). Because the
communications channel is assumed to provide a
transport layer of service, these breaks in communication
are not used to test error recovery but instead to measure
the resultant effect on queue length. Certain assumptions
have been made to simplify the implementation of the
current version of AQP. These assumptions are discussed
below.

The other fde contains transactions that will use the link
for some purposes. As well as the timestamp at the
beginning of each record, there are four other white
space delimited fields:
. priority - the priority of this transaction;

91

. cargo - the size of the data begin carried across the
link. This ignores the effects of mechanisms such as
compression which can be applied to both this and
other protocols with similar results;

. con@mation - not all transactions require
confutation. An example of such a situation is
presented in one of the case studies below;

. delay - associated with the processing of each
transaction is an expected delay. Although this is
only an estimate, the complexity of the possible
networks and processing at the stationary point
make accurate calculation (and simulation) of the
delay infeasible.

To provide a balanced outcome, a number of different
cases have been simulated. Programs custom&d to a
particular case are used to generate the input files for the
simulation. These programs are able to generate a
specified number of transactions, the attributes of which
can be specified to follow a particular statistical
distribution (eg. binomial, normal, etc). The fust four of
the cases that have been run through the simulator are
listed below:
l Constant High Priority Transactions - This case

study favours the traditional SOD method of
transmission. Transactions of the highest priority
are continually arriving, and being immediately
dispatched.

. Uniform Priority Distribution (UPD) - In this case,
all priorities have an equal chance of occurring.
This tends to favour AQP, though is not as extreme
in its bias as the Constant High Priority
Transactions case. Samples of 1000, 10,000 and
l,OOO,OOO were simulated. Results were generally
independent of sample size.

. Travelling Salesperson (23) - This case attempts to
simulate a travelling salesperson that places orders
while on site with clients (stationary order entry).
Queries regarding those orders and other stock
items are also made while both stationary and
mobile. Because links are more reliable when both
ends are stationary, the order entry situation suffers
less from link unavailability. This salesperson stops
and visits 6 clients. At each visit the salesperson
performs IO->20 query transactions and finishes
with a single write or update transaction.

. Weather Data Collection Point (WDCP) - In this
case study both ends of the link are stationary and
so link availability is quite high. Such a situation
might occur when it is prohibitively expensive or
impossible to build a Iand line to the WDCP. The
WDCP sends out transactions containing weather
information. The frequency of the transactions is

non-linear and they do not require a reply. 279
transactions were simulated, representing a fme
day, that turns cloudy in the evening.

The length of the simulations varies with the case study.
Generally speaking, higher transactions rates require
short simulation runs, though a duration thought to be
representative of the case study is the over-riding
concern.

As well as transmission cost over the link for each
simulation a number of other figures are kept. Statistics
on queue length (mitt, avg., max), the number of optimal
packets sent vs. the number of sub-optimal packets, time
from when a transaction is received to when it is actually
transmitted (min, avg., max), as well as others, are also
kept.

Generally speaking, the simulation shows a saving in the
number of packets sent for AQP in all simulations so far.
This saving ranges from a few percent for cases biased
towards the traditional SOD protocol, to approximately
50% for cases biased towards AQP. As well as absolute
transmission cost however, we are also looking at
implementation costs, such as the memory consumed by
the queues, and the overhead involved in processing the
queues.

ii. Result Analysis

We have simulated a number of other cases with the
protocol simulator though the four mentioned in the
previous section are a representative cross section. We
do not discuss results for the Constant High Priority
Transactions case, as this is biased against the AQP and
shows no significant savings. The high cost of operating
in such a situation over a mobile link would tend to
preclude mobile applications that generated a constant
stream of high priority transactions.

The results discussed here are for the: UPD, WDCP , and
TS. For each of the simulations, two graphs are shown.
Total number of packets sent vs.freq, and average delay
each transaction incurs before it is transmitted vs.freq. It
should be noted that each of these simulations was
chosen to emphasise a particular aspect of the
communication behaviour. UPD demonstrates the case
where there is a constant stream of transactions each
with a randomly chosen (though equally probable)
priority. The WDCP illustrates a real time case, and
simulates a day of clear weather, followed by some
change in the evening. The TS represents a graph which
peaks at various times during the day, the peaks

92

representing those times when the saiesmau is visiting
with clients and querying the remote database.

transaction rate. Send delay changes almost exactly in
geometric proportion withfreq.

The graphs, depicted in Figure 4, show the results of a
UPD simulation of 2000 transactions. The frost
represents the average number of packets sent vs.
different values of j&q. This graph shows that as freq
reduces, and hence the effect of the buffering becomes
less, the number of packets sent increases, as expected.
The most striking aspect of the first graph is that even
though we have initiated 2000 transactions, only -1100
packets are sent The second graph shows the average
packet delay, also for different values offreq. What must
be remembered when interpreting this graph is that this
value represents the average of all packets in an equally
probable distribution. In a distribution skewed towards
higher priority packets, the send delay would be reduced.

3 1050

gj 1030
24
0 1010 a

990

970

2 3 4 5 6 7 8 9 10
f%

2 3 4 5 6 7 8 9 10

freq

Fig.4. UPD simulation results: Uniform Priority
Distribution (2000 transactions)

The results for the weather simulation are depicted in
Figure 5, and are not as startling as those for the
previous simulation. A total of 279 transactions were
conducted during the simulated time. Although a freq
value of 10 shows a significant saving in terms of the
number of packets, it must be remembered that this
saving occurred over a whole day at a relatively low

230
210

8 190
“y 170
B 150
2 130

110
90

2 3 4 5 6 7 8 9 10
frea

0.152 - -

0.102 - -

i!
2

0.052 - -

0.002

2 3 4 5 6 7 8 9 10

Fig.5 ‘Weather monitoring” appplication simulation
results: Weather Data Collection Point

Travelling salesmen could make a potential saving using
AQP. Although the saving at first does not appear to be
significant, it must be remembered that the main traflic
in this simulation occurs in bursts (during a customer
visit) rather than being a constant stream. A snapshot of
these high volume bursts yields savings and behaviour
similar to the IJPD above. A simulation of 96
transactions produced the graphs illustrated in Figure 6.

Simulations were also conducted that varied the time of
keep. These showed that the average send delay was not
greatly affected by varying the value of keep.
Nonetheless this is au important variable that caters for
real-time applications by ensuring the immediate
dispatch of packets in the priority 0 queue.

7. Conclusion

Results from simulations of the AQP model have shown
that for transmission costs it is never worse that the SOD
model and in most cases better. Actual savings on
packets sent range from a few percent to approximately
50% in the case studies simulated. The simplicity of the

93

protocol lends itself to implementation on portable
platforms which are often less powerful, due to power
and cost constraints, than stationary nodes. Although it
has been developed primarily for use on mobile nodes it
is applicable to many other situations where transmission
costs are high relative to the information content and
priority of the data being sent.

15 --
10 ‘1 1 1 I

2 3 4 5 6 7 8 9 10
fre9

2 3 4 5 6 7 8 9 10
freq

Fig. 6. “Travelling Salesman” application simulation
results: Travelling Salesman (6 visits)

This simulation is part of an ongoing study into adaptive
supporting mechanisms for protocols. Not only has the
number of protocols grown, but also the number of
environments in which they are used and tasks to which
they are put. Adaptive mechanisms allow protocols to be
better tailored to their environment, ultimately benefiting
the user. The AQP simulation that has been carried out,
is one example of the improvement that can be obtained
using adaptive mechanisms. In future work we hope to
be able to demonstrate further improvements.

References

[l] Badrinath, BR., Acharya, A., Imielinski, T.,
“Structuring Distributed Algorithms for Mobile Hosts”,
Proceeding8 of IEEE/CS 14th International Conference
on Distributed Computing Systems, Poland, June, 1994,
p. 21-28.

[23 Caceres, R., Iftode, L., “The Effects of Mobility dn
Reliable Transport Protocols”, Proceedings of IEElXS
14th International Conference on Distributed Computing
Systems, Poland, June, 1994, p. 12-20.
[3] Clark, D.C., Jacobson, V., Romkey, J., Salwen, H.,
“An Analysis of TCP Processing Overhead”, IEEE
Communications Magazine, June 1989.
[4] El Abbadi, A., “Adaptive Protocols for Managing
Replicated Distributed Databases”, Proceedings of the
Third IEEE Symposium on Parallel and Distributed
Processing, 1991, p-36-43.
[5] Feldmeier, D.C., “A Data Labelling Technique for
High-Performance Protocol Processing and Its
Consequences”, Computer Communication Review,
SIGCOMM’93, Conference Proceedings,
Communications Architectures, Protocols and
Applications, September 13-17, 1993, San Francisco,
California, USA.
[6] For-man, G-H., Zahorjan, J., “The Challenges of
Mobile Computing”, Computer, Vol. 27, April, 1994,
p.38-47.
[7] Huang, Y .M., Guau, S-U., “A Refmed Cut-Through
Buffer Management Scheme for Layered Protocol
Stacks”, IEEE Communications, Vol 32, No. 3, March,
1994.
[S] Imielinski, T., Badrinath, B.R., “Data Management
for Mobile Computing”. SIGMOD Record. 22:1, 1993,
p.34-39.
[9] Leffler, S., McKusick, M.K., Karels, M.J.,
Quarterman, J.S ., “The Design and Implementation of
the 4.3BSD UNIX Operating System”, 1990, Addison-
-Wesley.
[lo] Poo, G.S., Ang, W., “Cut-through buffer
management technique for OS1 protocol stack”, VoI 14,
No 3, Computer Communications, April, 1993.
[ll] Wood.+&, C.M., Montealegre, J.R. “On Packet
Buffering and Protocol Performance”, In: Protocol
Specification, Testing and Verification, V, edited by M.
Diaz, Elsevier Science Publishers, 1986, B.V.(Nort.h-
Holland)
[12] Woodside, C.M., Montealegre, J.R., “The Effect of
Buffering Strategies on Protocol Execution
Performance”, IEEE Transactions on Communications,
Vo137, No 6, June, 1989.
[13] Yeo, L.H. and ZasIavsky, A. “Submission of
Transactions from Mobile Computers in a Cooperative
Multidatabase Processing Environment” Proceedings of
IEEE/CS 14th International Conference on Distributed
Computing Systems, Poland, June, 1994, ~372-379.

94

