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ABSTRACT

We propose a robust approach for aligning lecture slides with
lecture videos using a combination of Hough transform, op-
tical flow and Gabor analysis. A Markov Decision Process
model is used to incorporate prior knowledge for enhanced
recognition. We demonstrate synchronization of slides with
videos containing de-focused slide content, speaker occlusion
as well as camera pan, tilt and zoom sequences. Experimental
results confirm the effectiveness of our approach for multime-
dia indexing applications.

Index Terms— Robust synchronization, Multimedia
Indexing, Hough transform, Optical-flow, Gabor analysis,
Markov Decision Process

1. INTRODUCTION

The advent of digital libraries to manage multimedia collec-
tions has greatly increased the need for multimedia indexing,
which is the key to content-based retrieval and distance learn-
ing. A basic requirement of digital libraries is the ability to
associate event-specific data, an example of which involves
linking of topics/contents in lecture slides to corresponding
segments of the lecture video. Video-slide synchronization
facilitates instant referencing, as the user can directly access
the video segment of interest and conversely, availability of
the relevant slide content along with the video enhances the
user understanding as well as the overall experience.

Substantial research has focused on video-slide alignment
in the past. Pioneering works such as Classroom 2000 (C2K)
[1] manually align slides with video segments using times-
tamps, which is time and labor-intensive. Synchronization
performed on the basis of audio cues in [2] aids generation of
new slides to support impromptu speech, but requires manual
processing for proper alignment. More reliable visual cues
are employed for automatically aligning slides with video in
[3, 4]. In [3], the video is divided into homogeneous slide
segments using a feature-based algorithm, followed by slide
matching based on a Hausdorff distance-based similarity met-
ric. Detection of slide regions in video is accomplished using
illumination-invariant background color description in [4],
and region hashing is employed to recognize the video slide
content.

However, most of these these algorithms discuss slide
alignment with passively captured video where the slide con-

tent is clearly visible. Recently, [S] discusses a dynamic
Hidden Markov Model (HMM) framework for matching
slides with videos containing camera events (pan, tilt and
zoom sequences). This paper proposes a robust framework
for video-slide synchronization to handle de-focused slide
content, speaker occlusion and camera events, examples of
which are shown in Fig. 1. The tackled cases in different
methods is shown in table 1. Our proposed method handles
all the mentioned situations while the previous algorithms
only handle parts of them.
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Fig. 1. (a) Video #1 contains clear and easily extractable, but
animated slide content. (b), (c) and (d) illustrate more diffi-
cult cases. (b) Video #2- De-focused Slide content captured
by static camera. (c) Video #3 - Speaker occlusion of per-
spectively rotated projector screen. (d),(e) are frames from a
zoom-in sequence in Video #4.

Methods | camera event | speaker occlusion | de-focusing
[4] No No Yes
[5] Yes Yes No
Proposed Yes Yes Yes

Table 1. Comparison of the methods

2. ALGORITHM DESCRIPTION

Our proposed video-slide synchronization algorithm is out-
lined in Fig. 2. For every frame f;,7 = 1..N, in the pre-
sentation video consisting of N frames, the algorithm com-
putes position of captured slide in the frame and its best match
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Fig. 2. Overview of the proposed framework

counterpart, .5;, in a sequence of M slides, S1, .., Sar. Given
the current state defined by frame slide coordinates and slide
index (denoted by #), we first use optical flow cues to detect
camera events or slide occlusion in video to ensure proper
alignment. This is because slide transitions are unlikely dur-
ing camera events [5] while extraction and recognition of the
frame slide region is difficult in the presence of occlusion. In
the absence of both, we extract the frame slide region using a
two-step procedure.

Evidently, every video frame can be classified as either
small-slide (captured slide occupies part of the frame), full-
slide (slide completely occupies the frame) or no-slide (frame
contains no slide content). As a pre-processing step, we ap-
ply Hough transform to extract quadrilaterals in small-slide
frames as candidate slide regions. Hough extraction helps
avoid expensive computations for frame slide region detec-
tion, and if no candidates are found, reduces subsequent frame
classification to only full-slide or no-slide. In the second step,
we precisely identify the slide region from among the candi-
dates and determine its coordinates, or classify the frame as
full-slide or no-slide using Gabor texture analysis.

Text as well as texture features are employed to match
the detected frame slide to its counterpart for recognition.
Gabor filter banks are useful for extracting high frequency
slide text regions [6] while Gabor texture features can achieve
rotation-invariant texture matching [7]. Also, incorporating
prior knowledge that slides usually advance sequentially dur-
ing the presentation can improve recognition rates, especially
when the presentation contains similar-looking or animated
slides. We employ prior knowledge using a Markov Decision
Process model to guide recognition. Our experimental results
confirm that reliable video-slide synchronization is possible

for most challenging cases using the proposed approach. The
paper is organized as follows. The next section elaborates
the various steps involved in slide detection and recognition,
while results and discussion are presented in Section 3. Sec-
tion 4 outlines conclusions and future work.

Given the current frame slide position and slide index
(both of which are NULL at the beginning of the presen-
tation), we first check for camera events (pan, tilt, zoom)
between the previous and current video frames via optical
flow. We use the motion cooccurrence-based homogeneous
motion detection algorithm [8] for identifying possible cam-
era events. Since the likelihood of a slide transition (and
thereby, a change in video-slide alignment) during camera
events is minimal, we ignore camera event sequences as
possible candidates where a new slide may be presented.

Next, we look for possible slide occlusion due to speaker
motion. In the absence of any camera event, optical flow
mainly corresponds to motion of the presenter, since fore-
ground changes owing to speaker motion are more pro-
nounced than slide transition-related background changes.
Any speaker motion within the frame slide region corre-
sponds to slide occlusion by the presenter. Since detection
and identification of the slide content under occlusion is dif-
ficult, and the co-occurrence of slide occlusion and slide
transition is generally implausible, slide-occluded frames
are also discarded from further processing. Therefore, we
will attempt to detect and recognize slide content for syn-
chronization only in the absence of a camera event or upon
de-occlusion of the frame slide region.

2.1. Slide detection
In order to localize probable frame slide regions for further
processing, we perform Hough extraction of quadrilaterals in
the video frame to identify candidate slide regions. Detection
of vertical image edges followed by near-horizontal edges in
their vicinity helps isolate slide candidates in a robust manner.
Hough extraction can successfully isolate slide candidates in
small-slide frames as shown in Fig. 3 (a),(g). While our al-
gorithm doesn’t assume a bounded frame slide region, Hough
extraction as a pre-processing step to slide detection has two
advantages - (i) it eliminates the need to perform expensive
computations as in [4], since only the candidate image re-
gions need to be processed further and (ii) a binary classi-
fier is sufficient to detect full-slide or no-slide frames if no
candidates are identified. Gabor texture analysis is then em-
ployed to precisely isolate the most probable frame slide re-
gion from among the candidates or determine full-slide and
no-slide frames.
2.1.1. Gabor filters and wavelets
A 2D Gabor filter G(z, y) is a Gaussian modulated by a sinu-
soid.

G(z,y) = go(x,y)exp(2mjU (xcosd + ysind)), where (1)
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Gabor filter parameters are the radial frequency U, the orien-
tation # and the Gaussian width o. A Gabor filter bank is a
collection of Gabor filters with different U’s and 6’s, while
Gabor wavelets are generated from the dilation and rotation
of the mother wavelet ) = G(x,y), through the generating
function

Ypg(x,y) = a " PY(Z,y), wherep=0..P —1,¢=0..Q — 1
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are the scale and orientation factors respectively, with P and

@ respectively being the total number of scales and orienta-
tions. Here,

(,9)" = R(z,y)" @)

cos(0)  sin(6)
—sin(0) cos(8) |’
a>1and 0 = %. Convolving an image with G(z, y) yields
the Gabor filtered output while the discrete Gabor wavelet
transform of an image, G, ,(x, y), is given by its convolution
with ¥4 (z, y).
2.1.2. Slide texture segmentation

Upon convolving the candidate slide regions (or the complete
video frame) of dimensions M x N with the Gabor filters at
multiple scales and orientations, the image energy at scale p
and orientation ¢ is given by E(p,q) = >_, >_, |Gpqe(z,y)|-
The mean, p, 4, and standard deviation, o, 4, that represent
the image texture features at p, g are given by

_ E(Fv‘]) _ ZZ|GPQ(Iay)
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where (.)T denotes transpose, R =

— u(p, q)
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while the average image energy  over all scales and orienta-
tions is given by
_ Zpﬁq(MPQ)

pq

We find that i, with p = 4 and ¢ = 3, can be used to reli-
ably identify uniformly textured frame slide regions. k-means
clustering of u values can reliably classify slide frames from
no-slide frames (Fig. 3(d)). We employ the p feature to de-
tect the most probable slide region from among the candidates
as well as distinguish between full-slide and no-slide frames
(Fig. 3 (b),(c),(f),(g)). Upon determining the most probable
slide region, we use Gabor filter-based texture segmentation
[9] to precisely determine frame slide coordinates followed
by perspective correction (Fig. 3(h)), to obtain the frame slide
region for matching.

2.2. Slide change detection and recognition
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Fig. 3. (a) Hough transform extracted slide coordinates
(in red)- green lines denote detected vertical and horizontal
edges.(b) Region #1-p = 3.7 and (c) Region #2- ;1 = 3.85.
(d) k-means clustering (k = 2) of u values for 50 slide (blue)
and no-slide (red) images. Red and blue crosses denote cen-
troidal values. (e,f) u = 5,2 for full-slide, no-slide frames.
Gabor texture segmentation on (g) Hough transform result
yields (h) Slide region in video.

probable matches by the Markov Decision Process (MDP)
model described below.

Extraction of high frequency text regions using Gabor fil-
ter banks is proposed in [6] and is found to be robust for high
resolution image and video data. Results of text extraction for
a text-only, text+image and image-only slide using the above
procedure is shown in Fig. 4. We retrieve the top five slide
image matches for the extracted frame slide region based on
their closeness to the text feature vector ty = {y;,n;,m;},
where y;, n; and m; denote the y position of the first sentence,
number of sentences and maximum sentence length respec-
tively. Even though features extracted from low-resolution
frame slides are relatively noisy, text analysis helps exclude
slide images that are vastly different from the frame slide,
from the matching process. Also, content change in the ex-
tracted frame slide is assumed whenever there is significant
error between consecutive text-extracted binary images or a
considerable change in the Gabor texture feature vector over
time.

2.2.1. Markov Decision Process model
Markov decision processes (MDPs) are used for optimal deci-
sion making in an accessible, stochastic environment. Given

the 4-tuple, (S, A, M, RY), where S denotes the state space,

A rotation-invariant texture classification scheme using (1,4, 0pq) A denotes possible set of actions in each state, M;; denotes

features is proposed in [7]. However, due to significant dif-
ferences in the appearance of extracted frame slide regions
and slide images (frame slide regions are usually blurred) and
the presence of similar-looking slides, directly matching the
frame slide images with the original slides, based on mini-
mum Euclidian distance, is inefficient. Therefore, we reduce
the number of candidate matches for the extracted frame slide
using text features while including those slides predicted as

probability of transiting to state j upon undertaking a in state
¢ and R{ denotes the reward for undertaking a in state 4,
the MDP model computes the sequence of optimal actions
at every state, known as policy. For the slide matching prob-
lem, the number of states is equal to the slide count, and as
the MDP model is invoked upon detecting a slide change,
possible actions at every state include transiting to the next
slide/the previous slide/an arbitrary slide in the presentation



sequence. As verified in [5], slides generally advance sequen-
tially, i.e., upon presentation of the ith slide S;, Si+1and S;_1
are most likely to be shown next in the decreasing order of
probability, with the chance of transiting to an arbitrary slide
being minimal.

If A = {T}}, where T} denotes transition by k slides
from S;, in a presentation sequence of NV slides, prior knowl-
edge is incorporated into the MDP model by setting M%’s to
1 (deterministic) and the reward function

k>1
k< -1

(1—n)P(k,N),
C | mP(=k, ),
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with n = 0.9,A = 0.1 and P(z,\) = “—37 the Pois-
son distribution. When the text features are noisy, the most
probable matches determined by the MDP model are included
among the candidates for texture recognition.

3. RESULTS AND DISCUSSION

Video | #Slides | #Frames | Transitions Matches
Act | Det | Cor | Wrong

#1 15 800 17 25 20 5

#2 14 5000 13 8 4 4

#3 10 2000 9 12 11 1

#4 38 2700 39 59 45 14

Table 2. Synchronization performance on test sequences

Video #1 contains animations, Video #2 contains de-
focused slides, Video #3 contains speaker occlusion as well
as camera events (pan and zoom), while the camera typically
switches between speaker (no-slide) and the presentation
slide (full-slide) with occasional zoom-in and zoom-out for
Video #4, which also contains animations. Table 2 presents
experimental results obtained using the proposed video-slide
synchronization for the test sequences illustrated in Fig.
1. Table columns 4-7 compare our algorithm performance
against ground truth. While columns 4 and 5 compare the
actual and detected number of slide transitions, columns
6-7 present the number of correct and wrong video-slide
matches upon slide change detection. Even though some
spurious slide transitions are detected, all original frame slide
changes are correctly identified for videos #1, #3 and #4 us-
ing the proposed approach. Generally over 75% matching
accuracy is achieved. Matching errors for Video #1 are pri-
marily observed for animated content, while for Video #2,
texture recognition is unreliable for de-focused fext content
and works only for image/figure slides. Mismatches are again
observed for animations in Video #4, while for Video #3
which contains many image slides, recognition accuracy is
high (91.7%).

4. CONCLUSION AND FUTURE WORK

The proposed framework has been found to reliably segment,
classify and recognize frame slide regions in challenging
presentation videos. While experimental results confirm that

slide transitions in video can be correctly identified, matching
is affected by slide animations and de-focusing. Future work
involves OCR implementation along with use of features (like
SIFT) to achieve robust slide matching.
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Fig. 4. Original slides (top-row) and extracted text regions
using Gabor filter bank (bottom row) for a (a) text-only (b)
text+image and (c) image-only slide. (bottom row).
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