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ABSTRACT
Despite recent advancements in user-driven social media plat-
forms, tools for studying user behavior patterns and motiva-
tions remain primitive. We highlight the voluntary nature
of user contributions and that users can choose when (and
when not) to contribute to the common media pool. We
use a Game theoretic framework to study the dynamics of
a social media network wherein contribution costs are indi-
vidual but gains are common. We model users as rational
selfish agents, and consider domain attributes like voluntary
participation, virtual reward structure and public-sharing to
model the dynamics of this interaction. The created model
describes the most appropriate contribution strategy from
each user’s perspective. Next, we consider the problem of
mechanism design from a system designer’s perspective who
is interested in finding the optimal incentive levels to influ-
ence the selfish end-users so that the overall system utility
is maximized. We demonstrate how a system administrator
can exploit the selfishness of its users, to design incentive
mechanisms which help in improving the overall task com-
pletion probability and system performance, while possibly
still benefiting the individual users.

Categories and Subject Descriptors
H.1.2 [Information Systems]: Models and principles, User/
Machine systems

General Terms
Human factors

Keywords
Motivation, social media, user behavior, game theory

1. INTRODUCTION
With the emergence of Web 2.0 and multiple related social

media applications like Flickr, Youtube, Facebook, Wikipedia
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etc., research interest has grown in multiple aspects of so-
cial media including data sharing, image tagging, mashups,
ontologies, retrieval etc. While these contributions have sig-
nificantly advanced the state of the art from the technology
perspective, not much research attention has been given till
now to the end-user or social aspect of social media research.
Despite significant interest in concepts like crowd-sourcing
[8], collective intelligence [11], human-computation [19] etc.,
the tools to undertake user behavior analysis in social media
networks are still in their infancy and no theoretical frame-
works are available to mathematically analyze why and how
often do users contribute to such social media?

That notwithstanding, social media networks are becom-
ing increasingly relevant each day. Citizen-journalists are al-
ready providing interesting event information and images for
common benefit to various news agencies[3]. Similarly multi-
ple users are already using tools like Google Image Labeler[1]
to tag images and contributing content to Wikipedia[4], thus
creating a rich collective information mechanism which can
provide common benefits to a larger society.

An important point to consider in all these applications
is that the user contribution is totally voluntary. Further
the decision making is completely distributed and there are
no means for central coordination or explicit communication
between the various participating users. This brings us to
the important issue of user motivation and that the individ-
ual users will contribute to such social media networks only
based on their personal utility decisions.

Such a setup, though compelling, leads to multiple con-
flicting goals. While, the task completion costs are incurred
by the individuals, the benefits are common. Thus while
the owners of systems such as New York Times, Google La-
beler, Wikipedia etc. are interested in maximizing the tasks
accomplished, individual agents may be interested in maxi-
mizing their personal utility gain in such a sensing/content-
provision mechanism. A key question which arises in such
a scenario is how can an individual user optimally decide
his/her contribution strategy i.e. when (and when not) should
he/she undertake the social media task. A system adminis-
trator on the other hands is interested in finding the optimal
incentive levels to influence these selfish end-users so that
the overall system utility is maximized.

Clearly, there are no currently available tools which can
answer such questions. The analysis and answer to such
questions requires explicit modeling of user behavior as well
as considering the specific characteristics of the domain be-
ing considered. Hence we propose the use of a game theoretic
framework, which models users as rational (selfish) agents



Case Participation Taxation Reward currency Career benefits Usage pattern

Social media Voluntary Not enforceable Virtual Rare public-good
Physical societies Mandatory Enforceable Real - -

Open-source software &
Voluntary - - Yes Partially

scientific contributions regulated

P2P/ networking Voluntary - Virtual - Monitored &

regulated

Table 1: Distinct characteristics of different type of contribution mechanisms

and incorporates the dynamics of social media (e.g. vol-
untary participation, virtual reward structure and public-
sharing) to gain some insights/ explanations for user be-
havior patterns and also prescriptive guidelines for system
designers to motivate their users.

We demonstrate how game theoretic modeling can be used
to answer the above-mentioned questions. We study the
user-user interaction and show how a user can find her op-
timal contribution level. Further, we demonstrate how a
system designer can draw insights from such behavior pat-
terns and exploit the selfishness of its users, to design incen-
tive mechanisms which help in improving the overall system
performance, while possibly still benefiting the individual
users.

2. RELATED WORK AND DOMAINS

2.1 Why are social media networks different?
Similar problems have been studied in multiple contexts

in the past. From an economics perspective, the problem of
‘public goods’ [13] and optimal taxation [6] is well studied.
However, emerging web-based ‘societies’ are fundamentally
different as participation in them is voluntary and as such
no taxation can be enforced. Only incentives, if appropriate
can be given. Further, the reward on these social media sites
etc. is typically a ‘virtual currency’ which has very different
dynamics than real money. Such virtual currency (e.g. rep-
utation points, extra bandwidth, virtual weaponry, gadgets
etc.) is like ‘fairy gold-dust’ and typically costs the sys-
tem designers exponentially less than their perceived value
from user perspective. While some of this virtual currency is
starting to be traded by users for real-world money [17], the
marginal cost for system designers to grant such currency
remains very low.

The issue of selfishness and contributions to a society also
differ from scientists, and open-source software developers,
as their ‘contributions’ are typically in-sync with their full
time vocation. Hence they have direct and indirect pro-
fessional benefits (grants, citations, downloads, jobs) from
demonstrating their skill level. While a small percentage of
contributors in media networks (e.g. directors on Youtube,
or photographers on Flickr) might generate some career ben-
efits from their contributions, these benefits remain atypical.
More frequently the contributions to social media sites like
Google Image Labeler, Photo-synth [2], Wikipedia do not
involve rights and recognition as is common in open-source
or scientific communities.

Lastly, social media network paradigms also differ from
P2P or network routing disciplines as you cannot really cal-
culate or regulate the usage characteristics. The produced

content is truly a public-good [13] for everybody like ‘sun-
shine’.

Thus social media contributions deal with a unique set
of parameters involving, voluntary participation, no taxa-
tion, real cost, virtual incentives, rare career benefits, and
no regulations on usage characteristics. In this work we
consider these differences in modeling and studying the me-
dia networks. Table 1 provides a summary of the compari-
son between different related scenarios and how social media
contributions differs from each of them.

2.2 Related work in social media
There have been attempts at enhancing user experience,

and using that to get social media related tasks undertaken.
Human-computing work by Von Ahn [19] is an excellent ex-
ample of this.

Works like [12], study user behavior patterns in terms of
the way they interact with social media sites (Youtube).
They classify the users into different categories based on
their access patterns, comment frequency, subscriptions etc.
These are very important studies from the perspective of
understanding general user behavior patterns. We maintain
our focus in this paper though on user behavior from a mo-
tivation perspective and on incentivizing user contributions
for better system performance.

Other works study the motivation of contributors on Movie-
Lens, Wikipedia etc. from a sociology or psychological per-
spective [7, 16, 15]. Schroer et al. [15] discuss the intrinsic
and extrinsic motivations for German Wikipedia contribu-
tors. Works like [7, 16] have highlighted how different forms
of motivation (e.g. locked-out tools/ features in Slash-dot,
extra weapons in World-of-Warcraft forum and comparative
reputation/status within community etc.) can be used to
motivate users. However, all these studies are ‘qualitative’
and aimed at identifying what type of motivations work well
in on-line communities. We however aim to provide ‘quan-
titative’ mechanisms to find out how many such extra fea-
tures, weapons, or how much (e.g. extra bandwidth, repu-
tation points etc.) are most suitable for different scenarios.

Mechanism design (i.e. defining rules of a game to achieve
certain outcomes) is an area of growing importance (includ-
ing recent Nobel prizes) in economics. It is also slowly mak-
ing inroads into on-line communities (e.g. for creating op-
timal reputation feedback mechanisms in eBay like auction
scenarios [5]).

3. BACKGROUND: GAME THEORY
Game theory is a branch of applied mathematics that is

used in the social sciences (most notably economics), bi-
ology, engineering, political science, international relations



and is becoming increasingly relevant in computer science.
It is used to mathematically capture behavior in strategic
situations, in which an individual’s utility from choices un-
dertaken depends on the choices made by others. Thus it
is often used for studying optimality and stable points in
multi-agent problems, as opposed to conventional operation
research or calculus based approaches which are well-suited
for single agent optimizations.

Here, we provide a quick refresher for some of the game-
theoretic terms and concepts as relevant to this work.

1. Game: A game refers to any situation wherein multi-
ple (2 or more) agents are making strategy decisions,
and the chosen strategy effects the utility obtained by
that agent as well as the other agents involved. Games
can be zero-sum, wherein one agent’s loss is consid-
ered other agent’s gain e.g. war-like situations, or non-
zero-sum, where one agent’s loss does not necessarily
means others gain. In our formalisms the users (among
themselves in section 4) and the users and system de-
signers (in section 5) are both playing non-zero-sum
games.

2. Nash equilibrium: Nash equilibrium is a solution
concept in game theory which defines a point where
each agent knows other agent’s strategy options, and
from which no agent has anything to gain by chang-
ing only her own strategy unilaterally. It is useful in
giving guaranteed utility bounds to users, as once they
choose their strategy based on the Nash equilibrium, it
is in other agent’s benefit to respond with their Nash
equilibrium response. Any other response can only de-
crease their utility. Please note that multiple Nash
equilibria may exist in the same game and agents can
move or converge bilaterally to another Nash equilib-
rium (especially in repeated games).

3. Mixed Strategy Nash equilibrium (MSNE): A
mixed strategy Nash equilibrium is a probabilistic vari-
ant of Nash equilibrium wherein the agents do not fix
themselves to a single strategy but rather decide on
the appropriate mixture of strategies which guarantees
that no agent can gain anything by unilaterally divert-
ing from it. Pure Nash equilibriums can be considered
to be boundary cases of mixed strategy Nash equilib-
ria.

4. A GAME THEORETIC FRAMEWORK:
THE USER VIEWPOINT

In this section we model user-user interaction patterns,
and describe how rational (selfish) users may make optimal
contribution decisions.

4.1 Problem motivation
To motivate and ground the problem to a real life sce-

nario from start, let us consider a citizen-journalism task (T )
where a ‘suspicious bag’ left unattended at a train station
can be reported by any of the N persons (agents) walking
past. The gain (G) is common but the cost incurred (ci) is
individual. The problem from an agent(i)’s perspective is to
find the percentage of times which he/she should report the
bag himself/herself.

Agent1
OtherAgent Do Don’t
Do G− c,G− c G− c,G

Don’t G,G− c 0, 0

Table 2: Game between 2 users: matrix showing
net utility for each user, under different strategies
adopted by each player.

Agenti
OtherAgents Do Don’t
Do G− ci G− ci

Don’t G 0

Table 3: Game between user (Agenti) and others:
matrix showing net utility for Agenti, under different
strategies adopted.

4.2 Problem formulation
Let there be N social agents which can undertake a com-

mon task T . Let the cost for an agent i to undertake task T
be ci. While the costs are individual, the gains incurred (G)
are taken to be common i.e. everybody gains equally. Each
user can incur gain G, from a task if either it completes the
task, or it does not but somebody else completes it. Hence,
the net utility of each agent EUi is a function of it’s cost,
gain, its chosen strategy in terms of how often to undertake
the task (Pi), as well as the probability of task being un-

dertaken by (at least one of the) other agents (P
All−{i}
Do )).

Hence, the problem from each agent’s perspective is to find
its best response strategy, (i.e. probability of doing task)
which maximizes its net utility.

argmax︸ ︷︷ ︸
Pi∈[0,1]

EUi = f(ci, G, Pi, P
All−{i}
Do ) (1)

The provided formulation incorporates two important char-
acteristics of social media networks. Voluntary participation
characteristic is innately represented in the problem state-
ment, and the property of common-gain once the task is
completed is also made explicit.

In the formulation presented here, we assume that the
users are selfish agents, that there is no collusion or agree-
ment between them, and that the cost incurred is positive
and less than gain (0 < c ≤ G). Also, in this formulation we
use the term ‘social media task’, generically to include all
relevant scenarios like those involving photo/video sharing,
image tagging, commenting, content provision, linking, or
content flagging. Lastly, we use ‘agent’ as a neutral term to
represent any contributor who can undertake the relevant
task.

4.3 Approach
We employ a game theoretic framework to solve Eq. 1. To

solve this problem, we start with a simple two person non-
zero sum game to study the interaction between two homo-
geneous agents and then iteratively add more complexities.

4.3.1 Two agents, 1 social media task
As shown in table 1, for agent 1 there are two possible

strategy options. He/she can either ‘do’ the the task or
‘dont́’ do it. If he/she chooses to do the task and the other



agent also undertakes the task, then both will get the Gain
G but also incur the cost c. Agent 1’s best case scenario
is when he/she does not undertake the task but the other
agent does it. Hence agent 1 will receive gain G without
any cost while other agent will incur it. However, if both
agents choose the ‘dont̀’ strategy, then there will be no gain
achieved as the task is not undertaken.

The solution concept used in such settings where other
agent’s decisions affect your utilities is Nash equilibrium.
The Nash equilibrium occurs when none of the agents can
unilaterally move to a better rewarding state[14]. In this
particular scenario, both the agents have a choice to either
use the strategy ‘Do’ or ‘Dont́’ and there exist 3 Nash equi-
liria. Two pure Nash equilibria exist at states [Do, Don’t]
and [Dont́, Do] for agents 1 and 2 respectively. However,
they favor one agent or the other and are unlikely to be
maintained in long term. Hence, a mixed strategy solution
seems a stable long term solution. The mixed strategy Nash
equilibrium guarantees that:

P ∗i ∈ [0, 1], Pi 6= P ∗i : EUi(P
∗
i , P

All−{i}∗
Do ) ≥ EUi(Pi, P

All−{i}∗
Do )

(2)

where:
P ∗i is the optimal strategy for agent i, and P

All−{i}∗
Do repre-

sents the cumulative effect of best possible strategy choices
made by other agent(s).

A mixed strategy Nash equilibrium (MSNE) can be com-
puted based on the condition of choice indifference i.e. when
the agents do not gain (or lose) by changing their strategies
[14]. This makes for a good equilibrium point because if
the agents prefer one choice, obviously they shall go for the
better choice. Thus the equilibrium needs to take place at a
point where both agents do not stand to gain (or loose) any
value by strategy selection.

In the given scenario (table 2), if we equate the two options
for (say) player 1. We get:

p · (G− c) + (1− p) · (G− c) = p · (G) + (1− p) · 0 (3)

where:
p is the probability of agent 2 choosing strategy 1 i.e. Do.
This gives the value of p as:

p =
G− c
G

(4)

For heterogeneous agents it changes to:

p2 · (G− c1) + (1− p2) · (G− c1) = p2 · (G) + (1− p2) · 0 (5)

where p2 is the probability of agent 2 choosing strategy 1
i.e. Do. This gives the value of p2 as:

p2 =
G− c1
G

(6)

and similarly p1 is :

p1 =
G− c2
G

(7)

If each agent chooses to undertake the task with just p1

(resp. p2) probability, s/he will get the same net utility as
doing the task always by him/her self.

4.3.2 N agents, 1 social media task
For the heterogeneous, N agent case let us look again at

table 2. For a Nash Equilibrium to exist the two strategy
options for agent i must provide same net utility. Thus:

G−ci·(PAll−{i}
Do )+G−ci·(1−PAll−{i}

Don′t ) = P
All−{i}
Do ·G+0 (8)

where:
P

All−{i}
Do is the probability of the task being ‘done’ by at

least one of the N − 1 agents left after removing the ith

agent from the set of ‘all’ agents.
Using the above equation, the equilibrium probability of

the task being ‘not done’ by any of the other agents can be
calculated as:

P
All−{i}
Don′t =

ci
G

(9)

Similar equations can be formulated for all values of i.

P
All−{1}
Don′t =

c1
G

P
All−{2}
Don′t =

c2
G

...

P
All−{N}
Don′t =

cN
G

(10)

Combining (multiplying) all of these equations gives us:

{
P1 · P2 · ...PN

}N−1
=

N∏
i=1

ci
G

(11)

where:
Pi is the probability of the task not being done by agent i.

Thus,

PAll
Don′t = N−1

√√√√ N∏
i=1

ci
G

(12)

or:

PAll
Do = 1− N−1

√√√√ N∏
i=1

ci
G

(13)

and combining Eq. 9 and Eq. 12 gives us the optimal con-
tribution strategy i.e. equilibrium probability for the agent
i to ‘not’ undertake the task as follows:

Pi = N−1

√√√√ N∏
i=1

ci
G
× G

ci
(14)

Note that the feasibility condition of a solution in which
agent i must participate in the task, the condition is that:

ci
G
≥ N−1

√√√√ N∏
i=1

ci
G

(15)

and that for homogeneous case (if applicable) the above
equation reduces to:

Pi = (
c

G
)

1
N−1 (16)

4.4 First insights
To illustrate the basic concepts let us consider how the

model and the derived solution works for a simple scenario



Figure 1: Effect of different task completion strate-
gies upon Agent 1’s utility

of the unattended bag reporting where we have 3 agents each
with a cost of 50, 60 and 70 respectively while the common
gain from reporting is 100. Thus using the parameter val-
ues (c1 = 50, c2 = 60, c3 = 70, G = 100) in Eq. 16, we get
the equilibrium probabilities for each agent to undertake the
task to be 0.084, 0.346 and 0.445 respectively. The utility
for each agent was found to decrease if it moved away from
the equilibrium point. It was also interesting to note that in
spite of doing the task much lesser times, the agents obtained
the same utility (values 50, 40, 30 resp.) as they would have
achieved by doing the task always by themselves. This is
shown in figure 1, for Agent 1, who at MSNE, made a net
gain of 50, by contributing just 8.4% times. Not changing
the other agents response, this utility is the same as that
obtainable by a naive ‘do-it-all-by-yourself’ approach which
involves 100% contribution rate, and is more than that ob-
tainable by random selection which involves 50% contribu-
tion rate.

We next proceeded to model the dynamics of a game sce-
nario wherein a large number of selfish users are considering
a common task (c=60, G=100, N ∈ [1, 100]). Upon vary-
ing the gain and costs we found the expected results of each
user’s utility increasing if the gain was high and decreasing
if the cost was high. Since each user was selfishly guarding
his/her incentives the utility of each agent was unaffected
by the change in N .

However, the change in N had a dramatic impact on the
percentage of times the common task was completed. As
can be seen from fig. 2, the task completion probability
decreases (from 1.0 to 0.4) as N increases. This was an in-
teresting observation as intuitively one thinks that the prob-
ability of task getting done should increase with N , because
if we multiply individual probabilities for everyone not do-
ing the task, the overall probability of all not doing the task
should be extremely low.

However, as the game theoretic model makes explicit, the
knowledge about large N , makes each agent adjust its task-
completion probabilities in such a way which guards its in-
dividual utilities but can bring down the overall task com-
pletion. It reminds us of the apathy which can exist in large
groups of selfish individuals undertaking common tasks. In
hind-sight it also resonates well with how the ‘free-rider’ [10]
problem is non-existent in single person teams. In n-person

Figure 2: Effect of large number of users on task
completion probability

teams (especially non-coordinated teams), there is always
a finite possibility of everybody deciding to free-ride on a
particular task.

This is quite alarming from a rational system-designers
perspective.

5. THE DESIGNER’S VIEWPOINT
After studying the dynamics of user-user interaction and

how a rational user would behave in such systems, let us
use that as a building block towards studying dynamics of
system-user interaction. We demonstrate how the system
can exploit the features of user behavior to study the over-
all system performance, and in turn maximizing it’s perfor-
mance.

5.1 Problem formulation
Let us consider a case where the system-designer has an in-

terest in maximizing the probability of task completion. Let
her benefit from each task completed be Gs. Hence, without
any mechanism design the net utility obtained by the sys-
tem designer is (PAll

NoBonus ·Gs), where PAll
NoBonus is as found

in previous section (Eq. 13). However, using mechanism
design, the system designer can enhance this performance.

Let us assume that the system designer is open to grant-
ing an extra benefit b to each user completing the task, so
as to influence the users’ (selfish) decision process of choos-
ing how often to undertake the task. Clearly, providing the
extra bonus b, does entail some additional cost on the sys-
tem. However, as per the dynamics of social media systems,
such benefits are typically ‘virtual’ (e.g. granting ‘additional
bandwidth’, ‘enhanced weaponry’, ‘titles/badges’ or ‘mem-
orabilia’), and cost the system designer exponentially less
than their perceived benefit by the user1.

For the current discussion, let us consider system cost for

providing this additional bonus to be Cb = α · b
1
β , where α,

β can be chosen based on the domain.

1The use of perceived changes in games to try and influence
agent interaction is well studied under hyper-game theory
[18]



Thus the overall utility problem for system designer is:

argmax︸ ︷︷ ︸
b∈[0,c]

EUs = (PAll
Bonus) ·Gs −

N∑
i=1

Pi,Bonus · Cb (17)

Thus the system designer’s problem is to choose the op-
timal bonus b, such that overall system utility EUs is max-
imized. EUs will be maximized when a large increase is
observed in probability of task completion due to the ex-
tra bonus, but the bonus cost is still low. The maxima will
clearly lie at a trade-off point between these two compo-
nents.

Note that the above formulation considers the distinct
characteristics of social media systems as we consider vol-
untary participation, common gain amongst all users, stay
away from taxation, and consider virtual reward currency
which typically costs exponentially less to the system.

5.2 Approach
To quantify these parameters let us make simplifying as-

sumptions of homogeneous costs and Cb = b
1
2 (i.e. α = 1

and β = 2).
Based on extensions of the ideas already discussed under

user-user interaction in sec. 4.3, the various parameters in-
volved in Eq. 17 can be computed as follows.

Extension of Eq. 16 defines the probability of task com-
pletion (with bonus) for agent i.

Pi,Bonus = 1− (
c− b
G

)
1

N−1 (18)

Similarly, extension of Eq. 12 can be used to compute the
probability of overall task completion after bonus incentive.

PAll
Bonus = 1− (

c− b
G

)
N
N−1 (19)

Now that we have the values for all the parametric compo-
nents of Eq. 17, its solution can be computed using the stan-
dard calculus maximization methods or by choosing maxima
as obtained by numerical methods.

5.3 Case study
To study the applicability of the proposed approach we

undertook another simple case study. We considered a sce-
nario with N = 1000, the uniform cost c = 60, user and
system gains as G = 100 and Gs = 50. We varied the
bonus provided to the users in the approved range b ∈ [0, 60]
(see fig. 3), and found the system’s utility is maximized at
b = 42. Needless to say, similar values can be obtained for
other scenarios too by simple parameter changes.

The net system utility for this task was found to be 29.87,
which is higher than the value of 20, as obtained without
mechanism design.

As can be seen from fig. 4, the probability of the task
being undertaken by at least one of the N users, increases to
around 0.82 (red colored plot) with the use of this additional
incentive value. This is as opposed to the 0.40 probability
without the incentive mechanism (green plot, also see fig.
2). The value of net utility for the homogeneous players was
also found to increase to 82 (from 40.0 without bonus).

Hence the game-theoretic framework was indeed useful in
finding an optimal level of incentive level which maximizes
the system’s net utility and increases the probability of task-
completion while also enhancing the net utility of each user.

Figure 3: System Utility Vs Bonus incentive

Figure 4: Effect of bonus on task completion prob-
ability



6. DISCUSSION AND FUTURE WORK
We realize that the framework discussed works on a strong

rationality or selfishness assumption. In near future, we plan
to extend the work to consider a ‘bounded rationality’[9]
model for humans. Also, our current model considers only
explicitly quantifiable incentives. We realize that other than
very few scenarios (e.g. second-life monetization [17]), ex-
plicit quantification of gains and costs is still difficult. As
what happens with all nascent fields, no numerical data is
readily available on costs and gains for social media con-
tributions (e.g. wiki content provision, or youtube video
sharing). While we had to study the current framework us-
ing numerical case studies, we want to undertake more work
to better quantify such costs and gains.

Our current model considers tasks that only need contri-
bution from one user and other contributions are redundant.
We are working on extending the approach to consider cases
which require k different contributions or viewpoints (e.g.
minimum 2 images required for stereoscopy or minimum 5
spam flags for post removal etc.). We are also considering
a graded utility model wherein the value of each successive
contribution gets lower but is still finite. Lastly, it would
also be relevant to consider scenarios involving j tasks, each
needing k contributions amongst the N users.

We also intend to broaden the motivation factors to con-
sidered to include intrinsic motivation factors and concepts
like Maslow’s hierarchy and using them appropriately in
the future models. Lastly, the enhancements obtained due
to mechanism design were gained (amongst other reasons
like optimality based incentive levels), because of the set-
ting that benefits granted were ‘virtual’, while the costs and
gains were ‘real-world’. However, we feel this is indeed true
in many social media environments like citizen-journalism,
image-labeling, wiki-contributions etc.

While we admit, that our modeling is by no means perfect,
this is meant to be a first step in drawing research interest
towards this area. The value of this paper lies in providing
food-for-thought to social media designers and developers
charged with creating crowd-sourcing, media applications
that require individual contributions to enhance the overall
value of the application and its content.

7. CONCLUSIONS
In this work we have proposed a game-theoretic framework

for studying user behavior and motivation patterns in social
media networks. We have modeled users as rational self-
ish agents, and considered domain attributes like voluntary
participation, virtual reward structure and public-sharing
to model the dynamics of this interaction. We first studied
the aspects of user-user interaction and used that to find
the most appropriate contribution strategy from each user’s
perspective. The model created showed how the probability
of task completion may decrease with large N and made ex-
plicit the concepts like free-rider problem. We next studied
the dynamics of system-user interaction, and showed how a
system designer can design incentive mechanisms which help
in improving the overall system performance, while possibly
still benefiting the individual users.
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