An Analytical Model for Progressive Mesh Streaming

WEI TSANG **OOI** National University of Singapore

joint work with Cheng Wei National University of Singapore

Sebastian Mondet Romulus Grigoras Geraldine Morin IRIT, University of Toulouse

国立故宮傳物院版權所有Copyright (In National Palace Museum, All Rights Reserved.

3

回首頁

IO MB

Hoppe's Progressive Mesh

At the sender

Transmission

At the receiver

What happen if some data is lost?

Dependency Graph

Error Propagation

Retransmission upon detecting loss

Retransmission takes precedence over new vertex splits

Normally send multiple vertex splits per packet

How serious is error propagation?

What is the effect of dependencies?

Decoded Mesh Quality

Quality versus Time

Importance of a vertex

Case I: complete dependency

Case 2: no dependency

higher quality earlier is better

Evaluation metric: area under the graph Larger area = better

Given a progressive mesh, what affects the area?

Dependency Pattern

Given a progressive mesh, the dependencies among the vertex splits are fixed, but packetization can affect dependencies among the data packets.

Sending Order

Given a set of packets, which one to send first?

Loss Rate

Different loss pattern gives different area. We are interested in the expected area given a loss rate.

Available Bandwidth

Faster sending rate means the quality increases quickly.

Round Trip Time

Larger round trip time means longer time till realizing that a packet is lost and retransmit.

The Analytical Model

Clock at sender starts when sending first packet Clock at receiver starts RTT/2 later.

Packet *i* is sent at time *i* if there is no retransmission

Packet *i* is sent at time *i*+*k* if there are *k* retransmissions before *i*

$$P(S_i = i + k) = \binom{i - T_d + k}{k} p^k (1 - p)^{i - T_d + 1}$$

$$E[S_i] = \frac{i - T_d + 1}{1 - p} + T_d - 1$$
 time slot when packet i is sent loss probability

Packet *i* is received at time

$$R_i = S_i + nT_d$$

$$Pr(R_i = t) = \begin{cases} (1-p)p^{n_{i,t}} & \text{if } (t - S_i) \\ 0 & \text{otherwise} \end{cases} \mod T_d = 0$$

$$n_{i,t} = \lfloor (t - S_i) / T_d \rfloor$$

$$Pr(R_i \le t) = 1 - p^{n_{i,t}+1}$$

A packet *p* is a parent packet of a vertex *v* if a vertex that *v* depends on belongs to *p*

$P(v) = \{A, B, C, E\}$

A vertex v is decoded at time t, if I. a parent packet of v is received at time t, and 2. all other parent packets are received before t.

$$Pr(D_v = t) = \sum_{j \in \mathcal{P}(i)} \frac{Pr(R_j = t)}{Pr(R_j < t)} \prod_{k \in \mathcal{P}(i)} Pr(R_k < t)$$

$$E[D_v] = \sum_{j=S_v}^{\infty} jPr(D_v = j)$$

Simulation with HORSE model with 10% Losses

Number of runs	Average difference	Maximum difference
1000	0.474	3.192
10000	0.161	1.567
100000	0.122	1.308
trace	0.177	2.184

$$x_{i,t} = \begin{cases} 1 & \text{if } D_i \leq t \\ 0 & \text{otherwise} \end{cases}$$

$$x_{i,t} = \begin{cases} 1 & \text{if } D_i \leq t \\ 0 & \text{otherwise} \end{cases}$$

$$a_t = \sum_{i=0}^t x_{i,t} w_i (t - D_i)$$

$$x_{i,t} = \begin{cases} 1 & \text{if } D_i \leq t \\ 0 & \text{otherwise} \end{cases}$$

$$a_t = \sum_{i=0}^t x_{i,t} w_i (t - D_i)$$

$$E[a_t] = \sum_{i=0}^t w_i (tE[x_{i,t}] - E[x_{i,t}D_i])$$

=
$$\sum_{i=0}^t w_i (tP(D_i \le t) - \sum_{k=0}^t kP(D_i = k))$$

Do dependencies matter?

best case

best case

$$\Delta_t = (1-p)$$

worst case

$$\Delta_t = \begin{cases} (1-p)^{t+1} & \text{if } t < T_d \\ 1-p & \text{if } t \ge T_d \text{ and } t = nT_d \\ (1-p^{n+1})\Delta_{t-1} & \text{if } t \ge T_d \text{ and } t = nT_d + b \end{cases}$$

best case

$$\Delta_t = (1-p)$$

worst case

$$\Delta_t = \begin{cases} (1-p)^{t+1} & \text{if } t < T_d \\ 1-p & \text{if } t \ge T_d \text{ and } t = nT_d \\ (1-p^{n+1})\Delta_{t-1} & \text{if } t \ge T_d \text{ and } t = nT_d + b \end{cases}$$

 $\Delta_t \approx (1-p)$ for large t

Gap between the two extreme cases at $t = T_d - I$

$$\left(T_d - \frac{1 - (1 - p)^{T_d}}{p}\right)(1 - p)$$

RTT = 250 ms, Packet Size = 1500 bytes, Sending rate = 1.5 Mbps

100 vertex splits per packet Gap = **1500** vertex splits

A Better Packetization Algorithm

FIFO strategy: send the most important vertex split first

[Gu05]'s strategy: minimize the dependencies among the vertex splits

Need to consider **both** importance and dependencies

$$\delta_i = w_i(E[D_i^{next}] - E[D_i^{curr}])$$

(only consider nodes whose parents are packed)

maintain a max heap of all nodes using δ_i as key

while heap is not empty and packet is not full pop a node *i* from heap and packed *i* for each child *k* of *i* insert *k* into heap

Summary

Dependencies matter only for a short time initially

