Random Search on 3SAT

Group 4

CS6234 - Advanced Algorithms
April 19, 2016

Contents

- Boolean Satisfiability Problem

■ Schöning's Algorithm for 3SAT

- Analysis 1
- Analysis 2
- Analysis 3

Boolean Satisfiability Problem - By Sapumal

Boolean Satisfiability Problem

- Is the problem of determining if there exists an interpretation that satisfies a given Boolean formula.

Boolean Satisfiability Problem

- Is the problem of determining if there exists an interpretation that satisfies a given Boolean formula.
- It asks whether the variables of a given Boolean formula can be consistently replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE.

Boolean Satisfiability Problem

- Is the problem of determining if there exists an interpretation that satisfies a given Boolean formula.
- It asks whether the variables of a given Boolean formula can be consistently replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE.
- If this is the case, the formula is called satisfiable.

Boolean Satisfiability Problem

- Is the problem of determining if there exists an interpretation that satisfies a given Boolean formula.
- It asks whether the variables of a given Boolean formula can be consistently replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE.
- If this is the case, the formula is called satisfiable.
- On the other hand, if no such assignment exists for all possible variable assignments and the formula is unsatisfiable.

Boolean Satisfiability Problem

- Is the problem of determining if there exists an interpretation that satisfies a given Boolean formula.
- It asks whether the variables of a given Boolean formula can be consistently replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE.
- If this is the case, the formula is called satisfiable.
- On the other hand, if no such assignment exists for all possible variable assignments and the formula is unsatisfiable.

■ Referred to as SATISFIABILITY or SAT

Boolean Satisfiability Problem

■ SAT formula usually take input in Conjunctive Normal Form (CNF): "an AND of ORs of literals".

Boolean Satisfiability Problem

■ SAT formula usually take input in Conjunctive Normal Form (CNF): "an AND of ORs of literals".

- Variable - a propositional variable: x_{1}, x_{2}, x_{3}

Boolean Satisfiability Problem

■ SAT formula usually take input in Conjunctive Normal Form (CNF): "an AND of ORs of literals".

- Variable - a propositional variable: x_{1}, x_{2}, x_{3}
- Literal - an variable or its negation: $x_{1}, \neg x_{1}, x_{2}, \neg x_{2}$

Boolean Satisfiability Problem

■ SAT formula usually take input in Conjunctive Normal Form (CNF): "an AND of ORs of literals".

- Variable - a propositional variable: x_{1}, x_{2}, x_{3}
- Literal - an variable or its negation: $x_{1}, \neg x_{1}, x_{2}, \neg x_{2}$
- Clause - A disjunction of some literals: $\left(x_{1} \vee x_{2} \vee x_{3}\right)$

Boolean Satisfiability Problem

■ SAT formula usually take input in Conjunctive Normal Form (CNF): "an AND of ORs of literals".

- Variable - a propositional variable: x_{1}, x_{2}, x_{3}
- Literal - an variable or its negation: $x_{1}, \neg x_{1}, x_{2}, \neg x_{2}$
- Clause - A disjunction of some literals: $\left(x_{1} \vee x_{2} \vee x_{3}\right)$
- CNF formula - A conjunction of some clauses:

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2}\right)
$$

Boolean Satisfiability Problem

- Simple example,
- $\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee \neg x_{4}\right)$

Boolean Satisfiability Problem

- Simple example,
- $\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee \neg x_{4}\right)$
- $x_{1}=x_{3}=T R U E$

Boolean Satisfiability Problem

- Simple example,
- $\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee \neg x_{4}\right)$
- $x_{1}=x_{3}=T R U E$ and $x_{2}, x_{4}=F A L S E$

Applications

■ Combinational equivalence checking (CEC)

- 2 combinational circuits, each with n inputs and m outputs.
- Are the outputs same for all input values?

Applications

■ Combinational equivalence checking (CEC)

- 2 combinational circuits, each with n inputs and m outputs.
- Are the outputs same for all input values?
- Automatic test pattern generation (ATPG)
- Fabricated integrated circuits may be subject to defects, which may cause circuit failure
- Computing input assignments that allow demonstrating the existence or absence of each target fault

Applications

- Combinational equivalence checking (CEC)
- 2 combinational circuits, each with n inputs and m outputs.
- Are the outputs same for all input values?
- Automatic test pattern generation (ATPG)
- Fabricated integrated circuits may be subject to defects, which may cause circuit failure
- Computing input assignments that allow demonstrating the existence or absence of each target fault
- Model checking
- Applications in Bioinformatics
- Ref: Marques-Silva, Joao. "Practical applications of boolean satisfiability." Discrete Event Systems, 2008. WODES 2008. 9th International Workshop on. IEEE, 2008.

■ Collection $C=C_{1}, \ldots, C_{m}$ of clauses n Boolean variables such that $\left|C_{i}\right| \leq 2$ for $1 \leq i \leq m$

■ Collection $C=C_{1}, \ldots, C_{m}$ of clauses n Boolean variables such that $\left|C_{i}\right| \leq 2$ for $1 \leq i \leq m$

- 2SAT can be solved in polynomial time (in fact in linear time)

■ Collection $C=C_{1}, \ldots, C_{m}$ of clauses n Boolean variables such that $\left|C_{i}\right| \leq 2$ for $1 \leq i \leq m$

- 2SAT can be solved in polynomial time (in fact in linear time)
- 2SAT can be solved by formulating it as a implication graph

■ Collection $C=C_{1}, \ldots, C_{m}$ of clauses n Boolean variables such that $\left|C_{i}\right| \leq 2$ for $1 \leq i \leq m$

- 2SAT can be solved in polynomial time (in fact in linear time)
- 2SAT can be solved by formulating it as a implication graph
- ($x_{1} \vee x_{2}$) is logically equivalent to either of $\neg x_{1} \Rightarrow x_{2}$ or $\neg x_{2} \Rightarrow x_{1}$
- Thus a 2SAT formula may be viewed as a set of implications.

■ Construct a directed graph G such that vertices of G are the variables and their negations.

- There is an arc $\left(x_{1}, x_{2}\right)$ in G if and only if there is a clause $\left(\neg x_{1} \vee x_{2}\right)$ or $\left(x_{2} \vee \neg x_{1}\right)$ in the 2SAT instance.
- If for some variable x_{i}, there is a string of implications,
- $x_{i} \Rightarrow \cdots \Rightarrow \neg x_{i}$, and another string of implications.
- $\neg x_{i} \Rightarrow \cdots \Rightarrow x_{i}$, then it is not satisfiable,
- otherwise it is satisfiable.

■ If for some variable x_{i}, there is a string of implications,

- $x_{i} \Rightarrow \cdots \Rightarrow \neg x_{i}$, and another string of implications.
- $\neg x_{i} \Rightarrow \cdots \Rightarrow x_{i}$, then it is not satisfiable,
- otherwise it is satisfiable.
- The 2SAT problem thus reduces to the graph problem of finding strongly connected components (SCC) in the implication graph

■ If for some variable x_{i}, there is a string of implications,

- $x_{i} \Rightarrow \cdots \Rightarrow \neg x_{i}$, and another string of implications.
- $\neg x_{i} \Rightarrow \cdots \Rightarrow x_{i}$, then it is not satisfiable,
- otherwise it is satisfiable.
- The 2SAT problem thus reduces to the graph problem of finding strongly connected components (SCC) in the implication graph
- As computing SCC is known to have a linear-time solution

■ It is clear that 2SAT may be decided under the same time bound.

■ In 3SAT every clause must have at most 3 literals.

- In 3SAT every clause must have at most 3 literals.
- Unrestricted SAT problems can be reduced to 3SAT

■ In 3SAT every clause must have at most 3 literals.

- Unrestricted SAT problems can be reduced to 3SAT
- No known polynomial time reduction from SAT (or 3SAT) to 2SAT. If there was, then SAT and 3SAT would be solvable in polynomial time.

Cook Levin Theorem

■ Decision problem: Is there a valid solution or not?

Cook Levin Theorem

■ Decision problem: Is there a valid solution or not?
■ Cook Levin Theorem states that the SAT decision problem is NP-complete

Cook Levin Theorem

■ Decision problem: Is there a valid solution or not?
■ Cook Levin Theorem states that the SAT decision problem is NP-complete

- Although any given solution to an NP-complete problem can be verified quickly (in polynomial time), no fast way of solving them is known.

The Algorithm - By Naheed

Outline

■ Brute Force Search Algorithm for 3SAT

Outline

■ Brute Force Search Algorithm for 3SAT

- Schöning's Algorithm for 3SAT

Outline

■ Brute Force Search Algorithm for 3SAT

- Schöning's Algorithm for 3SAT

■ Schöning's Algorithm: Illustrative Examples

Brute-Force Search for 3SAT

Let $E=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ be the 3SAT formulae where C_{i} is the i-th Clause.
A Truth assignment, $\mathbf{a}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
Let Ω be the set of all possible $\left(2^{n}\right)$ truth assignments of \mathbf{a}.
for all assignment $\mathbf{a} \in \Omega$ do
if a satisfies E then return "satisfiable"
end if
end for
return "unsatisfiable"
Complexity: $\mathcal{O}\left(2^{n}\right)$

Brute-Force Search for 3SAT

Let $E=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ be the 3SAT formulae where C_{i} is the i-th Clause.
A Truth assignment, $\mathbf{a}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
Let Ω be the set of all possible $\left(2^{n}\right)$ truth assignments of \mathbf{a}.
for a Question
if : Can We do Better?
end if
end for
return "unsatisfiable"
Complexity: $\mathcal{O}\left(2^{n}\right)$

Schöning's Algorithm for 3SAT

Let $E=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ be the 3SAT formulae where C_{i} is the i-th Clause.
Let Ω be the set of all possible $\left(2^{n}\right)$ truth assignments.
repeat T times (or until a satisfying truth assignment is found)
choose an initial truth assignment, \mathbf{a}_{0} uniformly at random from Ω
current assignment, $\mathbf{a}=\mathbf{a}_{0}$
repeat n times (or until a satisfies E)
Choose a clause C violated by the current assignment a.
Choose one of the literals from C uniformly at random, and modify a by flipping the value of the corresponding variable.
if a satisfying assignment was found then return "satisfiable"
else
return "unsatisfiable"
end if
Complexity: $\mathcal{O}(T n)$

Example (Case 1: E unsatisfiable)

$$
\begin{array}{rl}
n= & 3\left\{x_{1}, x_{2}, x_{3}\right\} \\
m= & 7\left\{C_{1}, C_{2}, \ldots, C_{7}\right\} \\
■ & E=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \wedge \\
& \left(x_{1} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{3}\right)
\end{array}
$$

■ Set of Satisfiable Truth Assignment, $A^{*}=\{ \}$

Example (Case 1: E unsatisfiable)

$$
\begin{array}{rl}
n= & 3\left\{x_{1}, x_{2}, x_{3}\right\} \\
m= & 7\left\{C_{1}, C_{2}, \ldots, C_{7}\right\} \\
■ & E=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \wedge \\
& \left(x_{1} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{3}\right)
\end{array}
$$

■ Set of Satisfiable Truth Assignment, $A^{*}=\{ \}$

- Schöning's algorithm will always return unsatisfiable when E is unsatisfiable.

Example (Case 2: E satisfiable in 1st Trial)

$$
\begin{aligned}
& n=3 \\
& m=4\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}
\end{aligned}
$$

$\square E=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{3}\right)$
\square Set of Satisfiable Truth Assignment, $A^{*}=$ \{(True, True, False), (False, True, False)
■ If Truth assignment at the 1st Iteration, $\mathbf{a}_{\mathbf{0}}=($ True, True, False) (lucky!)

Example (Case 3: E satisfiable but Schöning Fails!)

$n=3$
$m=4\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}$
$\square E=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{3}\right)$

- Set of Satisfiable Truth Assignment, $A^{*}=$ \{(True, True, False), (False, True, False) \}
\square Truth assignment at first iteration, $\mathbf{a}_{\mathbf{0}}=$ (False, True, True), Violated Clause $=C_{4}$
- Flip $x_{1}: \mathbf{a}=\left(\right.$ True, True, True). Violated Clause $=C_{2}$.
- Flip $x_{1}: \mathbf{a}=$ (False, True, True). Violated Clause $=C_{4}$.
- Flip $x_{1}: \mathbf{a}=\left(\right.$ True, True, True). Violated Clause $=C_{2}$.
- returns Unsatisfiable.

Example (Case 4: E satisfiable, Schöning Succeeds!)

$$
n=3
$$

$$
m=4\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}
$$

- $E=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{3}\right)$
- Set of Satisfiable Truth Assignment, $A^{*}=$ $\{($ True, True, False), (False, True, False) $\}$
- Iteration 1:
- Iteration 2:

■ Iteration i: Initial Truth assignment, $\mathbf{a}_{\mathbf{0}}=($ False, False, True $)$, Violated Clause $=C_{4}$

- Flip x_{3} : $\mathbf{a}=$ (False, False, False). Violated Clause $=C_{1}$
- Flip x_{2} : $\mathbf{a}=$ (False, True, False). E is satisfied!
- returns Satisfiable.

Example (Case 4: E satisfiable, Schöning Succeeds!)

$$
n=3
$$

$$
m=4\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}
$$

■ $E=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \neg x_{3}\right)$

- Set of Satisfiable Truth Assignment, $A^{*}=$

Question

How large \mathbf{T} should be to find a satisfiable truth assignment with High Probability?

- Iteration i: Initial Truth assignment, $\mathbf{a}_{\mathbf{0}}=($ False, False, True $)$,

Violated Clause $=C_{4}$

- Flip x_{3} : $\mathbf{a}=\left(\right.$ False, False, False). Violated Clause $=C_{1}$
- Flip x_{2} : a = (False, True, False). E is satisfied!
- returns Satisfiable.

Analysis Part 1 - By DME Manupa Karunaratne

The Analysis 1

■ We only do the analysis on the satisfiable instance.

The Analysis 1

■ We only do the analysis on the satisfiable instance.

- The set of assignments that satisfies all the clauses is $A^{*}=\left\{\mathbf{a}_{\mathbf{1}}^{*}, \mathbf{a}_{\mathbf{2}}^{*}, \cdots, \mathbf{a}_{\mathbf{p}}^{*}\right\}$

The Analysis 1

■ We only do the analysis on the satisfiable instance.
■ The set of assignments that satisfies all the clauses is $A^{*}=\left\{\mathbf{a}_{\mathbf{1}}^{*}, \mathbf{a}_{\mathbf{2}}^{*}, \cdots, \mathbf{a}_{\mathbf{p}}^{*}\right\}$
■ We'll arbitrarily pick one assignment for the analysis \mathbf{a}^{*}.

The Analysis 1

- We only do the analysis on the satisfiable instance.
- The set of assignments that satisfies all the clauses is $A^{*}=\left\{\mathbf{a}_{\mathbf{1}}^{*}, \mathbf{a}_{\mathbf{2}}^{*}, \cdots, \mathbf{a}_{\mathbf{p}}^{*}\right\}$
■ We'll arbitrarily pick one assignment for the analysis a*.
■ We want to analyze the distance of a particular assignment a and a*.

Hamming Distance

■ This distance is called the "Hamming Distance".

Hamming Distance

■ This distance is called the "Hamming Distance".

- Example :

$$
\begin{gathered}
\text { Let the number of variables, } n=3 \\
\text { Let } V=\left\{x_{1}, x_{2}, x_{3}\right\} \\
\text { Let } \mathbf{a}^{*}=(\text { True, False, True }) \\
\text { Particular Assignment } \mathbf{a}=(\text { False, True, True })
\end{gathered}
$$

Hamming Distance

■ This distance is called the "Hamming Distance".

- Example :

$$
\begin{gathered}
\text { Let the number of variables, } n=3 \\
\text { Let } V=\left\{x_{1}, x_{2}, x_{3}\right\} \\
\text { Let } \mathbf{a}^{*}=(\text { True, False, True }) \\
\text { Particular Assignment } \mathbf{a}=(\text { False, True, True })
\end{gathered}
$$

■ Since the difference is only at the first two locations and the third one is same as \mathbf{a}^{*}, the Hamming Distance is 2.

Claim 1

- Let the hamming distance between a given assignment a and the satisfying assignment \mathbf{a}^{*} is k.

Claim 1

$$
\operatorname{Pr}\left(k \leq \frac{n}{2}\right) \geq \frac{1}{2}
$$

The Proof of Claim 1: The Symmetry

- There is a symmetry in the possible space of assignments along the k (Hamming Distance) axis.

The Proof of Claim 1: The Symmetry

- There is a symmetry in the possible space of assignments along the k (Hamming Distance) axis.
- The vectors with $k=p$, are essentially the vectors which differ in k number of locations to \mathbf{a}^{*}.

The Proof of Claim 1: The Symmetry

- There is a symmetry in the possible space of assignments along the k (Hamming Distance) axis.
- The vectors with $k=p$, are essentially the vectors which differ in k number of locations to \mathbf{a}^{*}.
- Therefore number of such vectors is $\binom{n}{p}$.

$$
\binom{n}{p}=\binom{n}{n-p}
$$

The Proof of Claim 1: The Symmetry

- There is a symmetry in the possible space of assignments along the k (Hamming Distance) axis.
- The vectors with $k=p$, are essentially the vectors which differ in k number of locations to \mathbf{a}^{*}.
- Therefore number of such vectors is $\binom{n}{p}$.

$$
\binom{n}{p}=\binom{n}{n-p}
$$

- In other words,

$$
\text { assignments with }\{k=p\}=\text { assignments with }\{k=n-p\}
$$

The Proof of Claim 1: The " n is odd" Case

I'll denote the number of assignments with $k=p$ as f_{p}. Case : \mathbf{n} is odd

$$
\operatorname{Pr}\left(k \leq \frac{n}{2}\right)=\frac{\sum_{k=0}^{\frac{n-1}{2}} f_{k}}{\sum_{k=0}^{n} f_{k}}
$$

The Proof of Claim 1: The " n is odd" Case

I'll denote the number of assignments with $k=p$ as f_{p}. Case : \mathbf{n} is odd

$$
\begin{gathered}
\operatorname{Pr}\left(k \leq \frac{n}{2}\right)=\frac{\sum_{k=0}^{\frac{n-1}{2}} f_{k}}{\sum_{k=0}^{n} f_{k}} \\
\operatorname{Pr}\left(k \leq \frac{n}{2}\right)=\frac{\sum_{k=0}^{\frac{n-1}{2}} f_{k}}{\sum_{k=0}^{\frac{n-1}{2}} f_{k}+\sum_{k=\frac{n+1}{2}}^{n} f_{k}}
\end{gathered}
$$

The Proof of Claim 1: The " n is odd" Case

I'll denote the number of assignments with $k=p$ as f_{p}.
Case : \mathbf{n} is odd

$$
\begin{gathered}
\operatorname{Pr}\left(k \leq \frac{n}{2}\right)=\frac{\sum_{k=0}^{\frac{n-1}{2}} f_{k}}{\sum_{k=0}^{n} f_{k}} \\
\operatorname{Pr}\left(k \leq \frac{n}{2}\right)=\frac{\sum_{k=0}^{\frac{n-1}{2}} f_{k}}{\sum_{k=0}^{\frac{n-1}{2}} f_{k}+\sum_{k=\frac{n+1}{2}}^{n} f_{k}}
\end{gathered}
$$

Since $f_{p}=f_{n-p}$,

$$
\operatorname{Pr}\left(k \leq \frac{n}{2}\right)=\frac{\sum_{k=0}^{\frac{n-1}{2}} f_{k}}{\sum_{k=0}^{\frac{n-1}{2}} f_{k}+\sum_{k=0}^{\frac{n-1}{2}} f_{k}}
$$

The Proof of Claim 1: The " n is odd" Case

The " n is odd" Case : Claim 1
 $$
\operatorname{Pr}\left(k \leq \frac{n}{2}\right)=\frac{1}{2}
$$

The Proof of Claim 1: The " n is even" Case

Case : \mathbf{n} is even

$$
\operatorname{Pr}\left(k \leq \frac{n}{2}\right)=\frac{\sum_{k=0}^{\frac{n}{2}} f_{k}}{\sum_{k=0}^{n} f_{k}}
$$

The Proof of Claim 1: The "n is even" Case

Case : \mathbf{n} is even

$$
\begin{gathered}
\operatorname{Pr}\left(k \leq \frac{n}{2}\right)=\frac{\sum_{k=0}^{\frac{n}{2}} f_{k}}{\sum_{k=0}^{n} f_{k}} \\
\operatorname{Pr}\left(k \leq \frac{n}{2}\right)=\frac{\sum_{k=0}^{\frac{n}{2}} f_{k}}{\sum_{k=0}^{\frac{n}{2}-1} f_{k}+f_{\frac{n}{2}}+\sum_{k=\frac{n}{2}+1}^{n} f_{k}}
\end{gathered}
$$

The Proof of Claim 1: The "n is even" Case

Case : \mathbf{n} is even

$$
\begin{gathered}
\operatorname{Pr}\left(k \leq \frac{n}{2}\right)=\frac{\sum_{k=0}^{\frac{n}{2}} f_{k}}{\sum_{k=0}^{n} f_{k}} \\
\operatorname{Pr}\left(k \leq \frac{n}{2}\right)=\frac{\sum_{k=0}^{\frac{n}{2}} f_{k}}{\sum_{k=0}^{\frac{n}{2}-1} f_{k}+f_{\frac{n}{2}}+\sum_{k=\frac{n}{2}+1}^{n} f_{k}}
\end{gathered}
$$

Since $f_{p}=f_{n-p}$,

$$
\operatorname{Pr}\left(k \leq \frac{n}{2}\right)=\frac{\sum_{k=0}^{\frac{n}{2}} f_{k}}{\sum_{k=0}^{\frac{n}{2}-1} f_{k}+f_{\frac{n}{2}}+\sum_{k=0}^{\frac{n}{2}-1} f_{k}}>\frac{1}{2}
$$

The Proof of Claim 1: The General Case

The " n is even" Case: Claim 1
 $$
\operatorname{Pr}\left(k \leq \frac{n}{2}\right)>\frac{1}{2}
$$

The Proof of Claim 1: The General Case

The " n is even" Case: Claim 1

$$
\operatorname{Pr}\left(k \leq \frac{n}{2}\right)>\frac{1}{2}
$$

The General Case: Claim 1

$$
\operatorname{Pr}\left(k \leq \frac{n}{2}\right) \geq \frac{1}{2}
$$

"Good" and "Bad" variables

■ Defn ${ }^{n}$: Good variable $=$ a value of the variable of the assignment that differs from a*.

"Good" and "Bad" variables

■ Defn ${ }^{n}$: Good variable $=$ a value of the variable of the assignment that differs from a*.

- Def ${ }^{n}$: Bad variable $=$ a value of the variable of the assignment that is same of \mathbf{a}^{*}.

"Good" and "Bad" variables

■ Defn ${ }^{n}$: Good variable $=$ a value of the variable of the assignment that differs from a*.

- Def ${ }^{n}$: Bad variable $=$ a value of the variable of the assignment that is same of \mathbf{a}^{*}.
- If the clause is violated, there should be at least one "Good variable"

"Good" and "Bad" variables

■ Defn ${ }^{n}$: Good variable $=$ a value of the variable of the assignment that differs from a*.

- Def ${ }^{n}$: Bad variable $=$ a value of the variable of the assignment that is same of \mathbf{a}^{*}.
- If the clause is violated, there should be at least one "Good variable"
- Therefore if we choose to flip one variable uniformly random in a violated clause,
- it would be a "Good variable" with at least the probability of $\frac{1}{3}$
- it would be a "Bad variable" with at most the probability of $\frac{2}{3}$

Claim 2

Claim 2

$$
\operatorname{Pr}\left(\frac{n}{2} \text { flips to be " Good variables" }\right) \geq\left(\frac{1}{3}\right)^{\frac{n}{2}}
$$

Using Claim 1 and Claim 2

■ Using first claim,

$$
\operatorname{Pr}\left(\mathbf{a}_{\mathbf{0}} \text { with } k \leq \frac{n}{2}\right) \geq \frac{1}{2}
$$

Using Claim 1 and Claim 2

■ Using first claim,

$$
\operatorname{Pr}\left(\mathbf{a}_{\mathbf{0}} \text { with } k \leq \frac{n}{2}\right) \geq \frac{1}{2}
$$

- We want to do $\frac{n}{2}$ consecutive flips for $\mathbf{a}_{\mathbf{0}}$, to make it \mathbf{a}^{*}

Using Claim 1 and Claim 2

■ Using first claim,

$$
\operatorname{Pr}\left(\mathbf{a}_{\mathbf{0}} \text { with } k \leq \frac{n}{2}\right) \geq \frac{1}{2}
$$

- We want to do $\frac{n}{2}$ consecutive flips for $\mathbf{a}_{\mathbf{0}}$, to make it \mathbf{a}^{*}

■ Using second claim,

$$
\operatorname{Pr}\left(\text { consecutive } \frac{n}{2} \text { flips to be " Good variables" }\right) \geq\left(\frac{1}{3}\right)^{\frac{n}{2}}
$$

Using Claim 1 and Claim 2

■ Using first claim,

$$
\operatorname{Pr}\left(\mathbf{a}_{\mathbf{0}} \text { with } k \leq \frac{n}{2}\right) \geq \frac{1}{2}
$$

- We want to do $\frac{n}{2}$ consecutive flips for $\mathbf{a}_{\mathbf{0}}$, to make it \mathbf{a}^{*}

■ Using second claim,

$$
\operatorname{Pr}\left(\text { consecutive } \frac{n}{2} \text { flips to be "Good variables" }\right) \geq\left(\frac{1}{3}\right)^{\frac{n}{2}}
$$

$\operatorname{Pr}($ finding a satisfying assignment in a single iteration $) \geq \frac{1}{2 \cdot 3^{\frac{n}{2}}}=p$

Failure Probability

Failure Probability

With T iterations, the failure probability is at most $\frac{1}{n^{d}}$.

Failure Probability

Failure Probability

With T iterations, the failure probability is at most $\frac{1}{n^{d}}$.
$\operatorname{Pr}($ not finding a satisfying assignment in T iterations $) \leq(1-p)^{T}$

- (Using $\left.1+x \leq e^{x}\right)$,

$$
(1-p)^{T} \leq e^{-p T}
$$

Failure Probability

Failure Probability

With T iterations, the failure probability is at most $\frac{1}{n^{d}}$.
$\operatorname{Pr}($ not finding a satisfying assignment in T iterations $) \leq(1-p)^{T}$

- (Using $\left.1+x \leq e^{x}\right)$,

$$
(1-p)^{T} \leq e^{-p T}
$$

- Choose, $T=\frac{d \ln n}{p}$

Failure Probability

Failure Probability

With T iterations, the failure probability is at most $\frac{1}{n^{d}}$.
$\operatorname{Pr}($ not finding a satisfying assignment in T iterations $) \leq(1-p)^{T}$

- (Using $\left.1+x \leq e^{x}\right)$,

$$
(1-p)^{T} \leq e^{-p T}
$$

- Choose, $T=\frac{d \ln n}{p}$
$\square(1-p)^{T} \leq e^{-p T}=e^{-\ln \left(n^{d}\right)}=\frac{1}{n^{d}}$

Time Complexity

- The outer loop,

$$
T=\frac{d \ln (n)}{p}
$$

Substitute $p=\frac{1}{2.3^{\frac{n}{2}}}$,

Time Complexity

- The outer loop,

$$
T=\frac{d \ln (n)}{p}
$$

Substitute $p=\frac{1}{2.3^{\frac{n}{2}}}$,

Time Complexity

■ The outer loop,

$$
T=\frac{d \ln (n)}{p}
$$

Substitute $p=\frac{1}{2.3^{\frac{n}{2}}}$,

$$
T=\frac{d \ln (n)}{\frac{1}{2 \cdot 3^{\frac{n}{2}}}}=2 d(\sqrt{3})^{n} \ln (n)=\Theta\left((\sqrt{3})^{n} \log (n)\right)
$$

Time Complexity

Conclusion

Taking $T=\Theta\left((1.74)^{n} \log n\right)$, the random search algorithm is correct with a high probability.

Analysis Part 2 - By Erick

Planning

- Keep the algorithm the same
- Repeat T times

Planning

■ Keep the algorithm the same

- Repeat T times
- But prove better bound
- Smaller T
- Better analysis gives less iteration
- Faster running time!

Observation on Version 1

Success probability of an iteration in Version 1

$$
\operatorname{Pr}[\text { success }] \geq \frac{1}{2} \cdot\left(\frac{1}{3}\right)^{\frac{n}{2}}
$$

■ Only count initial assignments \mathbf{a}_{0} where initial distance $k \leq \frac{n}{2}$

Observation on Version 1

Success probability of an iteration in Version 1

$$
\operatorname{Pr}[\text { success }] \geq \frac{1}{2} \cdot\left(\frac{1}{3}\right)^{\frac{n}{2}}
$$

■ Only count initial assignments \mathbf{a}_{0} where initial distance $k \leq \frac{n}{2}$

- Ignore the ones with initial distance $k>\frac{n}{2}$
- Even though inner loop repeat n times

Observation on Version 1

Success probability of an iteration in Version 1

$$
\operatorname{Pr}[\text { success }] \geq \frac{1}{2} \cdot\left(\frac{1}{3}\right)^{\frac{n}{2}}
$$

■ Only count initial assignments \mathbf{a}_{0} where initial distance $k \leq \frac{n}{2}$

- Ignore the ones with initial distance $k>\frac{n}{2}$

■ Even though inner loop repeat n times
■ Want to count all values of initial distance k

- Let the success probability be a function of k

Initial Assignment Probability

- Probability an initial assignment \mathbf{a}_{0} having initial distance k ?
- Flip a sequence of n coins and get k heads

$$
\operatorname{Pr}\left[\operatorname{dist}\left(\mathbf{a}_{0}, \mathbf{a}^{*}\right)=k\right]=?
$$

Initial Assignment Probability

- Probability an initial assignment \mathbf{a}_{0} having distance k :

$$
\operatorname{Pr}\left[\operatorname{dist}\left(\mathbf{a}_{0}, \mathbf{a}^{*}\right)=k\right]=\binom{n}{k} 2^{-n}
$$

Success Probability

■ Probability an iteration succeeds:

$$
\begin{aligned}
\operatorname{Pr}[\text { success }] & =\sum_{k=0}^{n} \operatorname{Pr}\left[\operatorname{dist}\left(\mathbf{a}_{0}, \mathbf{a}^{*}\right)=k\right] \cdot \operatorname{Pr}\left[\operatorname{success} \mid \operatorname{dist}\left(\mathbf{a}_{0}, \mathbf{a}^{*}\right)=k\right] \\
& \geq
\end{aligned}
$$

Success Probability

■ Probability an iteration succeeds:

$$
\begin{aligned}
\operatorname{Pr}[\text { success }] & =\sum_{k=0}^{n} \operatorname{Pr}\left[\operatorname{dist}\left(\mathbf{a}_{0}, \mathbf{a}^{*}\right)=k\right] \cdot \operatorname{Pr}\left[\operatorname{success} \mid \operatorname{dist}\left(\mathbf{a}_{0}, \mathbf{a}^{*}\right)=k\right] \\
& \geq \sum_{k=0}^{n}\binom{n}{k} 2^{-n}\left(\frac{1}{3}\right)^{k} \\
& =
\end{aligned}
$$

Success Probability

■ Probability an iteration succeeds:

$$
\begin{aligned}
\operatorname{Pr}[\text { success }] & =\sum_{k=0}^{n} \operatorname{Pr}\left[\operatorname{dist}\left(\mathbf{a}_{0}, \mathbf{a}^{*}\right)=k\right] \cdot \operatorname{Pr}\left[\operatorname{success} \mid \operatorname{dist}\left(\mathbf{a}_{0}, \mathbf{a}^{*}\right)=k\right] \\
& \geq \sum_{k=0}^{n}\binom{n}{k} 2^{-n}\left(\frac{1}{3}\right)^{k} \\
& =2^{-n}\left(1+\frac{1}{3}\right)^{n} \\
& =\left(\frac{2}{3}\right)^{n}
\end{aligned}
$$

Outer Loop Iterations

By similar analysis in Version 1,

- A single outer loop iteration success probability at least $p=\left(\frac{2}{3}\right)^{n}$
- If we take $T=\frac{d \ln n}{p}$ for a constant $d>0$, then the algorithm succeeds except with inverse polynomial probability $\frac{1}{n^{d}}$

Outer Loop Iterations

By similar analysis in Version 1,

- A single outer loop iteration success probability at least $p=\left(\frac{2}{3}\right)^{n}$
- If we take $T=\frac{d \ln n}{p}$ for a constant $d>0$, then the algorithm succeeds except with inverse polynomial probability $\frac{1}{n^{d}}$

■ Substituting for p, the number of outer loop iterations

$$
T=\Theta\left(\left(\frac{3}{2}\right)^{n} \log n\right)
$$

Schöning's Algorithm (Version 2)

Conclusion

Taking $T=\Theta\left((1.5)^{n} \log n\right)$, the random search algorithm is correct with high probability

Analysis Part 3 - By Dmitrii

Success Probability

$$
\operatorname{Pr}[\text { success }]=\sum_{k=0}^{n} \operatorname{Pr}\left[\operatorname{dist}\left(\mathbf{a}_{0}, \mathbf{a}^{*}\right)=k\right] \cdot \operatorname{Pr}\left[\operatorname{success} \mid \operatorname{dist}\left(\mathbf{a}_{0}, \mathbf{a}^{*}\right)\right]
$$

Updated Schöning's Algorithm for 3SAT

Let $E=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ be the Boolean Expression where C_{i} is the i-th Clause.
Let Ω be the set of all possible $\left(2^{n}\right)$ truth assignments of E. repeat T times (or until a satisfying truth assignment is found) choose a truth assignment a uniformly at random from Ω repeat $3 n$ times (or until a satisfies E)

Choose a clause C violated by the current assignment a.
Choose one of the literals from C uniformly at random, and modify a by flipping the value of the corresponding variable.
if a satisfying assignment was found then return "satisfiable"
else
return "unsatisfiable"
end if
Complexity: $\mathcal{O}(T \cdot 3 n)$

Intuition

■ Previously we counted only k consecutive "Good variables" from the start

Intuition

■ Previously we counted only k consecutive "Good variables" from the start

■ k "Bad variables" and $2 k$ "Good variables" also lead to success

Updated probability of success

$$
\begin{aligned}
& \operatorname{Pr}[\text { success }]=\sum_{k=0}^{n} \operatorname{Pr}\left[\operatorname{dist}\left(\mathbf{a}_{0}, \mathbf{a}^{*}\right)=k\right] \cdot \operatorname{Pr}\left[\operatorname{success} \mid \operatorname{dist}\left(\mathbf{a}_{0}, \mathbf{a}^{*}\right)\right] \\
& \geq \sum_{k=0}^{n} 2^{-n}\binom{n}{k} \cdot\binom{3 k}{k}\left(\frac{1}{3}\right)^{2 k}\left(\frac{2}{3}\right)^{k}
\end{aligned}
$$

Stirling's approximation

$$
n!=\Theta\left(\sqrt{n}\left(\frac{n}{e}\right)^{n}\right)
$$

Approximation of binomial coefficient

$$
\binom{3 k}{k}=\frac{(3 k)!}{(2 k)!\cdot k!}=\Theta\left(\frac{\sqrt{3 k}}{\sqrt{2 k} \cdot \sqrt{k}} \cdot \frac{\left(\frac{3 k}{e}\right)^{3 k}}{\left(\frac{2 k}{e}\right)^{2 k} \cdot\left(\frac{k}{e}\right)^{k}}\right)=\Theta\left(\frac{1}{\sqrt{k}} \cdot \frac{3^{3 k}}{2^{2 k}}\right)
$$

Approximation of binomial coefficient 2

$$
\binom{3 k}{k}\left(\frac{1}{3}\right)^{2 k}\left(\frac{2}{3}\right)^{k}=\Theta\left(\frac{1}{\sqrt{k}} \cdot \frac{3^{3 k}}{2^{2 k}} \cdot 3^{-2 k} \cdot \frac{2^{k}}{3^{k}}\right)=\Theta\left(\frac{2^{-k}}{\sqrt{k}}\right)
$$

Approximation of success probability

$$
\operatorname{Pr}[\text { success }] \geq \sum_{k=0}^{n} 2^{-n}\binom{n}{k}\binom{3 k}{k}\left(\frac{1}{3}\right)^{2 k}\left(\frac{2}{3}\right)^{k}
$$

Approximation of success probability

$$
\begin{aligned}
& \operatorname{Pr}[\text { success }] \geq \sum_{k=0}^{n} 2^{-n}\binom{n}{k}\binom{3 k}{k}\left(\frac{1}{3}\right)^{2 k}\left(\frac{2}{3}\right)^{k} \geq \\
& c \cdot 2^{-n} \cdot \sum_{k=0}^{n}\binom{n}{k} \frac{2^{-k}}{\sqrt{k}}
\end{aligned}
$$

Approximation of success probability

$$
\begin{aligned}
& \operatorname{Pr}[\text { success }] \geq \sum_{k=0}^{n} 2^{-n}\binom{n}{k}\binom{3 k}{k}\left(\frac{1}{3}\right)^{2 k}\left(\frac{2}{3}\right)^{k} \geq \\
& c \cdot 2^{-n} \cdot \sum_{k=0}^{n}\binom{n}{k} \frac{2^{-k}}{\sqrt{k}} \geq \frac{c}{\sqrt{n}} \cdot 2^{-n} \cdot \sum_{k=0}^{n}\binom{n}{k} 2^{-k}
\end{aligned}
$$

Approximation of success probability

$$
\begin{aligned}
& \operatorname{Pr}[\text { success }] \geq \sum_{k=0}^{n} 2^{-n}\binom{n}{k}\binom{3 k}{k}\left(\frac{1}{3}\right)^{2 k}\left(\frac{2}{3}\right)^{k} \geq \\
& c \cdot 2^{-n} \cdot \sum_{k=0}^{n}\binom{n}{k} \frac{2^{-k}}{\sqrt{k}} \geq \frac{c}{\sqrt{n}} \cdot 2^{-n} \cdot \sum_{k=0}^{n}\binom{n}{k} 2^{-k}= \\
& \frac{c}{\sqrt{n}} \cdot 2^{-n}\left(1+\frac{1}{2}\right)^{n}
\end{aligned}
$$

Approximation of success probability

$$
\begin{aligned}
& \operatorname{Pr}[\text { success }] \geq \sum_{k=0}^{n} 2^{-n}\binom{n}{k}\binom{3 k}{k}\left(\frac{1}{3}\right)^{2 k}\left(\frac{2}{3}\right)^{k} \geq \\
& c \cdot 2^{-n} \cdot \sum_{k=0}^{n}\binom{n}{k} \frac{2^{-k}}{\sqrt{k}} \geq \frac{c}{\sqrt{n}} \cdot 2^{-n} \cdot \sum_{k=0}^{n}\binom{n}{k} 2^{-k}= \\
& \frac{c}{\sqrt{n}} \cdot 2^{-n}\left(1+\frac{1}{2}\right)^{n}=\frac{c}{\sqrt{n}}\left(\frac{3}{4}\right)^{n}
\end{aligned}
$$

Schöning's Algorithm (Version 3)

Conclusion

Taking $T=\Theta\left(1.33^{n} \cdot \sqrt{n} \log n\right)$, the random search algorithm is correct with high probability

Summary

- SAT problem
- Brute force for 3SAT : Complexity: $\mathcal{O}\left(2^{n}\right)$
- Schöning's Algorithm for 3SAT
- Analysis 1 : Complexity: $\mathcal{O}\left(1.74^{n} \cdot n \log n\right)$
- Analysis 2 : Complexity: $\mathcal{O}\left(1.5^{n} \cdot n \log n\right)$

■ Analysis 3 : Complexity: $\mathcal{O}\left(1.33^{n} \cdot 3 n \sqrt{n} \log n\right)$

