Random Search on 3SAT

Group 4

CS6234 - Advanced Algorithms

April 19, 2016

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016

э

イロト イヨト イヨト イヨト

Contents

- Boolean Satisfiability Problem
- Schöning's Algorithm for 3SAT
- Analysis 1
- Analysis 2
- Analysis 3

Boolean Satisfiability Problem - By Sapumal

・ロト ・四ト ・ヨト ・ヨト

 Is the problem of determining if there exists an interpretation that satisfies a given Boolean formula.

- Is the problem of determining if there exists an interpretation that satisfies a given Boolean formula.
- It asks whether the variables of a given Boolean formula can be consistently replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE.

- Is the problem of determining if there exists an interpretation that satisfies a given Boolean formula.
- It asks whether the variables of a given Boolean formula can be consistently replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE.
 - If this is the case, the formula is called satisfiable.

- Is the problem of determining if there exists an interpretation that satisfies a given Boolean formula.
- It asks whether the variables of a given Boolean formula can be consistently replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE.
 - If this is the case, the formula is called satisfiable.
 - On the other hand, if no such assignment exists for all possible variable assignments and the formula is unsatisfiable.

- Is the problem of determining if there exists an interpretation that satisfies a given Boolean formula.
- It asks whether the variables of a given Boolean formula can be consistently replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE.
 - If this is the case, the formula is called satisfiable.
 - On the other hand, if no such assignment exists for all possible variable assignments and the formula is unsatisfiable.
- Referred to as SATISFIABILITY or SAT

 SAT formula usually take input in Conjunctive Normal Form (CNF): "an AND of ORs of literals".

- SAT formula usually take input in Conjunctive Normal Form (CNF): "an AND of ORs of literals".
 - Variable a propositional variable: *x*₁, *x*₂, *x*₃

- SAT formula usually take input in Conjunctive Normal Form (CNF): "an AND of ORs of literals".
 - Variable a propositional variable: x_1, x_2, x_3
 - Literal an variable or its negation: $x_1, \neg x_1, x_2, \neg x_2$

- SAT formula usually take input in Conjunctive Normal Form (CNF): "an AND of ORs of literals".
 - Variable a propositional variable: x_1, x_2, x_3
 - Literal an variable or its negation: $x_1, \neg x_1, x_2, \neg x_2$
 - Clause A disjunction of some literals: $(x_1 \lor x_2 \lor x_3)$

- SAT formula usually take input in Conjunctive Normal Form (CNF): "an AND of ORs of literals".
 - Variable a propositional variable: x_1, x_2, x_3
 - Literal an variable or its negation: $x_1, \neg x_1, x_2, \neg x_2$
 - Clause A disjunction of some literals: $(x_1 \lor x_2 \lor x_3)$
 - CNF formula A conjunction of some clauses: $(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2)$

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Boolean Satisfiability Problem

Simple example,

$$(x_1 \lor x_2) \land (\neg x_1 \lor x_3) \land (x_3 \lor x_4) \land (\neg x_2 \lor \neg x_4)$$

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Boolean Satisfiability Problem

Simple example,

$$(x_1 \lor x_2) \land (\neg x_1 \lor x_3) \land (x_3 \lor x_4) \land (\neg x_2 \lor \neg x_4)$$
$$x_1 = x_3 = TRUE$$

Random Search on 3SAT | Boolean Satisfiability Problem - By Sapumal

Boolean Satisfiability Problem

Simple example,

$$(x_1 \lor x_2) \land (\neg x_1 \lor x_3) \land (x_3 \lor x_4) \land (\neg x_2 \lor \neg x_4)$$

•
$$x_1 = x_3 = TRUE$$
 and $x_2, x_4 = FALSE$

Applications

- Combinational equivalence checking (CEC)
 - 2 combinational circuits, each with n inputs and m outputs.
 - Are the outputs same for all input values?

Applications

- Combinational equivalence checking (CEC)
 - 2 combinational circuits, each with n inputs and m outputs.
 - Are the outputs same for all input values?
- Automatic test pattern generation (ATPG)
 - Fabricated integrated circuits may be subject to defects, which may cause circuit failure
 - Computing input assignments that allow demonstrating the existence or absence of each target fault

Applications

- Combinational equivalence checking (CEC)
 - 2 combinational circuits, each with n inputs and m outputs.
 - Are the outputs same for all input values?
- Automatic test pattern generation (ATPG)
 - Fabricated integrated circuits may be subject to defects, which may cause circuit failure
 - Computing input assignments that allow demonstrating the existence or absence of each target fault
- Model checking
- Applications in Bioinformatics
- Ref: Marques-Silva, Joao. "Practical applications of boolean satisfiability." Discrete Event Systems, 2008. WODES 2008. 9th International Workshop on. IEEE, 2008.

イロト イポト イヨト イヨト

• Collection $C = C_1, \ldots, C_m$ of clauses *n* Boolean variables such that $|C_i| \le 2$ for $1 \le i \le m$

2SAT

- Collection $C = C_1, \ldots, C_m$ of clauses *n* Boolean variables such that $|C_i| \le 2$ for $1 \le i \le m$
- 2SAT can be solved in polynomial time (in fact in linear time)

イロト イポト イヨト イヨト

2SAT

- Collection $C = C_1, \ldots, C_m$ of clauses n Boolean variables such that $|C_i| \le 2$ for $1 \le i \le m$
- 2SAT can be solved in polynomial time (in fact in linear time)
- 2SAT can be solved by formulating it as a implication graph

< ロ > < 同 > < 回 > < 回 > < 回 > <

2SAT

- Collection $C = C_1, \ldots, C_m$ of clauses *n* Boolean variables such that $|C_i| \le 2$ for $1 \le i \le m$
- 2SAT can be solved in polynomial time (in fact in linear time)
- 2SAT can be solved by formulating it as a implication graph
- $(x_1 \lor x_2)$ is logically equivalent to either of $\neg x_1 \Rightarrow x_2$ or $\neg x_2 \Rightarrow x_1$
- Thus a 2SAT formula may be viewed as a set of implications.
 - Construct a directed graph *G* such that vertices of *G* are the variables and their negations.
 - There is an arc (x_1, x_2) in G if and only if there is a clause $(\neg x_1 \lor x_2)$ or $(x_2 \lor \neg x_1)$ in the 2SAT instance.

- If for some variable x_i , there is a string of implications,
 - $x_i \Rightarrow \cdots \Rightarrow \neg x_i$, and another string of implications.
 - $\neg x_i \Rightarrow \cdots \Rightarrow x_i$, then it is not satisfiable,
 - otherwise it is satisfiable.

< ロ > (同 > (三 > (三 >))

- If for some variable x_i, there is a string of implications,
 - $x_i \Rightarrow \cdots \Rightarrow \neg x_i$, and another string of implications.
 - $\neg x_i \Rightarrow \cdots \Rightarrow x_i$, then it is not satisfiable,
 - otherwise it is satisfiable.
- The 2SAT problem thus reduces to the graph problem of finding strongly connected components (SCC) in the implication graph

- If for some variable x_i, there is a string of implications,
 - $x_i \Rightarrow \cdots \Rightarrow \neg x_i$, and another string of implications.
 - $\neg x_i \Rightarrow \cdots \Rightarrow x_i$, then it is not satisfiable,
 - otherwise it is satisfiable.
- The 2SAT problem thus reduces to the graph problem of finding strongly connected components (SCC) in the implication graph
- As computing SCC is known to have a linear-time solution
- It is clear that 2SAT may be decided under the same time bound.

< ロ > < 同 > < 回 > < 回 > < 回 > <

• In 3SAT every clause must have at most 3 literals.

- In 3SAT every clause must have at most 3 literals.
- Unrestricted SAT problems can be reduced to 3SAT

- In 3SAT every clause must have at most 3 literals.
- Unrestricted SAT problems can be reduced to 3SAT
- No known polynomial time reduction from SAT (or 3SAT) to 2SAT. If there was, then SAT and 3SAT would be solvable in polynomial time.

Cook Levin Theorem

Decision problem: Is there a valid solution or not?

Cook Levin Theorem

- Decision problem: Is there a valid solution or not?
- Cook Levin Theorem states that the SAT decision problem is NP-complete

Cook Levin Theorem

- Decision problem: Is there a valid solution or not?
- Cook Levin Theorem states that the SAT decision problem is NP-complete
- Although any given solution to an NP-complete problem can be verified quickly (in polynomial time), no fast way of solving them is known.

The Algorithm - By Naheed

æ

イロト イヨト イヨト イヨト

Outline

Brute Force Search Algorithm for 3SAT

Outline

- Brute Force Search Algorithm for 3SAT
- Schöning's Algorithm for 3SAT

Outline

- Brute Force Search Algorithm for 3SAT
- Schöning's Algorithm for 3SAT
- Schöning's Algorithm: Illustrative Examples

Brute-Force Search for 3SAT

Let $E = C_1 \wedge C_2 \wedge \cdots \wedge C_m$ be the 3SAT formulae where C_i is the i-th Clause. A Truth assignment, $\mathbf{a} = (x_1, x_2, \dots, x_n)$ Let Ω be the set of all possible (2^n) truth assignments of **a**. for all assignment $\mathbf{a} \in \Omega$ do if a satisfies E then return "satisfiable" end if end for return "unsatisfiable" **Complexity:** $\mathcal{O}(2^n)$

Brute-Force Search for 3SAT

Let $E = C_1 \wedge C_2 \wedge \cdots \wedge C_m$ be the 3SAT formulae where C_i is the i-th Clause. A Truth assignment, $\mathbf{a} = (x_1, x_2, \dots, x_n)$ Let Ω be the set of all possible (2^n) truth assignments of **a**. for a Question if Can We do Better? end if end for return "unsatisfiable" **Complexity:** $\mathcal{O}(2^n)$

Schöning's Algorithm for 3SAT

Let $E = C_1 \wedge C_2 \wedge \cdots \wedge C_m$ be the 3SAT formulae where C_i is the i-th Clause.

Let Ω be the set of all possible (2^n) truth assignments.

- **repeat** T times (or until a satisfying truth assignment is found) choose an initial truth assignment, \mathbf{a}_0 uniformly at random from Ω current assignment, $\mathbf{a} = \mathbf{a}_0$
 - **repeat** *n* times (or until **a** satisfies E)

Choose a clause C violated by the current assignment **a**. Choose one of the literals from C uniformly at random, and modify **a** by flipping the value of the corresponding variable.

 $\boldsymbol{\mathsf{if}}$ a satisfying assignment was found $\boldsymbol{\mathsf{then}}$

return "satisfiable"

else

return "unsatisfiable"

end if

Complexity: $\mathcal{O}(Tn)$

Example (Case 1: E unsatisfiable)

$$n = 3 \{x_1, x_2, x_3\}$$

$$m = 7 \{C_1, C_2, \dots, C_7\}$$

$$E = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2) \land (\neg x_2 \lor \neg x_3) \land (x_1 \lor x_3) \land (x_1 \lor \neg x_3) \land (x_3)$$

■ Set of Satisfiable Truth Assignment, *A*^{*} = {}

3

イロン イヨン イヨン イヨン

Example (Case 1: E unsatisfiable)

$$n = 3 \{x_1, x_2, x_3\}$$

$$m = 7 \{C_1, C_2, \dots, C_7\}$$

- $E = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2) \land (\neg x_2 \lor \neg x_3) \land (x_1 \lor x_3) \land (x_1 \lor \neg x_3) \land (x_3)$
- Set of Satisfiable Truth Assignment, $A^* = \{\}$
- Schöning's algorithm will always return unsatisfiable when E is unsatisfiable.

・ロト ・雪 ・ ・ ヨ ・

Example (Case 2: E satisfiable in 1st Trial)

n = 3m = 4 {C₁, C₂, C₃, C₄}

$$\bullet E = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2) \land (x_1 \lor \neg x_3)$$

- Set of Satisfiable Truth Assignment, A* = {(True, True, False), (False, True, False)}
- If Truth assignment at the 1st Iteration, $a_0 = (\mathit{True}, \mathit{True}, \mathit{False})$ (lucky!)

Example (Case 3: E satisfiable but Schöning Fails!)

 $m = 4 \{C_1, C_2, C_3, C_4\}$

$$\bullet E = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2) \land (x_1 \lor \neg x_3)$$

- Set of Satisfiable Truth Assignment, A* = {(True, True, False), (False, True, False)}
- Truth assignment at first iteration, $\mathbf{a}_0 = (False, True, True)$, Violated Clause = C_4

• Flip
$$x_1$$
: $\mathbf{a} = (True, True, True)$. Violated Clause = C_2 .

- Flip x_1 : $\mathbf{a} = (False, True, True)$. Violated Clause = C_4 .
- Flip x_1 : $\mathbf{a} = (True, True, True)$. Violated Clause = C_2 .

returns Unsatisfiable.

Example (Case 4: E satisfiable, Schöning Succeeds!)

$$n = 3$$

m = 4 {C₁, C₂, C₃, C₄}

$$\bullet E = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2) \land (x_1 \lor \neg x_3)$$

Set of Satisfiable Truth Assignment, A* = {(True, True, False), (False, True, False)}

- Iteration 1:
- Iteration 2:

. . . .

• Iteration i: Initial Truth assignment, $\mathbf{a}_0 = (False, False, True)$, Violated Clause = C_4

Flip
$$x_3$$
: $\mathbf{a} = (False, False, False)$. Violated Clause = C_1

Flip
$$x_2$$
: $\mathbf{a} = (False, True, False)$. E is satisfied!

returns Satisfiable.

Example (Case 4: E satisfiable, Schöning Succeeds!)

$$n = 3$$

$$m = 4 \{C_1, C_2, C_3, C_4\}$$

$$E = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2) \land (x_1 \lor \neg x_3)$$

$$Set of Satisfiable Truth Assignment, A^* = \{(Question \\ How large T should be to find a satisfiable truth assignment with High Probability?
$$How large T should be to find a satisfiable truth assignment with High Probability?$$

$$Heration i: Initial Truth assignment, a_0 = (False, False, True), Violated Clause = C_4$$

$$Flip x_3: a = (False, False, False). Violated Clause = C_1$$

$$Flip x_2: a = (False, True, False). E is satisfied!$$

$$returns Satisfiable.$$$$

Analysis Part 1 - By DME Manupa Karunaratne

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• We only do the analysis on the satisfiable instance.

(ロ) (部) (目) (目)

- We only do the analysis on the satisfiable instance.
- The set of assignments that satisfies all the clauses is $A^* = \{a_1^*, a_2^*, \cdots, a_p^*\}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We only do the analysis on the satisfiable instance.
- The set of assignments that satisfies all the clauses is $A^* = \{a_1^*, a_2^*, \cdots, a_p^*\}$
- We'll arbitrarily pick one assignment for the analysis a*.

- We only do the analysis on the satisfiable instance.
- The set of assignments that satisfies all the clauses is $A^* = \{a_1^*, a_2^*, \cdots, a_p^*\}$
- We'll arbitrarily pick one assignment for the analysis **a***.
- We want to analyze the distance of a particular assignment \mathbf{a} and \mathbf{a}^* .

Hamming Distance

• This distance is called the "Hamming Distance".

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hamming Distance

- This distance is called the "Hamming Distance".
- Example :

Let the number of variables, n = 3Let $V = \{x_1, x_2, x_3\}$ Let $\mathbf{a}^* = (True, False, True)$ Particular Assignment $\mathbf{a} = (False, True, True)$

(日) (同) (三) (三) (三)

Hamming Distance

- This distance is called the "Hamming Distance".
- Example :

Let the number of variables, n = 3Let $V = \{x_1, x_2, x_3\}$ Let $\mathbf{a}^* = (True, False, True)$ Particular Assignment $\mathbf{a} = (False, True, True)$

Since the difference is only at the first two locations and the third one is same as a*, the Hamming Distance is 2.

Claim 1

Let the hamming distance between a given assignment a and the satisfying assignment a* is k.

Claim 1

.

$$Pr(k \leq \frac{n}{2}) \geq \frac{1}{2}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 There is a symmetry in the possible space of assignments along the k (Hamming Distance) axis.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- There is a symmetry in the possible space of assignments along the k (Hamming Distance) axis.
- The vectors with k = p, are essentially the vectors which differ in k number of locations to a*.

- There is a symmetry in the possible space of assignments along the k (Hamming Distance) axis.
- The vectors with k = p, are essentially the vectors which differ in k number of locations to a*.
- Therefore number of such vectors is $\binom{n}{p}$.

$$\binom{n}{p} = \binom{n}{n-p}$$

- There is a symmetry in the possible space of assignments along the k (Hamming Distance) axis.
- The vectors with k = p, are essentially the vectors which differ in k number of locations to a*.
- Therefore number of such vectors is $\binom{n}{p}$.

$$\binom{n}{p} = \binom{n}{n-p}$$

In other words,

assignments with $\{k = p\}$ = assignments with $\{k = n - p\}$

イロト イヨト イヨト

The Proof of Claim 1 : The "n is odd" Case

I'll denote the number of assignments with k = p as f_p . Case : n is odd

$$\Pr(k \le \frac{n}{2}) = \frac{\sum_{k=0}^{\frac{n-1}{2}} f_k}{\sum_{k=0}^{n} f_k}$$

The Proof of Claim 1 : The "n is odd" Case

I'll denote the number of assignments with k = p as f_p . Case : n is odd

$$\Pr(k \le \frac{n}{2}) = \frac{\sum_{k=0}^{\frac{n-1}{2}} f_k}{\sum_{k=0}^{n} f_k}$$

$$\Pr(k \le \frac{n}{2}) = \frac{\sum_{k=0}^{\frac{n-1}{2}} f_k}{\sum_{k=0}^{\frac{n-1}{2}} f_k + \sum_{k=\frac{n+1}{2}}^{n} f_k}$$

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016

・ロト ・四ト ・ヨト ・ヨト

The Proof of Claim 1 : The "n is odd" Case

I'll denote the number of assignments with k = p as f_p . Case : n is odd

$$\Pr(k \le \frac{n}{2}) = \frac{\sum_{k=0}^{\frac{n-1}{2}} f_k}{\sum_{k=0}^{n} f_k}$$

$$\Pr(k \le \frac{n}{2}) = \frac{\sum_{k=0}^{\frac{n-1}{2}} f_k}{\sum_{k=0}^{\frac{n-1}{2}} f_k + \sum_{k=\frac{n+1}{2}}^{n} f_k}$$

Since $f_p = f_{n-p}$,

$$\Pr(k \le \frac{n}{2}) = \frac{\sum_{k=0}^{\frac{n-1}{2}} f_k}{\sum_{k=0}^{\frac{n-1}{2}} f_k + \sum_{k=0}^{\frac{n-1}{2}} f_k}$$

臣

The Proof of Claim 1 : The "n is odd" Case

The "n is odd" Case : Claim 1

.

$$\Pr(k \le \frac{n}{2}) = \frac{1}{2}$$

э.

イロン イヨン イヨン イヨン

The Proof of Claim 1 : The "n is even" Case

Case : n is even

$$\Pr(k \le \frac{n}{2}) = \frac{\sum_{k=0}^{\frac{n}{2}} f_k}{\sum_{k=0}^{n} f_k}$$

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

The Proof of Claim 1 : The "n is even" Case

Case : n is even

$$\Pr(k \le \frac{n}{2}) = \frac{\sum_{k=0}^{\frac{n}{2}} f_k}{\sum_{k=0}^{n} f_k}$$

$$\Pr(k \le \frac{n}{2}) = \frac{\sum_{k=0}^{\frac{n}{2}} f_k}{\sum_{k=0}^{\frac{n}{2}-1} f_k + f_{\frac{n}{2}} + \sum_{k=\frac{n}{2}+1}^{n} f_k}$$

э.

イロン イヨン イヨン イヨン

The Proof of Claim 1 : The "n is even" Case

Case : n is even

$$\Pr(k \le \frac{n}{2}) = \frac{\sum_{k=0}^{\frac{n}{2}} f_k}{\sum_{k=0}^{n} f_k}$$

$$\Pr(k \le \frac{n}{2}) = \frac{\sum_{k=0}^{\frac{n}{2}} f_k}{\sum_{k=0}^{\frac{n}{2}-1} f_k + f_{\frac{n}{2}} + \sum_{k=\frac{n}{2}+1}^{n} f_k}$$

Since $f_p = f_{n-p}$,

$$\Pr(k \le \frac{n}{2}) = \frac{\sum_{k=0}^{\frac{n}{2}} f_k}{\sum_{k=0}^{\frac{n}{2}-1} f_k + f_{\frac{n}{2}} + \sum_{k=0}^{\frac{n}{2}-1} f_k} > \frac{1}{2}$$

The Proof of Claim 1 : The General Case

The "n is even" Case : Claim 1

.

$$\Pr(k \leq \frac{n}{2}) > \frac{1}{2}$$

э.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

The Proof of Claim 1 : The General Case

The "n is even" Case : Claim 1

$$\Pr(k \leq \frac{n}{2}) > \frac{1}{2}$$

The General Case : Claim 1

.

.

$$\Pr(k \leq \frac{n}{2}) \geq \frac{1}{2}$$

Defⁿ: Good variable = a value of the variable of the assignment that differs from a*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Defⁿ: Good variable = a value of the variable of the assignment that differs from a*.
- Defⁿ: Bad variable = a value of the variable of the assignment that is same of a*.

- Defⁿ: Good variable = a value of the variable of the assignment that differs from a*.
- Defⁿ: Bad variable = a value of the variable of the assignment that is same of a*.
- If the clause is violated, there should be at least one "Good variable"

- Defⁿ: Good variable = a value of the variable of the assignment that differs from a*.
- Defⁿ: Bad variable = a value of the variable of the assignment that is same of a*.
- If the clause is violated, there should be at least one "Good variable"
- Therefore if we choose to flip one variable uniformly random in a violated clause,
 - it would be a "Good variable" with at least the probability of $\frac{1}{3}$
 - it would be a "Bad variable" with at most the probability of $\frac{2}{3}$

(日) (同) (三) (三) (三)

Claim 2

Claim 2

٠

$$\Pr(rac{n}{2} \text{ flips to be "Good variables"}) \geq (rac{1}{3})^{rac{n}{2}}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲目 ● ● ●

Using first claim,

$$\mathsf{Pr}(\mathbf{a_0} \,\, \textit{with} \,\, k \leq rac{n}{2}) \geq rac{1}{2}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Using first claim,

$$\mathsf{Pr}(\mathbf{a_0} \ \textit{with} \ k \leq rac{n}{2}) \geq rac{1}{2}$$

• We want to do $\frac{n}{2}$ consecutive flips for a_0 , to make it a^*

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Using first claim,

$$\Pr(\mathbf{a_0} \text{ with } k \leq \frac{n}{2}) \geq \frac{1}{2}$$

We want to do ⁿ/₂ consecutive flips for a₀, to make it a*
Using second claim,

$$\Pr(\text{consecutive } \frac{n}{2} \text{ flips to be "Good variables"}) \geq (\frac{1}{3})^{\frac{n}{2}}$$

イロト イポト イヨト イヨト

Using first claim,

$$\Pr(\mathbf{a_0} \text{ with } k \leq \frac{n}{2}) \geq \frac{1}{2}$$

We want to do ⁿ/₂ consecutive flips for a₀, to make it a*
Using second claim,

$$\Pr(\text{consecutive } \frac{n}{2} \text{ flips to be "Good variables"}) \geq (\frac{1}{3})^{\frac{n}{2}}$$

 $\Pr(\text{finding a satisfying assignment in a single iteration}) \ge \frac{1}{2 \cdot 3^{\frac{n}{2}}} = p$

Failure Probability

With T iterations, the failure probability is at most $\frac{1}{n^d}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Failure Probability

With T iterations, the failure probability is at most $\frac{1}{n^d}$.

 $\Pr(not finding \ a \ satisfying \ assignment \ in \ T \ iterations) \leq (1-p)^T$

• (Using $1 + x \leq e^x$),

$$(1-p)^T \leq e^{-pT}$$

イロト イヨト イヨト

Failure Probability

With T iterations, the failure probability is at most $\frac{1}{n^d}$.

 $\Pr(not finding \ a \ satisfying \ assignment \ in \ T \ iterations) \leq (1-p)^T$

• (Using $1 + x \leq e^x$),

$$(1-p)^T \leq e^{-pT}$$

• Choose, $T = \frac{d \ln n}{p}$

Failure Probability

With T iterations, the failure probability is at most $\frac{1}{n^d}$.

 $\Pr(\text{not finding a satisfying assignment in } T \text{ iterations}) \leq (1-p)^T$

• (Using $1 + x \leq e^x$),

$$(1-p)^T \leq e^{-pT}$$

• Choose, $T = \frac{d \ln n}{p}$ • $(1-p)^T \le e^{-pT} = e^{-\ln(n^d)} = \frac{1}{n^d}$

The outer loop,

$$T=\frac{d\ln(n)}{p}$$

Substitute
$$p = \frac{1}{2.3^{\frac{n}{2}}}$$
,

Э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The outer loop,

$$T=\frac{d\ln(n)}{p}$$

Substitute
$$p = \frac{1}{2.3^{\frac{n}{2}}}$$
,

Э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The outer loop,

$$T=\frac{d\ln(n)}{p}$$

Substitute
$$p = \frac{1}{2.3^{\frac{n}{2}}}$$
,
 $T = \frac{d \ln(n)}{\frac{1}{2 \cdot 3^{\frac{n}{2}}}} = 2d(\sqrt{3})^n \ln(n) = \Theta((\sqrt{3})^n \log(n))$

Conclusion

Taking $T = \Theta((1.74)^n \log n)$, the random search algorithm is correct with a high probability.

イロト イポト イヨト イヨト

Analysis Part 2 – By Erick

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016

э.

イロン イヨン イヨン イヨン

Planning

Keep the algorithm the same

Repeat T times

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Planning

Keep the algorithm the same

Repeat T times

But prove better bound

- Smaller T
- Better analysis gives less iteration
- Faster running time!

Observation on Version 1

Success probability of an iteration in Version $\boldsymbol{1}$

$$\mathsf{Pr}[\mathsf{success}] \geq \frac{1}{2} \cdot \left(\frac{1}{3}\right)^{\frac{n}{2}}$$

• Only count initial assignments \mathbf{a}_0 where initial distance $k \leq \frac{n}{2}$

イロト イポト イヨト イヨト

Observation on Version 1

Success probability of an iteration in Version 1

$$\Pr[\operatorname{success}] \ge \frac{1}{2} \cdot \left(\frac{1}{3}\right)^{\frac{n}{2}}$$

• Only count initial assignments \mathbf{a}_0 where initial distance $k \leq \frac{n}{2}$

- Ignore the ones with initial distance $k > \frac{n}{2}$
- Even though inner loop repeat n times

Observation on Version 1

Success probability of an iteration in Version 1

$$\Pr[\operatorname{success}] \ge \frac{1}{2} \cdot \left(\frac{1}{3}\right)^{\frac{n}{2}}$$

• Only count initial assignments \mathbf{a}_0 where initial distance $k \leq \frac{n}{2}$

- Ignore the ones with initial distance $k > \frac{n}{2}$
- Even though inner loop repeat n times
- Want to count all values of initial distance k
 - Let the success probability be a function of k

Initial Assignment Probability

- Probability an initial assignment \mathbf{a}_0 having initial distance k?
 - Flip a sequence of n coins and get k heads

$$\Pr[\operatorname{dist}(\mathbf{a}_0, \mathbf{a}^*) = k] = ?$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Initial Assignment Probability

Probability an initial assignment **a**₀ having distance k:

$$\Pr[\operatorname{dist}(\mathbf{a}_0, \mathbf{a}^*) = k] = \binom{n}{k} 2^{-n}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Success Probability

Probability an iteration succeeds :

$$\Pr[\operatorname{success}] = \sum_{k=0}^{n} \Pr[\operatorname{dist}(\mathbf{a}_0, \mathbf{a}^*) = k] \cdot \Pr[\operatorname{success} |\operatorname{dist}(\mathbf{a}_0, \mathbf{a}^*) = k]$$

$$>$$

Success Probability

Probability an iteration succeeds :

$$\Pr[\operatorname{success}] = \sum_{k=0}^{n} \Pr[\operatorname{dist}(\mathbf{a}_{0}, \mathbf{a}^{*}) = k] \cdot \Pr[\operatorname{success} |\operatorname{dist}(\mathbf{a}_{0}, \mathbf{a}^{*}) = k]$$
$$\geq \sum_{k=0}^{n} \binom{n}{k} 2^{-n} \left(\frac{1}{3}\right)^{k}$$

=

Success Probability

Probability an iteration succeeds:

$$\Pr[\operatorname{success}] = \sum_{k=0}^{n} \Pr[\operatorname{dist}(\mathbf{a}_{0}, \mathbf{a}^{*}) = k] \cdot \Pr[\operatorname{success} | \operatorname{dist}(\mathbf{a}_{0}, \mathbf{a}^{*}) = k]$$

$$\geq \sum_{k=0}^{n} {n \choose k} 2^{-n} \left(\frac{1}{3}\right)^{k}$$

$$= 2^{-n} \left(1 + \frac{1}{3}\right)^{n}$$

$$= \left(\frac{2}{3}\right)^{n}$$

Outer Loop Iterations

By similar analysis in Version 1,

- A single outer loop iteration success probability at least $p = \left(\frac{2}{3}\right)^n$
- If we take T = d ln n/p for a constant d > 0, then the algorithm succeeds except with inverse polynomial probability 1/n^d

Outer Loop Iterations

By similar analysis in Version 1,

- A single outer loop iteration success probability at least $p = \left(\frac{2}{3}\right)^n$
- If we take T = d ln n/p for a constant d > 0, then the algorithm succeeds except with inverse polynomial probability 1/n^d
- Substituting for p, the number of outer loop iterations

$$T = \Theta\left(\left(\frac{3}{2}\right)^n \log n\right)$$

Random Search on 3SAT | Analysis Part 2 - By Erick

Schöning's Algorithm (Version 2)

Conclusion

Taking $T = \Theta((1.5)^n \log n)$, the random search algorithm is correct with high probability

Analysis Part 3 – By Dmitrii

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Random Search on 3SAT | Analysis Part 3 - By Dmitrii

Success Probability

$$\Pr[\operatorname{success}] = \sum_{k=0}^{n} \Pr[\operatorname{dist}(\mathbf{a}_{0}, \mathbf{a}^{*}) = k] \cdot \Pr[\operatorname{success} |\operatorname{dist}(\mathbf{a}_{0}, \mathbf{a}^{*})]$$

Э

・ロン ・部 ・ ・ ヨン ・ ヨン

Updated Schöning's Algorithm for 3SAT

Let $E = C_1 \wedge C_2 \wedge \cdots \wedge C_m$ be the Boolean Expression where C_i is the i-th Clause.

Let Ω be the set of all possible (2^n) truth assignments of E.

repeat T times (or until a satisfying truth assignment is found) choose a truth assignment **a** uniformly at random from Ω **repeat 3n** times (or until **a** satisfies E)

Choose a clause C violated by the current assignment **a**. Choose one of the literals from C uniformly at random, and modify **a** by flipping the value of the corresponding variable.

 $\boldsymbol{\mathsf{if}}$ a satisfying assignment was found $\boldsymbol{\mathsf{then}}$

return "satisfiable"

else

return "unsatisfiable" end if

```
Complexity: \mathcal{O}(T \cdot 3n)
```

Intuition

 Previously we counted only k consecutive "Good variables" from the start

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Previously we counted only k consecutive "Good variables" from the start
- k "Bad variables" and 2k "Good variables" also lead to success

Updated probability of success

$$\Pr[\operatorname{success}] = \sum_{k=0}^{n} \Pr[\operatorname{dist}(\mathbf{a}_{0}, \mathbf{a}^{*}) = k] \cdot \Pr[\operatorname{success} |\operatorname{dist}(\mathbf{a}_{0}, \mathbf{a}^{*})]$$
$$\geq \sum_{k=0}^{n} 2^{-n} {n \choose k} \cdot {3k \choose k} \left(\frac{1}{3}\right)^{2k} \left(\frac{2}{3}\right)^{k}$$

イロン イヨン イヨン イヨン

Random Search on 3SAT | Analysis Part 3 - By Dmitrii

Stirling's approximation

$$n! = \Theta\left(\sqrt{n}\left(\frac{n}{e}\right)^n\right)$$

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016

Э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Approximation of binomial coefficient

$$\binom{3k}{k} = \frac{(3k)!}{(2k)! \cdot k!} = \Theta\left(\frac{\sqrt{3k}}{\sqrt{2k} \cdot \sqrt{k}} \cdot \frac{\left(\frac{3k}{e}\right)^{3k}}{\left(\frac{2k}{e}\right)^{2k} \cdot \left(\frac{k}{e}\right)^{k}}\right) = \Theta\left(\frac{1}{\sqrt{k}} \cdot \frac{3^{3k}}{2^{2k}}\right)$$

Э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Random Search on 3SAT | Analysis Part 3 - By Dmitrii

Approximation of binomial coefficient 2

$$\binom{3k}{k}\binom{1}{3}^{2k}\binom{2}{3}^{k} = \Theta\left(\frac{1}{\sqrt{k}} \cdot \frac{3^{3k}}{2^{2k}} \cdot 3^{-2k} \cdot \frac{2^k}{3^k}\right) = \Theta\left(\frac{2^{-k}}{\sqrt{k}}\right)$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

$$\Pr[\mathsf{success}] \ge \sum_{k=0}^{n} 2^{-n} \binom{n}{k} \binom{3k}{k} \left(\frac{1}{3}\right)^{2k} \left(\frac{2}{3}\right)^{k}$$

・ロト ・部ト ・ヨト ・ヨト

$$\Pr[\operatorname{success}] \ge \sum_{k=0}^{n} 2^{-n} \binom{n}{k} \binom{3k}{k} \left(\frac{1}{3}\right)^{2k} \left(\frac{2}{3}\right)^{k} \ge c \cdot 2^{-n} \cdot \sum_{k=0}^{n} \binom{n}{k} \frac{2^{-k}}{\sqrt{k}}$$

Group 4 | CS6234 - Advanced Algorithms | April 19, 2016

イロン イヨン イヨン イヨン

$$\Pr[\operatorname{success}] \ge \sum_{k=0}^{n} 2^{-n} \binom{n}{k} \binom{3k}{k} \left(\frac{1}{3}\right)^{2k} \left(\frac{2}{3}\right)^{k} \ge c \cdot 2^{-n} \cdot \sum_{k=0}^{n} \binom{n}{k} \frac{2^{-k}}{\sqrt{k}} \ge \frac{c}{\sqrt{n}} \cdot 2^{-n} \cdot \sum_{k=0}^{n} \binom{n}{k} 2^{-k}$$

イロン イヨン イヨン イヨン

$$\Pr[\operatorname{success}] \ge \sum_{k=0}^{n} 2^{-n} \binom{n}{k} \binom{3k}{k} \left(\frac{1}{3}\right)^{2k} \left(\frac{2}{3}\right)^{k} \ge c \cdot 2^{-n} \cdot \sum_{k=0}^{n} \binom{n}{k} \frac{2^{-k}}{\sqrt{k}} \ge \frac{c}{\sqrt{n}} \cdot 2^{-n} \cdot \sum_{k=0}^{n} \binom{n}{k} 2^{-k} = \frac{c}{\sqrt{n}} \cdot 2^{-n} \left(1 + \frac{1}{2}\right)^{n}$$

Group 4 CS6234 - Advanced Algorithms April 19, 2016

・ロト ・部ト ・ヨト ・ヨト

$$\Pr[\operatorname{success}] \ge \sum_{k=0}^{n} 2^{-n} \binom{n}{k} \binom{3k}{k} \left(\frac{1}{3}\right)^{2k} \left(\frac{2}{3}\right)^{k} \ge$$
$$c \cdot 2^{-n} \cdot \sum_{k=0}^{n} \binom{n}{k} \frac{2^{-k}}{\sqrt{k}} \ge \frac{c}{\sqrt{n}} \cdot 2^{-n} \cdot \sum_{k=0}^{n} \binom{n}{k} 2^{-k} =$$
$$\frac{c}{\sqrt{n}} \cdot 2^{-n} \left(1 + \frac{1}{2}\right)^{n} = \frac{c}{\sqrt{n}} \left(\frac{3}{4}\right)^{n}$$

Group 4 CS6234 - Advanced Algorithms April 19, 2016

イロン イヨン イヨン イヨン

Schöning's Algorithm (Version 3)

Conclusion

Taking $T = \Theta(1.33^n \cdot \sqrt{n} \log n)$, the random search algorithm is correct with high probability

(日) (同) (三) (三) (三)

Summary

- SAT problem
- Brute force for 3SAT : Complexity: O(2ⁿ)
- Schöning's Algorithm for 3SAT
 - Analysis 1 : **Complexity:** $\mathcal{O}(1.74^n \cdot n \log n)$
 - Analysis 2 : **Complexity:** $\mathcal{O}(1.5^n \cdot n \log n)$
 - Analysis 3 : **Complexity:** $\mathcal{O}(1.33^n \cdot 3n\sqrt{n} \log n)$