PAGE  

CHAPTER

8

ARITHMETIC AND 

RELATIONAL OPERATIONS

In this chapter you will learn about

· The assignment statement.

· The arithmetic operators, data types of expressions, promotion and casting, and the precedence and associativity rules.

· Some shorthand notations such as the compound assignment operators and the increment and decrement operators.

· Equality and relational operators and their use in condition statements.

· Logical operators to combine conditions.

8.1
Introduction

In Chapter 7, we introduced data types.  A data type defines a set of values and a set of operations.  We have shown what values can be represented in some basic data types such as ‘int’, ‘float’, and ‘char’, but we have not quite touched on the operations that are allowed on these types.


Operations like addition and multiplication are applicable to integers and floating-point numbers (single- or double-precision alike).  Some operations are proprietary to certain type, like the modulus operator for integers.  Some operations are provided as operators, while others are available as functions.


Arithmetic operations are common in computational tasks.  Here, we will study the various kinds of arithmetic operations, and their syntax.  Operations on other data types, such as string, will be covered in the CS1101C module.


Also indispensable are the relational operations that are frequently found in conditions for selection and repetition control structures, although their use is not limited to this.

8.2
Assignment Statement

Variables obtain their values through one of these means: initialisation at declaration, using assignment statement, or using input function.


The assignment statement has this simple format:



variable  =  expression ;

where variable is an identifier that represents the name of the variable, and expression can be one of these:





Example



1.
a variable; or
min = num;


2.
a constant; or
age = 20;


3.
a combination of (1) and (2)
ave = (a1 + a2 + a3)/count;



connected by some operators


Syntactically, the assignment statement can be viewed as consisting of an lvalue on the left of the assignment operator ‘=’, and an rvalue on the right of the operator.



The following are the syntax rules:

· lvalues appear on left of assignment operator

· rvalues appear on right of assignment operator

· lvalues may be used as rvalues, but not vice versa

· variable names are lvalues

· constants and expressions are rvalues


In C, the assignment operator is evaluated from right to left.  This implies that the rvalue is evaluated first, after which its value is assigned to the lvalue.


Assignments may be cascaded in C, which may appear strange for some.  However, just follow the order of evaluation and that will resolve any doubt.  For example, look at this statement.  This form is valid and is quite common.



a = z = 123;


The order of evaluation (from right to left) dictates that 123 is evaluated first, which returns the value 123 (since it is a constant), and this value is assigned to the variable z.  This does the first assignment task z = 123.  The statement z = 123 returns the value of the operation, which is 123, and this value gets assigned to the variable a, due to the assignment operator on the left.  This does the second assignment task.  The end result is that both variables a and z are now loaded with the value 123, z first, followed by a.


What a mouthful!  Somewhere along the line of explanation, you might have got lost.  What is meant by “the statement z = 123 returns the value of the operation, which is 123”?  To answer this requires us to take a step back, put this example aside for the moment, and talk about value of a C statement in general.


We have seen that a C function returns some value, unless it is of type void.  Sometimes, the value returned by the function is not used by its caller.  For instance, in the inch2cm.c program we encountered in Chapter 7, the main() function returns the value zero to its caller, the operating system.  We did not make use of this returned value at the UNIX $-prompt when the program terminated.  Similarly, the function scanf() is of type int, implying that it actually returns an integer value to the caller.  You may check this out by studying the stdio.h file.  Again, in inch2cm.c, the main() function calls scanf(), but does not make use of the return value of scanf().


An assignment statement also has a ‘return value’.  The assignment statement:



count = 12;

does not merely assign the value 12 into count, but also makes 12 the ‘value’ of this statement.


What if you assign a real number into an integer variable?  Or an integer into a floating-point variable?  Or a character into an integer variable?  These and more exercises behind this chapter are left for you to explore.  Remember independent learning?

8.3
Arithmetic Operators

Many arithmetic operators in C are the familiar mathematical symbols that we are all accustomed to, like + and –.  Before we deal with these operators formally, let us look at the following sample program fah2cel.c that converts temperature in Fahrenheit to Celsius.

/*

 * Converts degrees Fahrenheit to degrees Celsius

 * Author: Garfield               Date: 25 July 1997

 * Note: This program contains a subtle error too!

 */

#include <stdio.h>   /* printf, scanf definitions */

int main (void)

{

  float fah,    /* degrees in Fahrenheit */

        cel;    /* degrees in Celsius */

  /* get degrees in Fahrenheit */

  printf ("Enter degrees in Fahrenheit: ");

  scanf ("%f", &fah);

  /* convert to degrees in Celsius */

  cel = 5/9 * (fah - 32);

  /* display the degrees in Celsius */

  printf ("That equals %f degrees in Celsius.\n\n",

          cel);

  return 0;

}


This program too contains an error, and this time, the error is even harder to detect than the one in inch2cm.c.  There is no syntax error or even logic error in this code.  The error is due to certain ways some arithmetic operator works.  Once you run this program, you should be able to figure out what is the error, and then you may zoom in to the part that causes the error.  This again illustrate the important of knowing the syntax of the language well, and how the various operators and functions work in C.


We will now proceed to study the arithmetic operators that are available.

8.3.1
Unary Operators: +, –

The two unary operators are + and – that precede a value.  Examples are +12, –45.80, and –7.2e–3.

8.3.2
Binary Operators: +, –, *, /, %
The following are the binary operators for operations on two values:

· Addition (+)

· Subtraction (–)

· Multiplication (*)

· Division (/)

· Modulus/remainder operator (%).  This operator can only be applied on integers.  a%b returns the remainder after dividing integer a by integer b.  For example, 21%8 is 5.

8.3.3
Data Type Of An Expression

What type does an arithmetic expression belong to?  It depends on the types of the operands (the values being operated on).  ‘7 + 3’ results in an integer 10, since both the operands 7 and 3 are integers, so ‘7 + 3’ is an expression of integer type.  So is ‘5 – 2’.  Likewise, ‘2.3 + 4.56’ is of type float (a real value), and so is ‘5.0 * 4.0’ as well as ‘5.0 / 4.0’.  For real number with no fractional value, we append ‘.0’ to it to explicitly set it apart from integers, for example, 3.0 (a real number) versus 3 (an integer).


A question for you.  The preceding paragraph says that if the operands are of the same type, the expression also belongs to that type.  So, what is the answer for ‘5 / 2’?  How about ‘20 / 3’?  Compare these with ‘5.0 / 2.0’ and ‘20.0 / 3.0’.  How could you verify your answers?


Another question.  What about mixed-type expressions, as in ‘7 + 3.0’, ‘7.0 + 3’, ‘2.0 * 9’ and ‘2 * 9.0’?  Why not also try out ‘5.0 / 2’ and ‘5 / 2.0’?


All these questions, together with those at the end of the previous section 8.3, bring out the different possible consequences of assigning mixed-type expression to a variable.  For example, given this code fragment:

  float x, y;

  int n;

  x = 13 /5;

  y = 9 * 0.5;

  n = 9 * 0.5;

spare a moment to write down the eventual values of variables x, y and n before you check the answers in the footnote
.  Did you get them all correct?

8.3.4
Promotion And Casting

When an expression consists of operands of mixed types, the operand of a more restricted type is promoted to the more general type.  For example, the expression ‘7 + 3.0’ would have the integer 7 promoted to a float 7.0 and the addition carried out to produce the float value 10.0.  Such promotion is carried out automatically.


When the default behaviour needs to be overruled, you may use the cast operator to specifically change the type of an operand.  For example,

  float x;

  x = (float) 13/5;


In the above code, the integer 13 is cast to a float value 13.0.  Now the division operator receives two operands of different types, one a float and the other an integer.  The integer 5 will be promoted to a float as discussed, and the result of the division would be 2.6, which is then assigned to x.  If the (float) cast is removed, x will contain 2.0.  Why?

8.3.5
Precedence And Associativity Rules

As in arithmetic, the precedence rule for arithmetic operators is as follows, from highest precedence to the lowest:

· Parentheses

· Unary operators ++, --, +, –, (type)

· Binary operators *, /, %

· Binary operators +, –


The ++ and – operators will be covered later.


For operators at the same precedence level, the order of evaluation is governed by the associativity rule:

· Unary operators at the same precedence level are evaluated from right to left (right associativity)

· Binary operators at the same precedence level are evaluated from left to right (left associativity)


What does this expression evaluate to?



–4 * ( 10 / (1 + 2) – (9 – 2) % 3 + 4 ) / 3

8.3.6
Compound Assignment Operators

C programs are terse due to the provision of shorthand notations.  The statement in the form:



variable  =  variable  op  expression ;

where the two variable’s are the same, can be rewritten into this shorter form:



variable  op=  expression ;


For example, the following pairs of statements are equivalent:



c += 7;
and
c = c + 7;


d –= 4;
and
d = d – 4;


e *= 5;
and
e = e * 5;


f /= 3;
and
f = f / 3;


g %= 9;
and
g = g + 9;

This makes for shorter and tighter code, which is one reason why C is well liked by some.


Questions again.  Is ‘j *= k + 1’ equivalent to ‘j = j * k + 1’, or is it equivalent to ‘j = j * (k + 1)’?  What about ‘(m+n) *= 2’?

8.3.7
Increment (++) And Decrement (--) Operators

More shorthand forms are coming your way.  C provides the increment and decrement operators that correspond directly to the hardware operations, making it possible for more efficient execution of codes.

· ‘a = a + 1’ or ‘a += 1’ may be written as ++a (pre-increment) or a++ (post-increment)

· ‘a = a – 1’ or ‘a –= 1’ may be written as --a (pre-decrement) or a-- (post-decrement)


The pre-increment (pre-decrement) operator increments (decrements) the variable by 1 and then uses its new value.  On the other hand, the post-increment (post-decrement) operator uses the variable’s current value, then increments (decrements) the variable by 1.


A sample program to demonstrate the working of the increment operator is shown below.  In this program, the value of the variable c is used by the printf() function.  In general, the operation ++c or c++ could be part of a longer expression, and used in other statements such as an assignment statement.

/* Pre-incrementing and post-incrementing */

#include <stdio.h>

int main(void)

{

   int c;

   c = 9;

   printf("%d\n", c);

   printf("%d\n", c++);    /* post-increment */

   printf("%d\n\n", c);

   c = 9;

   printf("%d\n", c);

   printf("%d\n", ++c);    /* pre-increment */

   printf("%d\n", c);

   return 0;   /* successful termination */

}


The program executes with these outputs:

9

9

10

9

10

10


You are to avoid using the increment and decrement operators in complex expressions in which the variables they are applied appear more than once, as in this example:

  x = 5;

  i = 2;

  y = i * x + ++i;


Is y assigned the value 13 or 18?

8.4
Mathematical Functions

In the program square2.c, the pow() function is used to compute the square of a number.  Two other useful functions are the fabs() function, which returns the absolute value of its real-number argument, and sqrt() which computes square roots.  These functions are defined in the math library.  You may check out their function prototypes in the math.h file.


In order to use these functions, you need to include math.h into your source code, and compile it with the –lm option for cc.  Example: 



cc  –lm  square2.c

8.5
Equality And Relational Operators

One of the three flows of control is the selection, usually implemented as the ‘if’ control structure in programming languages.  The conditional statement performs a course of action if some condition is true; otherwise, it performs an alternative course of action, if there is any.  The ‘if’ construct allows for decision making, and has this following syntax:



if (condition)



{




statements



}


If there is only one statement, the braces { } may be omitted.  A more complete study of the selection control structure will be presented in a later chapter.


The conditions are formed by equality operator and relational operators, such as:



Example

· equal ==
x == y

· not equal !=
x != y

· greater than >
x > y

· less than <
x < y

· greater than or equal to >=
x >= y

· less than or equal to <=
x <= y


Below is a simple example:

  if (x < y)

    printf("%f is smaller than %f\n", x, y);


It is a very common mistake to mix up == with the assignment operator =, or to carelessly write one when the other is intended.  Such mistakes are very hard to spot, due to the way C defines truth.


In C, the value zero is treated as false, while other values are taken as true.  In other words, this code

  if (123)

    printf("Hello!\n");

will always produce the output ‘Hello!’ since 123 is non-zero.  Similarly,

  if (7 + 3)

    printf("Hello!\n");

will display ‘Hello!’ as well since 7 + 3 is evaluated to 10, a non-zero value.


Note that you should not use the operator == to test the equality of two values or expressions of type float.  The reason is that real numbers are not represented accurately in the computer.  For example, (a/3)*3 is mathematically equal to a, but due to truncation or rounding error, the value (a/3)*3 may be slightly off the value of a.  Hence, a condition in an ‘if’ statement like:

  if ((a/3)*3 == a)

    printf("Hello!\n");

will not guarantee to display ‘Hello!’ for all values of a.  You may display the value of (a/3)*3 directly to see if it equals the value of a.


To overcome this, we usually find the difference between the two real values, and accept that they are equal if the difference is within a small bound.  The fabs() function is handy in this case.  Experiment this yourself.


In the precedence rule, the relational operators <, <=, >, and >= all have higher precedence over == and !=, and they are all left-to-right associative.

8.6
Logical Operators

Sometimes, the situation warrants for more complex conditions rather than simple ones like (x > y).  We may need to combine these simple conditions.  To do this, we use the logical operators.


There are 3 logical operators:

· Logical AND &&

· Logical OR ||

· Logical NOT (negation) !


Knowing that zero represents false and non-zero values represent true in C, the table below shows what these logical operators return under different cases.

expr1
expr2
expr1 && expr2
expr1 || expr2
! expr1

0
0
0
0
1

0
nonzero
0
1
1

nonzero
0
0
1
0

nonzero
nonzero
1
1
0


The following code fragments show how logical operators are used:

  if (gender == 1 && age >= 65)

    ++snrFemales;

  if (semesterAvg >= 90 || finalExam >= 90)

    grade = 'A';

  if !(grade == 'F')

    printf("Student passed.\n");


Note that the last condition could also have been written as 



(grade != 'F')


In C, compound conditions are evaluated from left to right.  As long as the truth value of the compound condition can be determined, the remaining part of the compound condition is skipped.  This is known as lazy or short-circuit evaluation.  For instance, in this condition:

  (gender == 1 && age >= 65)

if (gender ==1) is false, the whole compound condition becomes false, and there is no need to evaluate (age >= 65).  Similarly, in:

if (semesterAvg >= 90 || finalExam >= 90)

if (semesterAve >= 90) is true, the rest is skipped as the compound condition is true.


As for precedence, ! has the highest precedence among the three operators, with && coming in next, and || the lowest.

8.7
Summary

This chapter introduces the arithmetic and relational operations in C.  The assignment statement is explained, and arithmetic operators like addition, subtraction, multiplication, division and the modulus are presented.  The interplay of the data types of operands in an operation is also discussed, which brings in the issue of promotion and casting.


C provides shorthand notations such as compound assignment operators and the increment and decrement operators that make C programs terse and lean.


The selection control flow is implemented with the ‘if’ construct, where the condition controls which branch of action to take.  Equality and relational operators (==, !=, >, <, >=, <=) are used in condition statements, and some of the common pitfalls in programming are highlighted.


Finally, to form complex conditions, logical operators are required.  The three logical operators &&, || and ! are covered.

Exercises

1. Spot and correct the error in fah2cel.c.

2. This exercise illustrates one place where white space around operators is important.  The expression a+++b can be interpreted as either

a++  +  b
or
a  +  ++b


depending on how the plus symbols are grouped.  The correct grouping is the first one.  This is because the compiler groups the longest string as a token first, and so uses ++ instead of + as the first token.  Write a short program to check this.

3. Study the following code and write down what you think gets printed.  Then write a program to check your answers.

int   a, b = 0, c = 0;

a = ++b + ++c;

printf("%d %d %d\n", a, b, c);

a = b++ + c++;

printf("%d %d %d\n", a, b, c);

a = ++b + c++;

printf("%d %d %d\n", a, b, c);

a = b-- + --c;

printf("%d %d %d\n", a, b, c);

4. What is the effect in the following statement if some, or all, of the parentheses are removed?  Explain.

x = (y = 2) + (z = 3);

5. Suppose you had wanted to write this code (assume that year is an integer variable):

if (year == 1997)

  printf("Hongkong handover.\n");


But you have carelessly typed = instead of ==.  What is the consequence?

6. Write a program to read in two integers into the variables a and b, check if a is smaller than b, and if not, swap their values.  The program then displays their values.

7. Find out what happens when the argument to the sqrt() function is negative.

8. In mathematical code, the use of abs() instead of fabs() can be disastrous.  Try the following program.

#include <math.h>    /* for fabs() */

#include <stdio.h>

#include <stdlib.h>  /* for abs() */

int main(void)

{

  double x = -2.357;

  printf(" abs(%f) = %f\n", x, abs(x));  /*wrong!*/

  printf("fabs(%f) = %f\n", x, fabs(x));

  return 0;

}

9. In mathematics, we may write a < b < c.  However, in C, this way of writing the condition is incorrect:

if (a < b < c)

  printf("They are in increasing order.\n");

What is the correct way to write the condition?

10. Give equivalent logical expressions of the following without negation:


!(a > b)


!(a <= b && c <= d)


!(a + 1 == b + 1)


!(a < 1 || b < 2 && c < 3)

11. Write a program that takes as input the numerators and denominators of two fractions.  Your program should display the numerator and denominator of the fraction that represents the product of the two fractions.  Also, display the percent equivalent of the resulting product.

What assumptions do you make?

12. Redo question 11, but this time compute the sum of the two fractions.































































































































rvalue





lvalue





a = 40;


b = 50;








b = a + b;









































� x contains 2.0, y contains 4.5, and n contains 4.





21

