
Prime+Reset: Introducing A Novel Cross-World
Covert-Channel Through Comprehensive Security

Analysis on ARM TrustZone
Yun Chen∗,1, Arash Pashrashid∗,1,2, Yongzheng Wu2 and Trevor E. Carlson1

1National University of Singapore
2Huawei Research Center

{yun.chen,pashrashid.arash}@u.nus.edu, wu.yongzheng@huawi.com, tcarlson@comp.nus.edu.sg

Abstract—ARM TrustZone, a robust security mechanism, aims
to protect against a wide range of threats by partitioning the
system-on-chip hardware and software into two distinct worlds,
namely the normal world and the secure world. However, the se-
cure world still remains susceptible to malicious attacks, including
side-channel and covert-channel vulnerabilities.

Previous efforts to leak data from TrustZone focused on cache-
based and performance monitoring unit (PMU)-based channels;
in this paper, we, however, propose a security analysis benchmark
suite by traversing the hardware components involved in the
microarchitecture to study their security impact on the secure
world. Our investigation unveils an undisclosed leakage source
stemming from the L2 prefetcher. We design a new cross-core
and cross-world covert-channel attack based on our reverse
engineering of the L2 prefetcher, named Prime+Reset. Compared
to most cross-world covert-channel attacks, Prime+Reset is a
cache- and PMU-agnostic attack that effectively bypasses many
existing defenses. The throughput of Prime+Reset can achieve
776 Kib/s, which demonstrates a significant improvement, 70×,
over the state-of-the-art, while maintaining a similar error rate
(< 2%). One can find the code at https://github.com/yunchen-
juuuump/prime-reset.

I. INTRODUCTION

With the relentless proliferation of connected devices and
the ever-expanding digital landscape, security has emerged as
a major concern in the realm of embedded systems and mobile
computing platforms. ARM TrustZone [21], an innovative
hardware security technology, plays a key role in enhancing the
security of modern processors against a multitude of threats.
TrustZone partitions the system into a secure world and a
normal world, allowing for the execution of trusted code
in isolation from regular applications. While TrustZone has
contributed to system security, it is not resilient to certain
malicious attacks, most notably side-channel attacks [15], [25]
and covert-channel [7] attacks.

Side-channel attacks adeptly exploit observable character-
istics, such as timing information, to illicitly extract crypto-
graphic secrets or sensitive data. On the other hand, covert
channel attacks exploit unintended information leakage through
legitimate communication channels, enabling secret data trans-
mission between the normal world and the secure world.

∗These two authors contributed equally.

The need for a comprehensive security analysis of side
channel and covert channel attacks on ARM TrustZone be-
comes apparent when we consider the rapid spread of ARM-
based devices across a diverse range of applications, from
mobile phones and Internet of Things (IoT) devices to critical
infrastructure systems [4].

In this work, we explore the vulnerabilities that threaten
the security of ARM TrustZone by conducting an in-depth
analysis of side-channels and covert-channels. These compre-
hensive investigations shed light on the fine-tuned aspects of
TrustZone’s microarchitectural components and their suscepti-
bility to exploitation. While prior research has predominantly
centered on cache-based and PMU-based side channels and
proposed mitigation strategies [8], [13], [23], our work extends
to a broader array of hardware components that may be shared
between the secure and normal worlds. We explore the ARMv8
processors’ microarchitecture, and our investigation reveals
a previously undisclosed vulnerability that leaks information
across the world isolation boundary via the L2 prefetcher.

A key aspect of this new vulnerability is that it bypasses all
mitigations proposed for cache-based and PMU-based channels.
In other words, most existing mitigation strategies cannot offer
the comprehensive security guarantee that ARM TrustZone
demands in light of our discoveries. The main contributions
of this work are:

• A security analysis benchmark suite that allows users to
automatically mark potential leaks on their ARMv8 pro-
cessors. This suite provides a comprehensive side-channel
and covert-channel vulnerability analysis for ARMv8
TrustZone (see Section III).

• A reverse-engineering suite for analyzing the newly de-
tected potential leakage source, the L2 prefetcher on the
ARMv8 processor family. The suite characterizes the L2
prefetcher’s critical features for building a new covert-
channel attack (see Section IV).

• A novel cross-core and cross-world covert-channel, named
Prime+Reset, which neither relies on the cache nor
the PMU. Compared with the state-of-the-art cross-
world covert-channel, Prime+Reset provides a significant
throughput improvement of 70× while keeping a low error
rate (see Section V).

https://github.com/yunchen-juuuump/prime-reset
https://github.com/yunchen-juuuump/prime-reset


II. BACKGROUND AND RELATED WORKS

A. Out-of-Order Processor

An out-of-order (OoO) processor leverages instruction-level
parallelism (ILP) through the execution of instructions out of
program order. The processor can schedule independent instruc-
tions for execution as soon as their dependencies are resolved,
regardless of the original program sequence or memory fetch
order. We explain the key components of OoO processors:

Frontend. The processor’s frontend fetches and decodes
instructions from memory, predicts branches using the Branch
Prediction Unit (BPU), and dispatches them to an instruction
scheduler.

Reorder Buffer. To ensure correctness and maintain trans-
parency for the user, these processors employ a Reorder Buffer
(ROB), which functions as a First-In-First-Out (FIFO) queue.
The ROB tracks the status of each instruction within the
pipeline, from dispatch to instruction commit.

Backend. To schedule multiple independent instructions for
execution out-of-program-order, the backend of an out-of-order
processor implements an instruction scheduler in the Issue Unit
that controls the instruction issue. Instructions are typically
stored in different slots based on their instruction type (e.g.,
memory, integer, floating-point), and the scheduler monitors
every slot and issues instructions for execution as soon as their
dependencies are resolved and an appropriate execution unit is
available. An instruction’s dependencies are resolved when its
input operands become available.

Translation Lookaside Buffer (TLB). The TLB is a hard-
ware cache that accelerates the translation of virtual memory
addresses to physical memory addresses, making memory ac-
cess faster and more efficient.

Prefetcher. A hardware component that anticipates future
memory access needs by fetching data from main memory into
the cache before it’s actually requested, thus reducing memory
latency.

Cache System. The cache stores frequently accessed data
and instructions for rapid access, reducing memory latency. In
scenarios where an address is not present in the L1 cache, the
processor proceeds to look up the data in the shared next-level
cache (e.g., L2 cache). If the requested data is still not found,
and this is the last cache level, a memory request is then sent
to the DRAM.

B. ARM TrustZone Architecture

ARM TrustZone [21] is a hardware-based security frame-
work embedded in ARM processors, dividing the system into
two isolated domains: the secure world and the normal world.
This framework establishes a Trusted Execution Environment
(TEE) in the secure world, protecting critical operations like
cryptographic key storage and secure authentication.

TrustZone employs hardware-driven isolation mechanisms,
including secure memory partitions and privilege levels, to
maintain a strict separation between the secure and normal
worlds. The strict partition allows both trusted and untrusted
applications to coexist while protecting sensitive data and
system functions.

TABLE I
COMPARISON WITH STATE-OF-THE-ART COVERT-CHANNEL ON ARMV8

TRUSTZONE. AO, SM, AND PMU REPRESENT AGNOSTIC, SHARED
MEMORY, AND PERFORMANCE MONITORING UNIT RESPECTIVELY.

Vulnerability Hardware
Leakage

Cross
Core

PMU
AO.

Cache
AO.†

SM
AO.

µarch-Count [18] µarch events ✗ ✗ ✓

Prime+Count [7] Cache events ✓ ✗ ✓

Prime+Probe [17] L2 Cache ✓ ✓ ✓
Directory

Prime+Probe [16]
Cache

Directory ✓ ✓ ✓

Flush+Evict [15] L2 Cache
+ PMU ✓ ✗ ✗

Prime+Reset
(this work) L2 Prefetcher ✓ ✓ ✓

†: no cache needed; cache coherence required; cache required

C. Side-Channel and Covert-Channel Attacks on TEEs

Side-channel and covert-channel attacks represent critical
security concerns in Trusted Execution Environments (TEEs).
Side-channel attacks exploit information leaked through system
characteristics like execution time differences, potentially re-
vealing sensitive data [5], [15], [17]. Covert-channel attacks use
unintended communication pathways within TEEs to stealthily
transmit data, compromising isolation [7].

Table I summarizes recent side-channel and covert-channel
attacks on TrustZone. Prime+Count builds covert channels in
both single- and cross-core scenarios within the TrustZone
architecture by tracking the number of occupied cache sets or
lines [7]. Other recent works [15]–[17] monitored L2 cache
and cache directory behavior to design their attacks on ARM
processors. Li et al. [18] introduce a covert channel that
is built and trained by reading PMU data from user space.
They model the PMU footprint created through secure world
execution while executing normal world workloads. Each of
these attacks relies on a cache system or PMU. Furthermore,
legitimate channels across worlds, including parameters passed
by registers and direct shared memory read/write operations,
cannot leak information now as they are protected by access
control [13].

Defenses have been proposed against side-channel and
covert-channel attacks on TrustZone [8], [13]. However, they
mainly focus on cache-based or PMU-based channels and
do not offer further analysis for other structures that can be
shared between the secure and normal worlds. To the best
of our knowledge, a comprehensive analysis of TrustZone’s
side-channel and covert-channel vulnerabilities has not been
conducted previously and none of the proposed mitigations
considered the TrustZone prefetcher a potential source of data
leakage.

III. SECURITY ANALYSIS

In this section, we introduce our security benchmark suite,
designed to automatically identify potential hardware side-
channel vulnerabilities. Specifically, drawing insights from
existing side-channel and covert-channel attacks, we recog-
nize two essential criteria for a successful side-channel/covert-



Cortex 
A-73

Cortex 
A-73

Cortex 
A-73

Cortex 
A-73Cortex 

A-53
Cortex 
A-53

Cortex 
A-53

Cortex 
A-53

L2 Cache and PrefetcherL2 Cache

Arm Cache Coherence Interconnect

Fig. 1. Microarchitecture of Kirin 960 System-on-Chip.

channel attack. First, such an attack requires and uses shared
hardware resources across different execution domains to create
resource contention and detect variations (e.g., cache, BPU,
Issue Unit, and TLB). Second, any microarchitectural events
capable of altering the normal execution flow can introduce
new leaks (e.g., out-of-order execution, and prefetcher).

Hence, our suite initiates its evaluation by detecting whether
any hardware component serves as a shared resource or tempo-
rally changes the execution flow. Upon identification, we flag
it as a potential source of leakage and subsequently conduct an
in-depth analysis, including reverse-engineering, to understand
its characteristics.

A. Test platform

In this study, we utilize a commercial ARM hardware
platform, the HiKey960 featuring the Kirin 960 SoC [2], as
a demonstration of our security benchmark suite’s effective-
ness. Notably, our security analysis suite is microarchitecture-
agnostic (i.e., we do not rely on detailed information about the
hardware) and is compatible with any ARMv8-based processor.
The microarchitecture of the HiKey960, as depicted in Figure 1,
contains four Cortex A53 cores (small core cluster) and four
Cortex A73 cores (big core cluster). The L2 cache is shared
within each cluster, and cross-cluster communication and syn-
chronization are facilitated through ARM’s cache coherence
interconnection (CCI). We run a Linux 4.19 kernel as a normal
world OS, and OP-TEE 3.19 [22], an open-sourced ARM
TrustZone design, as the trusted OS.

B. Branch Prediction Unit

Our first microbenchmark, focused on the Branch Prediction
Unit (BPU) [9], [14], seeks to determine if it’s shared between
the secure and normal worlds. To achieve architecture-agnostic
results, we duplicate an application containing a branch from
the secure world into the normal world1, ensuring consistent
Program Counter (PC) values2. In the normal world, we train
the branch with a consistent taken direction. Following training,
we switch to the secure world to execute the branch with a not-
taken direction. If the BPU is shared between different worlds,
the secure world’s application would experience a branch mis-
prediction, requiring more time to resolve the branch than when
executing the taken direction. However, we observed that both
directions exhibit similar resolution times. This observation

1Various methods, like fork or clone, can be used for process duplication.
2Note that we do not employ kernel address space layout randomization

(KASLR) or address space layout randomization (ASLR).

strongly suggests that the BPU trained in the normal world
is not utilized by the secure world, confirming that the BPU is
not shared between the secure world and the normal world3.

C. Backend

While out-of-order execution offers substantial performance
benefits, it also introduces security concerns [10], [11]. In our
second benchmark, we investigate whether the out-of-order
execution engine compromises isolation between the secure
and normal worlds. We examine potential TLB and Issue
Unit contention. We find that the latency of accessing a prior
cached page in the normal world is consistent with a latency
close to that of the off-chip memory access (i.e., TLB miss)
after the world switch, indicating that the TLB is consistently
flushed after a world switch. Furthermore, we observed that the
execution time of the normal world application, such as loop
counting, remains consistent regardless of the type of workload
executed in the secure world. These observations suggest that
the Issue Unit is not shared between the two worlds. These
results demonstrate that the entire backend pipeline is flushed
upon world switching rendering the backend immune to these
types of side-channel/covert-channel attacks.

However, Meltdown-type attacks [3], [20] exploit delays
between exceptions (e.g., accessing kernel space from user
space) to conduct microarchitectural data sampling attacks
without context switching. To assess the secure world’s vul-
nerability to Meltdown-type attacks, our benchmark conducts a
Meltdown attack [20]. We discovered that the security monitor
always checks process privilege before accessing secure world
memory, conclusively demonstrating that the secure world can
defend against Meltdown-type attacks.

D. L1 Cache and Prefetcher

Modern ARM processors commonly suffer from cache at-
tacks [15], [17], [19]. To assess whether cache sharing occurs
between the normal and secure worlds, our benchmark suite
attempts to evict a target cache line from the normal world
within the secure world’s context.

In the first step, we load various cache lines into different L1
cache sets4. Following this, we switch to the secure world and
introduce a delay before switching back to the normal world to
inspect the cache. Our experimental findings indicate that all
cache lines within the L1 data cache are invalidated after the
world switch, even when the secure world application remains
idle. We also performed similar tests on the L1 prefetcher,
yielding identical results.

E. L2 Prefetcher

The above results collectively affirm the complete isolation
of the same physical core between the secure and normal worlds
when the PMU is not used. Comparatively, when running the
secure and normal worlds in parallel on two separate cores,
there is an increased likelihood of information leakage from the

3The reason could be either the use of branch prediction isolation or flushing,
which we will study in detail in our future work.

4Because L1 data cache comes in either 2-way or 4-way set-associative
configurations in ARMv8 processors, we generate data blocks for both settings.



TABLE II
LEAKAGE DETECTION ON ALL POTENTIAL LEAKAGE SOURCES. NOTE THAT
WE HAVE EMBEDDED PREVIOUS MICROBENCHMARKS IN OUR END-TO-END
BENCHMARK SUITE TO ENABLE USERS TO AUTOMATICALLY DETECT ALL

POTENTIAL LEAKAGES IN THEIR HARDWARE PLATFORM.

Microbenchmark Location Hardware Leakage

[7] [18]⋆ In-Core PMU Prime+Count
µarch-Count

[17] Un-Core L2 Cache Prime+Probe

[16] Un-Core Coherence
Directory Dir. Prime+Probe

[15] Un-Core PMU Num. of Eviction events
on shared memory

This Work In-Core BPU ✗
This Work In-Core Backend ✗
This Work In-Core L1 Prefetcher ✗
This Work In-Core L1 Cache ✗
This Work Un-Core L2 Prefetcher New leakage

secure world. Recent works [15]–[17], [19] have demonstrated
that certain un-core hardware components, such as the L2 cache
and ARM-CCI, are shared among different cores and worlds.

To further explore potential new sources of leakage within
un-core hardware, our benchmark suite analyzes the Extended
Control Register (ECTLR), which governs both in-core and
un-core systems. Through our analysis and ARM Cortex-
A doucmentation [1], we have uncovered the presence of
an L2 stride prefetcher within the ARMv8 Cortex-A out-of-
order processor family, enabled by default. Given that the L2
prefetcher resides within the un-core memory system and has
not been previously well-documented in prior work, we identify
it as a novel potential source of leakage and conduct an in-depth
analysis through reverse-engineering.

Table II provides an overview of all the benchmarks within
our security analysis benchmark suite.

IV. REVERSE-ENGINEERING L2 PREFETCHER

In this section, we explore into the L2 stride prefetcher’s5

characteristics, revealing index, update, and trigger mechanisms
for the first time. Based on this newly revealed information, we
then explore cross-core prefetching effects and determine the
prefetcher’s entry count to build a cross-core and cross-world
covert-channel attack.

A. Triggering

A stride prefetcher begins fetching memory addresses when
it detects a repeated pattern of memory access with a specific
stride. To determine the exact trigger threshold, we designed
a microbenchmark (see Listing 1) where different step values
generate varying lengths of L2 cache misses in strided memory
streams for prefetcher training. After training, we time the ex-
pected prefetched cache line. Figure 2 shows that the prefetcher
starts prefetching after detecting the stride pattern three times.

B. Stride Update Policy

To better understand the prefetcher’s stride update mecha-
nism, we conducted tests by accessing mem[offset] using the
trained memory function after training the prefetcher, followed

5Though coupled with the L1 prefetcher, we can easily remove L1 prefetcher
noise as data prefetched by L2 prefetcher has higher latency.

1 char* probe = mmap(NULL, PAGESIZE, ..);
2 int step = atoi(argv[1]), stride = 5;
3 for (int i = 0 ; i < step; i++)
4 memory_access_1(probe + i * stride);
5 Time(mem[step * stride]);

Listing 1: Microbenchmark for detecting the triggering thresh-
old in the L2 prefetcher.

110
120
130
140
150

0 1 2 3 4 5 6 7 8 9 10
#Step

La
te

nc
y 

(C
yc

le
s)

Fig. 2. Results of if the prefetcher is triggerable.

by timing the access to mem[offset + stride] (see Listing 2).
Our findings reveal that mem[offset + stride] is prefetched
only if offset - last address = stride. This observation
reveals that the prefetcher consistently updates the stride prior
to initiating prefetching.

1 train_prefetcher(); //Function in the Listing 1
2 memory_access_1(probe + offset);
3 Time(mem[probe + offset + (step + 1) * stride]);

Listing 2: Microbenchmark for determining the stride update
policy in the L2 prefetcher.

C. Index

Previous studies [5], [6] have explored how prefetchers can
be indexed, either by the program counter (PC) or virtual page
address. To test the PC’s role in indexing, we modified line 2
in Listing 2 with a new memory instruction that matched the
last N bits of the trained PC. However, even with N = 0, the
prefetcher was still triggered, indicating that the PC does not
determine the prefetcher’s indexing. Additionally, we observed
different PCs updating the stride on the same page, confirming
that the stride prefetcher relies on page address indexing.

D. Entries

To determine the total number of prefetcher entries, we
trained the prefetcher on N different pages and assessed
whether the first page remained triggerable. As illustrated in
Figure 3, it becomes evident that the first entry is evicted
as soon as an additional 10 primed entries are introduced.
Considering this observation, it is concluded that the prefetcher
has 10 entries.

E. Interplay with other cores

The previous benchmarks focused on characterizing the L2
prefetcher’s structure within a single core. To assess if the
L2 prefetcher can be considered a real leakage source, we
investigated its interaction with different cores. In our study,
we set up two processes, named A and B, running on separate
cores. The execution sequence of these processes is depicted
in Figure 4. Initially, A, operating in the normal world, primes



110
120
130
140
150

0 1 2 3 4 5 6 7 8 9 10 11 12 13
#Primed Entries

La
te

nc
y 

(C
yc

le
s)

Fig. 3. Results of the number of entries of L2 prefetcher.

TABLE III
TEST RESULT OF WHETHER PROCESS B CAN INTERFERE WITH PROCESS A

VIA L2 PREFETCHER.

Process B Process A
Location Behavior Behavior Result†

Same cluster Primes 10 entries Check prefetcher ✓
Same cluster Gen. SIGSEGV Check prefetcher ✗
Same cluster Gen. other signals Check prefetcher ✓

Different clusters Gen. SIGSEGV Check prefetcher ✓

Same cluster Gen. SIGSEGV Time cached data

†: ✓: Triggerable prefetcher, ✗ : Non-triggerable prefetcher, : Cached data

a prefetcher entry and subsequently introduces a delay. Con-
currently, B functions in the secure world, priming 10 entries
in the L2 prefetcher. A ultimately evaluates whether the trained
entry is evicted by B by checking the prefetcher status6. We,
however, observed no eviction, even when we increased the
primed entries to 20 in B and ran it in the normal world. This
shows that the L2 prefetcher is statically partitioned among
different cores, with each core having 10 entries.

Although the L2 prefetcher is not directly shared between
cores, we identified a critical feature that can lead to leakage:
the L2 prefetcher status resets when any core in the same
cluster generates a SIGSEGV signal, typically from actions
like accessing unallocated memory or manual triggering with
raise() function call. We ruled out other signals as triggers.
Importantly, the resulting SIGSEGV doesn’t clear cached data;
it only affects the prefetcher status.

Table III summarizes our findings, revealing that one core’s
entries in the L2 prefetcher status can be influenced by another
core in the same cluster only when the latter generates a
SIGSEGV. We hypothesize that this reset is a hardware feature
of ARMv8, unrelated to OS-launched privileged instructions.
Given that cached data remains unaffected, and as these pro-
cesses don’t share memory, we hypothesize that this feature
could relate to memory consistency for maintaining the cor-
rectness of memory data but not cache coherence.

V. A CROSS-CORE AND CROSS-WORLD CACHE-AGNOSTIC
COVERT-CHANNEL VIA L2 PREFETCHER

Based on the reverse-engineering findings of the L2
prefetcher, this section introduces the development of a
cross-core and cross-world covert-channel attack, termed
Prime+Reset. Prime+Reset serves as a means for transmitting
data between the secure world and the normal world. Notably,
Prime+Reset operates independently of the cache system or

6We utilized lines 2 and 3 in Listing 2 and configured the offset to
last address + stride for prefetcher status checking.

Time

Process A

Process B

Prime 1 entry

Prime 10 entries

CheckStatus()
Wait some cycles

Fig. 4. Execution flow of Process A and B. Note that A and B are running on
different cores.

Sender

Generate 
SIGSEGV

Core 0

Idle

Receiver
Core 1

Train an entry 
in L2 

prefetcher

500 cycles waiting delay

Send b’1Send b’0

Test the 
availability of 
trained entry

Fig. 5. Attack flow of Prime+Reset

PMU, signifying it could bypass various existing mitigation
techniques [13], [17], [23], [24].

A. Threat Model

Our attack assumes a scenario where a sender operates in
either the secure or normal world, intending to transmit data
to a receiver in a different world in the same cluster but on
a different core7. They do not share memory or have direct
communication. To synchronize their activities, refer to prior
covert-channel attacks [7], [12], they use timing-fixed delays,
and predefined protocols for error correction. We implement a
high-resolution timer with a new kernel driver, but it is worth
noting that prior research [19] has explored user-space methods
to achieve this without needing OS-level privilege, thereby
eliminating the Prime+Reset’s necessity for OS-level control.

B. Prime+Reset Attack Flow

The attack process is shown in Figure 5. The receiver primes
an L2 prefetcher entry and waits for a set number of cycles.
When the sender wants to transmit ‘1’, it generates a SIGSEGV
signal; otherwise, it stays idle. We’ve added a signal handler to
prevent program termination, allowing the process to continue
after the signal for a better throughput. Furthermore, as the
generation and propagation of the SIGSEGV signal require some
cycles, a short delay on the receiver’s end might lead to
the prefetcher status being checked before the signal arrives,
potentially increasing the error rate. Conversely, an excessively
long delay would negatively impact throughput. To balance
accuracy and throughput, we found that a 500-cycle delay is
optimal. After this delay, the receiver checks the prefetcher
status to determine if the sender sent ‘1’ or ‘0’.

C. Attack Scenarios and Results

In cross-world covert-channel communication, data is often
transmitted from the secure world to the normal world [7], [18]
because sensitive data primarily resides in the secure world.
We also explore scenarios where communication flows from
the normal world to the secure world, such as when a secure
world receiver awaits a command from a normal world sender.

7In this paper, we focus on the more significant cross-core scenario; however,
Prime+Reset is also applicable to the same-core scenario.



TABLE IV
COMPARISON WITH STATE-OF-THE-ART CROSS-WORLD COVERT-CHANNEL

ATTACKS. S AND N REPRESENT THE SECURE WORLD AND THE NORMAL
WORLD REPRESETIVELY. † THIS WORK.

Scenario Error Rate Max. Throughput
Prime+Count [7] S to N lower 1% ∼1 Kib/s
µarch-Count [18] S to N lower 1% 12 Kib/s

Prime+Reset† S to N 1.8% 776 Kib/s
Prime+Reset† N to S lower 1% 776 Kib/s
Prime+Reset† N to N lower 1% 776 Kib/s

Additionally, we investigate a channel within the normal
world since Prime+Reset does not rely on OS capabilities.
Figure 6, Figure 7, and Figure 8 illustrate the outcomes of
these scenarios using the transmission message 0x89abcdef. We
exclude the secure world to the secure world scenario as secure
world applications already have the highest privilege.

Table IV provides an overview of Prime+Reset’s throughput
and error rates, compared with previous cross-world covert-
channels. Notably, Prime+Reset maintains consistent through-
put across scenarios due to its uniform synchronization mech-
anism. It achieves a 70× improvement in throughput, over the
state-of-the-art [18], while maintaining similar accuracy.

The main reason for this significant improvement in through-
put is the robustness of the L2 prefetcher used in Prime+Reset.
Unlike previous works, which depended on collecting various
events from PMU and, potentially, the noise seen in the L2
cache of the multi-core system, Prime+Reset doesn’t require
complex synchronization methods. Instead, it uses a more
noise-resistant L2 prefetcher, resulting in better capability.

110

130

150

170

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Measured
Expected

#Transmited Bit

Error
bit

Error
bit

La
te

nc
y 

(C
yc

le
s)

Fig. 6. Transmit data from the secure world to the normal world.

110
120
130
140
150
160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Measured Expected

#Transmited Bit

La
te

nc
y 

(C
yc

le
s)

Fig. 7. Transmit data from the normal world to the secure world.

110

130

150

170

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Measured Expected
Error
bit

#Transmited Bit

La
te

nc
y 

(C
yc

le
s)

Fig. 8. Transmit data from the normal world to the normal world.

VI. CONCLUSION

In this work, we develop an automated benchmark suite to
identify potential hardware leakage that may cause a cross-
world side-channel/covert-channel on ARMv8 processors. Our

analysis revealed that the unstudied L2 prefetcher may be a
new leakage source. We then propose a reverse-engineering
suite to uncover the L2 prefetcher’s characteristics, revealing
the SIGSEGV signal’s impact on the prefetcher status. Lever-
aging this, we design a cache- and PMU-agnostic cross-core
and cross-world covert-channel attack called Prime+Reset that
achieves a 70× throughput improvement over state-of-the-art
methods while maintaining accuracy.

To mitigate Prime+Reset, one option is to disable the L2
prefetcher, which, although it may impact performance, will
effectively eliminate the attack.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
detailed feedback which allowed us to improve this work. This
work was supported by a grant from the National Research
Foundation (NRF) of Singapore (NRF2018NCR-NCR002).

REFERENCES

[1] “Arm Cortex-A73 MPCore processor technical reference manual r1p0,”
https://developer.arm.com/documentation/100048/0100/level-1-memory-
system/memory-prefetching/data-prefetching-and-monitoring.

[2] “Hikey960 board,” https://www.96boards.org/product/hikey960.
[3] C. Canella et al., “Fallout: Leaking data on meltdown-resistant CPUs,”

in CCS, 2019.
[4] D. Cerdeira et al., “Sok: Understanding the prevailing security vulnera-

bilities in TrustZone-assisted tee systems,” in SP, 2020.
[5] Y. Chen et al., “AfterImage: Leaking control flow data and tracking load

operations via the hardware prefetcher,” in ASPLOS, 2023.
[6] Y. Chen et al., “New cross-core cache-agnostic and prefetcher-based side-

channels and covert-channels,” arXiv preprint arXiv:2306.11195, 2023.
[7] H. Cho et al., “Prime+Count: Novel cross-world covert channels on Arm

TrustZone,” in ACSAC, 2018.
[8] G. Dessouky et al., “HybCache: Hybrid side-channel-resilient caches for

trusted execution environments,” in USENIX Security, 2020.
[9] D. Evtyushkin et al., “BranchScope: A new side-channel attack on

directional branch predictor,” ACM SIGPLAN Notices, 2018.
[10] S. Gast et al., “Squip: Exploiting the scheduler queue contention side

channel,” in SP, 2023.
[11] B. Gras et al., “Translation leak-aside buffer: Defeating cache side-

channel protections with TLB attacks,” in USENIX Security, 2018.
[12] Y. Guo et al., “Leaky Way: A conflict-based cache covert channel

bypassing set associativity,” in MICRO, 2022.
[13] J. S. Jang et al., “Secret: Secure channel between rich execution environ-

ment and trusted execution environment.” in NDSS, 2015.
[14] P. Kocher et al., “Spectre attacks: Exploiting speculative execution,”

Communications of the ACM, 2020.
[15] Z. Kou et al., “Load-Step: A precise TrustZone execution control frame-

work for exploring new side-channel attacks like flush+evict,” in DAC,
2021.

[16] Z. Kou et al., “Attack directories on Arm big.LITTLE processors,” in
ICCAD, 2022.

[17] Z. Kou et al., “Cache side-channel attacks and defenses of the sliding
window algorithm in TEEs,” in DATE, 2023.

[18] X. Li et al., “Cross-world covert channel on Arm TrustZone through
PMU,” Sensors, 2022.

[19] M. Lipp et al., “ARMageddon: Cache attacks on mobile devices,” in
USENIX Security, 2016.

[20] L. Moritz et al., “Meltdown: Reading kernel memory from user space,”
Communications of the ACM, 2020.

[21] B. Ngabonziza et al., “TrustZone explained: Architectural features and
use cases,” in CIC, 2016.

[22] “OP-TEE,” https://www.trustedfirmware.org/projects/op-tee/.
[23] A. Pashrashid et al., “HidFix: Efficient mitigation of cache-based spectre

attacks through hidden rollbacks,” in ICCAD, 2023.
[24] N. Zhang et al., “CaSE: Cache-assisted secure execution on Arm proces-

sors,” in S&P, 2016.
[25] N. Zhang et al., “Trusense: Information leakage from TrustZone,” in

INFOCOM, 2018.

https://developer.arm.com/documentation/100048/0100/level-1-memory-system/memory-prefetching/data-prefetching-and-monitoring
https://developer.arm.com/documentation/100048/0100/level-1-memory-system/memory-prefetching/data-prefetching-and-monitoring
https://www.96boards.org/product/hikey960
https://www.trustedfirmware.org/projects/op-tee/

	Introduction
	Background and Related Works
	Out-of-Order Processor
	ARM TrustZone Architecture
	Side-Channel and Covert-Channel Attacks on TEEs

	Security Analysis
	Test platform
	Branch Prediction Unit
	Backend
	L1 Cache and Prefetcher
	L2 Prefetcher

	Reverse-Engineering L2 Prefetcher
	Triggering
	Stride Update Policy
	Index
	Entries
	Interplay with other cores

	A Cross-Core and Cross-World Cache-Agnostic Covert-Channel via L2 Prefetcher
	Threat Model
	Prime+Reset Attack Flow
	Attack Scenarios and Results

	Conclusion
	References

