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Abstract

This paper proposes a methodology for analyzing par-
allel performance by building cycle stacks. A cycle stack
quantifies where the cycles have gone, and provides hints
towards optimization opportunities. We make the case that
this is particularly interesting for analyzing parallel per-
formance: understanding how cycle components scale with
increasing core counts and/or input data set sizes leads to
insight with respect to scaling bottlenecks due to synchro-
nization, load imbalance, poor memory performance, etc.

We present several case studies illustrating the use of
cycle stacks. As a subsequent step, we further extend the
methodology to analyze sets of parallel workloads using
statistical data analysis, and perform a workload character-
ization to understand behavioral differences across bench-
mark suites. We analyze the SPLASH-2, PARSEC and Ro-
dinia benchmark suites and conclude that the three bench-
mark suites cover similar areas in the workload space.
However, scaling behavior of these benchmarks towards
larger input sets and/or higher core counts is highly depen-
dent on the benchmark, the way in which the inputs have
been scaled, and on the machine configuration.

1 Introduction

Power efficiency has driven the computer industry to-
wards multicore processors. Current general-purpose pro-
cessors employ a limited number of cores in the typical
range of 4 to 8 cores; see for example Intel Westmere-EX
or Sandy Bridge, IBM POWER7, AMD Bulldozer, etc. It
is to be expected that the number of cores will increase in
the coming years, given the continuous transistor density
improvements predicted by Moore’s law, as exemplified by
Intel’s Many Integrated Core architecture with more than 50
cores on a chip [12].

A major challenge with increasing core counts is the
ability to analyze and optimize performance for multicore
systems. Computer architects need performance analysis
tools and workload characterization methodologies to un-
derstand the behavior of existing and future workloads in
order to design and optimize future hardware.

This paper makes the case for building cycle stacks to un-
derstand and analyze performance of multi-threaded work-
loads. A cycle stack quantifies where the cycles have gone,
and provides more information than raw event rates, such
as miss rates. A cycle stack is typically represented as a
stacked bar with the different components showing the rela-
tive contribution of each component to overall performance.
The key benefit of a cycle stack is that it provides quick in-
sight into the major performance bottlenecks, which hints
towards optimization opportunities. This is particularly in-
teresting for analyzing parallel performance: by analyzing
how the cycle stacks change with increasing core counts,
one can understand whether scaling bottlenecks come from
synchronization overhead, poor performance in the memory
hierarchy, load imbalance, etc.

This paper presents a methodology for analyzing the per-
formance of multi-threaded programs using cycle stacks.
The methodology is simulation-based for a number of rea-
sons. First, cycle stacks cannot be readily measured on real
hardware. Existing performance counters enable measuring
a large number of events, however, so far it is challenging to
build accurate cycle stacks from them [8]. Second, we want
both software developers and computer architects to use
the methodology to study performance scalability of par-
allel workloads on multicore hardware. We employ the re-
cently proposed Sniper simulation infrastructure [3] which
can simulate multi-threaded workloads running on shared-
memory machines at a speed in the MIPS range; validation
has shown the simulator to achieve good accuracy compared
to real hardware. As part of our methodology, we extend the
Sniper simulator with a novel critical path cycle accounting
mechanism to compute detailed cycle stacks. We present



several case studies illustrating the value of cycle stacks for
analyzing parallel performance scalability issues.

As a second part of this paper, we employ cycle stacks
to analyze scaling behavior of three multi-threaded bench-
mark suites, namely SPLASH-2 [18], PARSEC [1] and Ro-
dinia [4]. To deal with the large volume of data produced
by this analysis, we apply Principal Component Analysis
(PCA) to derive some general scaling trends. We study
scaling behavior with increasing core counts and increasing
data set sizes, and analyze differences in scaling behavior
across benchmark suites. From this analysis we conclude
that, although SPLASH-2, PARSEC and Rodinia stress sim-
ilar components of the system, their scaling behavior to
larger core counts and larger input sets differs. The results
also suggest directions in which each suite might fruitfully
be expanded to encompass a wider range of scaling behav-
iors.

This paper makes the following contributions:

• We propose a methodology that uses cycle stacks
to analyze parallel workload performance, and PCA
to derive general performance scaling trends across
workloads and systems.

• We propose a novel critical path cycle accounting
mechanism for computing accurate and detailed cycle
stacks through simulation, which captures the impact
of ILP on performance.

• We compare three prevalent benchmark suites,
SPLASH-2, PARSEC and Rodinia, and analyze dif-
ferences in scaling behavior using cycle stacks. Prior
work, on the other hand, used only abstract workload
characteristics to compare these benchmark suites, and
did not provide this level of detail.

• We use cycle stacks to analyze scaling behavior with
the number of cores and input data sets. We conclude
that scaling behavior is highly dependent on the bench-
mark, the way in which the inputs have been scaled,
and on the machine configuration. In addition, we
point out a potential pitfall when using small input data
sets for studying large multicore processors, which ad-
vocates future work in simulation methods that scale
with increasing core counts and input data sets.

2 Methodology for Analyzing Multi-
Threaded Workload Performance

Figure 1 gives a high-level overview of the overall frame-
work. The input to the framework is a benchmark or a set
of benchmarks. These workloads are run on a simulator to
obtain cycle stacks. The simulator employed in this work is
an interval simulator [3] extended with a novel critical path
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Figure 1. Overview of the methodology.

cycle accounting mechanism for constructing cycle stacks.
The end user can readily use these cycle stacks to analyze
performance and identify performance bottlenecks. If the
user is interested in studying parallel performance across
a set of workloads, a challenge then is how to deal with
the large volume of raw performance data: for each pro-
gram there is a cycle stack for each thread, and each cycle
stack consists of multiple cycle components, which makes
performance analysis across a set of workloads challeng-
ing. We therefore employ Principal Component Analysis
(PCA), which is a statistical data analysis technique that ex-
tracts important trends from large volumes of data. PCA
plots show how workloads differ among each other along
the most significant dimensions. Finally, in case the output
from PCA is too large to be visualized in a low-dimensional
graph — which we found to be the case in our study — clus-
tering can be performed to obtain dendrograms that repre-
sent the (dis)similarity across workloads.

The remainder of this section presents a description of
the proposed methodology. We start off with interval simu-
lation and how we measure detailed cycle stacks. We then
describe how we aggregate cycle stacks across threads in
multi-threaded workloads. Subsequently, we detail PCA
and clustering.

2.1 Interval simulation

Interval simulation is a recently proposed simulation
paradigm for simulating multi/manycore and multiproces-
sor systems at a higher level of abstraction than the current
practice of detailed cycle-accurate simulation [11]. Interval
simulation leverages a mechanistic analytical model [9] to
abstract core performance by driving the timing simulation
of an individual core without the detailed tracking of indi-
vidual instructions through the cores pipeline stages. The
mechanistic analytical model is constructed from the un-
derlying mechanisms of a superscalar processor core. The



foundation of the model is that miss events (branch mispre-
dictions, cache and TLB misses) divide the smooth stream-
ing of instructions through the pipeline into so-called inter-
vals. Branch predictor, memory hierarchy, cache coherence
and interconnection network simulators determine the miss
events; the analytical model derives the timing for each in-
terval. The cooperation between the mechanistic analytical
model and the miss event simulators enables modeling of
the tight performance entanglement between co-executing
threads on multicore processors.

The multicore interval simulator models the timing for
the individual cores. The simulator maintains a window of
instructions for each simulated core that corresponds to the
reorder buffer of an out-of-order processor, and is used to
determine miss events that are overlapped by long-latency
load misses. The functional simulator feeds instructions
into this window at the window tail. Core-level progress
(i.e., timing simulation) is derived by considering the in-
struction at the window head. In case of an I-cache miss,
the core simulated time is increased by the miss latency. In
case of a branch misprediction, the branch resolution time
plus the front-end pipeline depth is added to the core simu-
lated time, to model the penalty for executing the chain of
dependent instructions leading to the mispredicted branch
plus the number of cycles needed to refill the front end of
the pipeline. In case of a long-latency load (i.e., a last-level
cache miss or cache coherence miss), we add the miss la-
tency to the core simulated time, and we scan the window
for independent miss events (cache misses and branch mis-
predictions) that are overlapped by the long-latency load —
second-order effects. If none of the above cases applies, we
dispatch instructions at the effective dispatch rate, which
takes into account inter-instruction dependencies as well as
their execution latencies.

Compared to the prevalent one-IPC approach, which
assumes that each core executes one instruction per cy-
cle apart from memory accesses which are assumed to
be blocking, interval simulation is slightly more complex
while being substantially more accurate [3]. The key bene-
fits over one-IPC modeling are that interval simulation mod-
els non-blocking or out-of-order execution, the impact of
instruction-level parallelism (ILP), the impact of memory-
level parallelism (MLP) or overlapping memory accesses,
as well as second-order overlap effects (e.g., an independent
branch misprediction being resolved underneath a long-
latency memory access). In this work, we use the Sniper
simulator [3], which implements the interval simulation
paradigm in Graphite [15].

2.2 Measuring cycle stacks

We now first revisit cycle stacks before describing how
we measure them through interval simulation.

2.2.1 Cycle stacks

The total cycle count for a computer program executing on
a processor can be divided into a base cycle count plus a
number of cycle components that reflect lost cycle oppor-
tunities due to miss events such as branch mispredictions,
cache and TLB misses, synchronization overhead, etc. The
breakdown of the total number of cycles into components
is often referred to as a cycle ‘stack’ — or a Cycles-Per-
Instruction (CPI) stack in case one divides cycle count by
the number of executed instructions. The reason for calling
it a ‘stack’ is because the cycle components are typically
displayed as stacked histogram bars where the cycle com-
ponents are placed one on top of another with the base cycle
component being shown at the bottom of the histogram bar.
(See Figure 3 for an example of a cycle stack.) A cycle
stack reveals valuable information about application behav-
ior on a given processor and provides more insight into an
application’s behavior than raw miss rates do. In fact, a cy-
cle stack provides quick insight in the major performance
bottlenecks, i.e., the largest cycle components hint towards
optimization opportunities because optimizing these cycle
components could lead to large performance improvements.

2.2.2 Critical path cycle accounting

As part of this work, we extended the interval model to con-
struct more detailed cycle stacks using a novel critical path
cycle accounting mechanism. Prior work in interval mod-
eling and simulation [9, 11] computes the base cycle count,
or base CPI, as the average throughput that can be achieved
through a given window. This is done through Little’s law:
throughput is computed by dividing the number of instruc-
tions in the window by the average critical path length. The
critical path length is determined by the longest chain of de-
pendent instructions and takes into account inter-instruction
dependencies as well as non-unit instruction execution la-
tencies. As a result, the base cycle count is represented as a
single cycle component in the cycle stack, lumping together
different ILP effects into one component.

To gain more insight into the different mechanisms that
affect the base cycle component, we introduce critical path
accounting. This mechanism tracks which instruction types
are responsible for making up the critical path through the
execution of the program. This is done by breaking up the
critical path into its contributors, namely the different in-
structions along the critical path. Then, each time the in-
terval simulation model increments time by one cycle —
which resulted in a complete cycle being attributed to the
base component in the old scheme — we distribute the at-
tribution of the current cycle over all components that make
up the critical path at that time.

Figure 2 shows an example to illustrate the concept. As-
sume the first instruction executes at cycle 0. Instruction



Figure 2. Critical path accounting.

two is independent so it can start its execution in the same
cycle. Instruction three consumes the result of instruction
one, through register eax. Since an integer addition has a
latency of a single cycle, instruction three will finish exe-
cution in cycle 1. The critical path through all instructions
thus far has a length of one cycle. Instruction four, a mem-
ory load, depends on instruction two through a dependence
on register ebx. If this load hits in the first-level cache, it
will have a latency of three cycles, and will finish execution
in cycle 3. The critical path increases from one to three cy-
cles. The critical path accounting algorithm now attributes
the increase of the critical path by two cycles to the load
execution unit. Finally, instruction five executes in cycle 2,
and does not extend the critical path.

At this point in time, the critical path through the reorder
buffer has a length of three cycles. One cycle is attributed to
integer addition, while two cycles are attributed to memory
load. If the interval model then decides to increment time
by one cycle — assume there are no miss events happening
and this cycle is accounted as a base cycle — this cycle
is accounted according to the critical path, i.e., .33 cycles
are attributed to the depend-int component while .67 cycles
are attributed to the mem-l1d component. This proportional
weighting makes that, in the absense of miss events, each
cycle in the critical path will ultimately be attributed to a
full cycle in the total execution.

When instructions commit and leave the reorder buffer,
they are removed from the dependency graph and their con-
tribution from the critical path is removed as well. The criti-
cal path is not recomputed when removing instructions, just
as in the original interval model: we approximate the crit-
ical path length by subtracting the time stamps of instruc-
tions at both ends of the window and only perform the criti-
cal path accounting at insertion. This way, simulation speed
is not compromised while preserving accuracy. The effect
of this on cycle attributions is that instructions are priori-
tized according to program order, i.e., instructions that can
execute completely in the shadow of instructions earlier in
the program never have any cycles attributed to them.

2.3 Aggregating cycle stacks

Collecting cycle stacks for multi-threaded workloads
yields a cycle stack for each thread. If the goal is to gain
insight in general performance trends and scaling behavior
across workloads and architectures, the amount of informa-
tion quickly becomes overwhelming. As a first step towards
analyzing the large volume of data, we first aggregate the
cycle stacks to obtain a compact representation. The gen-
eral intuition is that homogeneous threads, i.e., threads do-
ing similar work, exhibit similar cycle stacks and hence they
can be aggregated easily.

We start by selecting only threads/cores that do real
work. Some of the benchmarks do not fully utilize all avail-
able cores; for instance, in most of the PARSEC bench-
marks, the main thread only starts worker threads but does
not do any computation itself. Threads that spend more
than half of their time in synchronization routines such as
pthread cond wait or pthread barrier wait should
not affect total application performance and are therefore
ignored. Next, the cycle components for all cores are added
together on a per-component basis.

For heterogeneous workloads, in which different threads
execute different code paths, we split up the benchmark into
multiple thread groups. Each thread group corresponds to
a collection of threads that do execute the same code.1 We
handle a thread group as if it were one homogeneous work-
load. Again, only thread groups that execute real work are
selected.

2.4 Principal Component Analysis

We now have the ability to measure and aggregate cycle
components for each of the workloads of interest. How-
ever, in the process of analyzing the data that we had col-
lected for a number of benchmarks in the SPLASH-2, PAR-
SEC and Rodinia benchmark suites, we quickly realized
that the amount of data was simply too large to handle ef-
ficiently. Hence, we decided to leverage Principal Com-
ponent Analysis (PCA) as a statistical data analysis tech-
nique to identify the major trends in the large volume of
data. PCA [6] essentially reduces the dimensionality of a
data set without losing too much information. More pre-
cisely, it transforms a number of possibly correlated vari-
ables (or dimensions) into a smaller number of uncorrelated
variables, which are called the principal components. In-
tuitively speaking, PCA has the ability to describe a huge
data set along a limited number of dimensions, and present
a lower-dimensional picture that still captures the essence
of the more-dimensional data set.

1We only consider the top-level function executed by the thread. Minor
variations in control flow do not cause threads to be split into different
groups.



We use PCA to analyze a data set consisting of cycle
components for each of the workloads. The workloads are
shown in the rows. Each row represents a benchmark with a
specific input run on a specific architecture. Hence, differ-
ent inputs to a benchmark show up as separate rows in the
data matrix, as well as the same workload run on different
architectures, e.g., with different core counts. The columns
represent the various cycle components. One could view
this data matrix as a p-dimensional space with each dimen-
sion being a cycle component, and each workload a point
in this p-dimensional space. Because p can be quite large
in practice (p = 15 in our study), getting insight into this
high-dimensional space is non-trivial. In addition, corre-
lation exists between the cycle components, which further
complicates the ability to derive insights from the results.
PCA transforms the p-dimensional space to a q-dimensional
space (with q � p) in which the dimensions are uncorre-
lated. The transformed space provides an opportunity to
understand workload (dis)similarity. Workloads that are far
away from each other in the transformed space show dissim-
ilar behavior; workloads that are close to each other show
similar behavior. Having workloads in the data matrix from
different benchmark suites, with different input data sets,
and run on different processor architectures, enables one to
understand how program behavior is affected by these fac-
tors, as we will demonstrate later in this paper.

2.5 Clustering

The end result from PCA is a data matrix with n rows
(the workloads) and q columns (the principal components).
As we will see in the results section, PCA enables capturing
and analyzing major performance trends, however, the q-
dimensional space is yet too complicated to be represented
in an easy-to-understand way. In particular, analyzing and
gaining insight in, say, a four-dimensional space is non-
trivial. Hence, we employ cluster analysis to summarize
the data even further, grouping the n workloads based on
the q principal components to obtain a number of clusters,
with each cluster grouping a set of workloads that exhibit
similar behavior.

There exist two common clustering techniques, namely
agglomerative hierarchical clustering and K-means cluster-
ing [14]. We use agglomerative clustering in this paper
because it produces a dendrogram which is valuable for
representing relative distances among workloads in a high-
dimensional space. Agglomerative hierarchical clustering
considers each workload as a cluster initially. At each it-
eration of the algorithm, the two clusters that are closest to
each other are grouped to form a new cluster. The distance
between the merged clusters is called the linkage distance.
Nearby clusters are progressively merged until finally all
benchmarks reside in a single big cluster. This cluster-
ing process can be represented in a so-called dendrogram,

which graphically represents the linkage distance for each
cluster merge. Small linkage distances imply similar be-
havior in the clusters, whereas large linkage distances sug-
gest dissimilar behavior. There exist a number of methods
for calculating the distance between clusters — the inter-
cluster distance is needed in order to know which clusters
to merge. We use average-linkage clustering in this paper,
i.e., the inter-cluster distance is computed as the average
distance between the cluster members.

3 Experimental Setup

3.1 Simulator configuration

As mentioned earlier, we use the Sniper parallel sim-
ulator as our simulation infrastructure. Carlson et al. [3]
validated this simulator against the Intel Xeon X7460 Dun-
nington system and showed good absolute and relative ac-
curacy. We configured Sniper to model a quad-socket SMP
machine; see Table 1 for details. Each socket contains four
cores, for a total of 16 cores in the machine. Each core is
a 45 nm Penryn microarchitecture, and has private L1 in-
struction and data caches. Two cores share the L2 cache,
hence, there are two L2 caches per chip. The L3 cache is
shared among the four cores on each chip. The simulator
was configured to use barrier synchronization with a quan-
tum of 100 cycles; this is to keep the simulated threads syn-
chronized during parallel simulation. Each thread spawned
by the benchmark application is pinned to its own simulated
core. Sniper is a user-space simulator so it does not model
the operating system nor a scheduler, although emulation of
some aspects that impact performance, such as system call
overhead, have been added. Simulation speed in this con-
figuration is around 2 MIPS, which allows us to complete
the simulation of a typical benchmark used in this study in
around 1 to 6 hours on a modern 8-core host machine.

3.2 Benchmarks

In this paper, we evaluate a diverse set of applica-
tions from three benchmark suites to understand and com-
pare their performance bottlenecks. SPLASH-2 [18] is a
widely used collection of multi-threaded workloads, con-
sisting of 12 benchmarks mostly targeted towards high-
performance computing. PARSEC [1], a benchmark suite
jointly developed by Princeton University and Intel, is
targeted towards chip multiprocessors (CMPs), includes
multi-threaded workloads from emerging application do-
mains (recognition, mining and synthesis). The Rodinia [4]
benchmark suite is designed for heterogeneous computing.
It includes CUDA and OpenCL implementations for the
GPU platform and OpenMP implementations for multicore
CPUs; we consider the OpenMP versions in this study.



Parameter value
Sockets per system 4
Cores per socket 4
Clock frequency 2.67 GHz
Dispatch width 4 micro-operations
Reorder buffer 96 entries
Branch predictor Pentium M [17]
Cache line size 64 B
L1-I cache size 32 KB
L1-I associativity 8 way set associative
L1-I latency 3 cycle data access, 1 cycle tag access
L1-D cache size 32 KB
L1-D associativity 8 way set associative
L1-D latency 3 cycle data access, 1 cycle tag access
L2 cache size 3 MB per 2 cores
L2 associativity 12 way set associative
L2 latency 14 cycle data access, 3 cycle tag access
L3 cache size 16 MB per 4 cores
L3 associativity 16 way set associative
L3 latency 96 cycle data access, 10 cycle tag access
Coherence protocol MSI
Main memory 200 ns access time
Memory Bandwidth 4 GB/s

Table 1. Simulated system characteristics.

We use all the benchmarks from these three benchmark
suites that ran properly on the simulation infrastructure; see
Table 2 for the list of benchmarks included in this study. We
failed to run some of the benchmarks because of limitations
in the simulator. Table 2 also shows the inputs used for our
experiments. For each benchmark, we consider two inputs
— small and large — to understand how workload behav-
ior varies with input data set size. The PARSEC bench-
mark suite defines a number of input set sizes, we selected
simsmall and simlarge. SPLASH-2 and Rodinia do
not provide multiple standard input sets, so we scaled the
inputs to obtain application run times that roughly match
those of the corresponding PARSEC input sizes.

The initialization part of each benchmark is ignored in
our simulations. We do this by enabling the timing model
only at the start of the Region of Interest (ROI), and dis-
abling it again at the end of the ROI; the ROI is the parallel
section of the workload. The PARSEC 2.1 distribution al-
ready has these ROI regions marked in the source code; we
manually marked the parallel section for SPLASH-2 and
Rodinia.

All benchmarks are homogeneous except for dedup and
ferret. Both these applications are from the PARSEC
suite and employ functional pipelining. By inspecting the
source code, we know which threads execute what code
and we select those thread groups that do real work for
at least half the time, as described in Section 2.3. For
dedup there is only one such thread group, executing the
compress function. ferret has two thread groups,
marked in the source code by vec and rank. In the graphs,
we refer to these thread groups as dedup-compress,
ferret-vec and ferret-rank, respectively.

Benchmark ‘small’ input size ‘large’ input size
SPLASH-2
barnes 16384 particles 32768 particles
cholesky tk25.O tk29.O
fmm 16384 particles 32768 particles
fft 256K points 4M points
lu.cont 512×512 matrix 1024×1024 matrix
lu.ncont 512×512 matrix 1024×1024 matrix
ocean.cont 258×258 ocean 1026×1026 ocean
ocean.ncont 258×258 ocean 1026×1026 ocean
radiosity –room –ae 5000.0 –room

–en 0.050 –bf 0.10
radix 256K integers 1M integers
raytrace car –m64 car –m64 –a4
volrend head-scaleddown2 head
water.nsq 512 molecules 2197 molecules
water.sp 512 molecules 2197 molecules
PARSEC 2.1 simsmall simlarge
blackscholes 4096 options 65536 options
canneal 100k elements 400k elements
dedup 10 MB 184 MB
facesim 372,126 tetrahedra 372,126 tetrahedra
ferret 16 queries, 256 queries,

3,544 images 34,973 images
freqmine 250000 transactions 990000 transactions
raytrace 480×270 pixels 1,920×1,080 pixels
streamcluster 4096 points, 32 dim 16384 points, 128 dim
swaptions 16 swaptions, 5k sims. 64 swaptions, 20K sims.
Rodinia 1.0
backprop — 65536 input nodes
bfs 65536 nodes 1M nodes
cfd fvcorr.domn.097K fvcorr.domn.193K
heartwall — 609×590 pixels/frame
hotspot 512×512 data points 1024×1024 data points
leukocyte — 219×640 pixels/frame
lud 256×256 data points 512×512 data points
needlemanwunsch 1024×1024 data points 2048×2048 data points
srad 512×512 points 2048×2048 points

Table 2. Benchmarks considered in this study
along with their input sets.

4 Results

We now present the results obtained by applying the pro-
posed performance analysis methodology. This is done in
a number of steps. We first present cycle stacks and some
illustrative case studies using cycle stacks to analyze par-
allel performance bottlenecks. Subsequently, we use the
methodology to compare three prevalent benchmark suites,
namely SPLASH-2, PARSEC and Rodinia, and we obtain
some interesting insights into the (dis)similarity of these
benchmark suites with respect to each other. Finally, we
study how workload behavior scales with the number of
cores and increasing input data set sizes.

4.1 Cycle stacks

Using cycle stacks, software researchers and develop-
ers can easily identify the performance bottleneck of an
application on a particular platform and study how appli-
cation behavior changes with varying hardware configura-
tions, while computer architects can use cycle stacks to help
optimize architectures.
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Figure 3. Normalized cycle stacks for each
core executing the fft benchmark when run-
ning the small input set on eight cores.

Each cycle component represents the amount of time
that can be attributed to that type of event. For example,
the memory hierarchy components, starting with mem-, in-
dicate that the cache miss was resolved by that particu-
lar component. In order words, the contribution indicated
by mem-l2 corresponds to the amount of time spent wait-
ing for data that resulted in an L2 hit. In contrast to a
pure L2 hit rate, which can be obtained from performance
counters or cache-only simulation, the mem-l2 cycle com-
ponent shows both the number of L2 hits and their effect on
performance. This performance effect in turn depends on
the L2 cache access latency and on the amount of overlap
that the out-of-order core can provide between the cache
access and other, independent instructions. Additionally,
time attributed to the mem-l1 neighbor component means
that the data requested was found in the neighboring L1 on
the local socket. The mem-off socket component denotes
memory accesses that miss in the local L3 cache but hit
in the cache of another processor chip; while mem-dram
also goes off-chip but needs to access DRAM memory. The
ifetch and branch components result from instruction cache
misses and branch misses, respectively. Dispatch width in-
dicates the amount of time that the processor was able to
dispatch the full four instructions in a single cycle, and the
depend-int and depend-fp represent the amount of time that
the cause of a processor stall was the result of an integer
or floating-point instruction dependency. The sync-barrier
and sync-crit sect are the amount of time the applications
spend in barrier or critical section synchronization. Finally,
the imbalance portion of the stack represents the amount of
time that is wasted because of a thread starting late in the
execution, or ending early before the last thread exits.

We now present several case studies to demonstrate the
utility of cycle stacks for analyzing parallel performance.
The first example shows how cycle stacks can identify
inhomogeneous behavior among ostensibly homogeneous
threads. Figure 3 shows the normalized cycle stacks for
all cores in an eight-core simulation of the fft bench-
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Figure 4. Normalized cycle stacks for the
streamcluster benchmark with the large in-
put set over core counts from 2 to 16 cores.

mark (SPLASH-2) with the small input set size. Although
fft is a homogeneous benchmark where all threads ex-
ecute the same code, performance can be inhomogeneous
due to memory access behavior. A clear difference among
cores’ behavior is in the amount of L3 hits versus off-chip
memory accesses. Cores 0–3, which are located on the first
socket, spend some time waiting for their local L3 cache but
perform only a limited amount of off-chip accesses. In con-
trast, cores 4–7, which are all on the second processor chip,
have to get a much larger fraction of their data off-chip (in
the L3 cache of the first processor). These off-chip accesses
take longer, which causes cores 4–7 to execute more slowly
than cores 0–3, which in turn spend the extra time waiting
in sync barrier.

The second example shows how cycle stacks can identify
how bottlenecks change as the number of cores changes.
Figure 4 shows an example of the (normalized) cycle stacks
for streamcluster (PARSEC) when scaling the system
from 2 to 16 cores. When streamcluster executes on
two cores, most of the performance bottleneck concentrates
on the shared L3 cache and floating-point units. As we
increase the number of cores, the contributions of individ-
ual cycle components vary significantly. From one to eight
cores, a super-linear speedup can be seen because of the
increase in available cache — this is confirmed in the CPI
stacks by the reduction of the mem-l2 and mem-l3 compo-
nents. When running streamcluster on 16 cores, even
though even more cache is now available and the mem-l3
component disappears completely, load imbalance and syn-
chronization now contribute most to the overall run time.
This shows that in order to improve scaling performance of
the streamcluster benchmark to higher core counts,
load balance and synchronization overheads through criti-
cal sections need to be improved, for instance by using work
stealing and finer-grained locking.

The third example shows how cycle stacks can identify
how bottlenecks change with input (as well as core count).
Figure 5 shows cycle stacks for the srad benchmark (Ro-
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Figure 6. Dendrogram obtained cluster
analysis when applied to all benchmarks,
assuming 16 threads and large input sets.

dinia) for 8 and 16 cores, and both small and large inputs.
As in the preceding example, the cycle stacks show different
application behaviors as a function of core count, but also at
a given core count, they show different behavior as a func-
tion of input size. When using a small input, most of the
working set of srad fits into the last-level cache, and the
time spent on compute units contributes (relatively) more to
the total run time. On the other hand, with a large input,
srad stresses the memory hierarchy which results in a sig-
nificant fraction of time spent on cache misses and off-chip
DRAM accesses.

4.2 Comparing benchmark suites

Now that we are able to compute cycle stacks for all
of the benchmarks in the SPLASH-2, PARSEC and Ro-
dinia benchmark suites, we can analyze how different these
benchmarks are with respect to each other. Figure 6 shows
the overlap of the three benchmark suites in the hierarchical
clustering tree. The results are shown for a 16-core machine
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Figure 7. PCA analysis of all benchmarks, as-
suming 16 threads and large input sets.

with large inputs. We consider six principal components
capable of representing over 90% of the total variance. In
the figure, the applications grouped in one cluster are more
similar than the applications in other clusters. Note that the
horizontal axis represents the linkage distance; the distance
between two clusters is defined as the average distance be-
tween the cluster members. This analysis shows that the
three benchmark suites cover a similar application space.

To better understand the first-order cycle components
which most affect the differences, Figure 7 plots all appli-
cations in a 2-D PCA space with PC1 and PC2. The com-
bination of the two PCs explains 72% of the total variance.
As shown in Table 5, floating-point operations (depend-fp)
contribute most to PC1, while DRAM accesses (mem-dram)
play the largest role for PC2. This means that a workload
with a high value along PC1 exhibits a high fraction of
floating-point instructions along the critical path; likewise,
a workload with a high value along PC2 is more memory-
intensive. Again we can see the three benchmark suites
to occupy a similar space. Table 4 adds the other princi-
pal components as well. In the table, for each benchmark
suite, we report the average and standard deviation for each
component across all benchmarks in the suite. PC3 has
its main contribution from depend-int but also has a high
contribution from branch, so it is highly correlated with
the complexity of control flow in the benchmark. Most
of the Rodinia benchmarks have a low value for this com-
ponent, showing that this suite — compared to SPLASH-2
and PARSEC — contains more regular applications that are
purely compute-bound. This is confirmed in Table 3 which
reports the benchmarks with the five highest and lowest
value for each of the components. All of the bottom five
for PC3 are benchmarks from the Rodinia suite.



PC 1 (depend-fp) PC 2 (mem-dram) PC 3 (depend-int) PC 4 (mem-l3) PC 5 (sync-barrier)
R-heartwall 0.62 P-ferret vec 0.53 P-dedup Compress 0.34 R-backprop 0.24 P-swaptions 0.32
S-radix 0.58 R-backprop 0.48 P-ferret rank 0.27 S-lu.ncont 0.16 S-lu.cont 0.32
R-cfd 0.56 S-fft 0.46 S-lu.cont 0.25 R-kmeans 0.15 S-lu.ncont 0.31
S-barnes 0.49 P-canneal 0.45 R-lud 0.24 P-facesim 0.15 R-heartwall 0.29
R-leukocyte 0.49 S-ocean.ncont 0.45 S-volrend 0.24 S-lu.cont 0.10 R-leukocyte 0.25
. . . . . . . . . . . . . . .
R-bfs 0.17 R-leukocyte -0.13 R-backprop -0.07 R-hotspot -0.06 R-bfs -0.05
P-canneal 0.17 S-barnes -0.14 R-kmeans -0.07 S-fft -0.07 R-needlemanwunsch -0.10
S-radiosity 0.16 R-cfd -0.14 R-heartwall -0.08 S-ocean.cont -0.07 P-raytrace -0.11
R-needlemanwunsch 0.15 S-radix -0.16 R-hotspot -0.14 S-radix -0.09 P-blackscholes -0.15
P-freqmine 0.14 R-heartwall -0.18 R-cfd -0.20 R-heartwall -0.09 P-dedup Compress -0.24

Table 3. PCA analysis of all benchmarks, assuming 16 threads and large input sets. For each PCA
component, the main contributor is shown, in addition to the five benchmarks that have the highest
and lowest value for this component.

Suite PC 1 (depend-fp) PC 2 (mem-dram) PC 3 (depend-int) PC 4 (mem-l3) PC 5 (sync-barrier)
SPLASH-2 0.34 ± 0.10 0.05 ± 0.21 0.09 ± 0.09 0.01 ± 0.07 0.12 ± 0.11
PARSEC 0.29 ± 0.10 0.12 ± 0.21 0.13 ± 0.12 0.04 ± 0.05 0.05 ± 0.18
Rodinia 0.37 ± 0.15 0.07 ± 0.23 0.00 ± 0.13 0.04 ± 0.10 0.07 ± 0.12

Table 4. Average and standard deviation of PCA components for each benchmark suite.

CPI component PC 1 PC 2 PC 3 PC 4 PC 5 PC 6
Cum. sum variance 51.16 71.59 79.73 86.39 91.91 94.24
sync-crit sect 0.03 — 0.08 0.03 0.13 0.19
sync-barrier 0.19 — 0.42 0.20 0.84 -0.02
mem-dram 0.24 0.94 -0.02 -0.23 — —
mem-off socket 0.03 0.03 0.05 0.03 0.08 0.04
mem-l3 0.15 0.17 -0.39 0.89 -0.06 —
mem-l2 neighbor — — — 0.01 — 0.01
mem-l2 0.06 — 0.14 0.08 -0.06 -0.32
mem-l1 neighbor — — — — 0.01 —
mem-l1d 0.20 -0.02 0.35 0.14 -0.20 -0.28
branch 0.16 -0.02 0.43 0.12 -0.31 0.65
depend-fp 0.85 -0.29 -0.35 -0.24 0.04 0.02
depend-int 0.28 — 0.46 0.11 -0.36 -0.36
dispatch width 0.12 0.01 0.06 0.07 -0.01 0.48

Table 5. PCA weights.2

4.3 Scaling behavior

So far, we considered a single data point per benchmark,
i.e., one input (the large input) and one system configuration
(16 cores) for each benchmark. This and the next section
use PCA analysis to gain insight in how workload behav-
ior changes with varying system parameters and input data
set sizes, respectively. In fact, cycle stacks along with PCA
analysis allow for a unique characterization to quickly gain
insight in how workload behavior changes with varying sys-
tem and input settings.

Figure 8 shows the PCA plots for both Rodinia and
SPLASH-2 as we scale from 4 to 16 threads, assuming large
input data sets. The dotted lines in these graphs connect
the 4-thread data points with the 16-thread data points; the
crosses denotes 16 threads, and the other ends of the dot-
ted lines denote 4 threads. Interestingly, we observe dif-

2Note that hyphens indicate that for the component c, |c| < 0.01.

ferent scaling behavior across benchmarks and benchmark
suites. The SPLASH-2 benchmarks mostly scale such that
they become less floating-point intensive (scaling towards
lower values along PC1) as we increase core counts; how-
ever, scaling does not affect memory performance signifi-
cantly (minor impact along PC2). This suggests that while
computation is being distributed across the threads as we in-
crease the number of threads, overheads related to data shar-
ing and communication start to impact performance. This
is confirmed by these benchmark’s increase along the PC4
axis (not shown), for which mem-l3 is the main contributor.
Rodinia on the other hand, which is more memory-intensive
in the 4-threads case compared to SPLASH-2, becomes less
memory-intensive with increasing core counts (scaling to-
wards lower values along PC2). This suggests that these ap-
plications benefit from the increased cache size that comes
with the extra cores, reducing the time spent waiting for
DRAM operations. The one exception is the srad bench-
mark which, like SPLASH-2, becomes less floating-point
intensive, as we have observed in Figure 5.

4.4 Input data sets

We now study how input data sets (small versus large) af-
fect workload behavior. In Figure 9, we can see two classes
of applications. First, is the class of applications that does
not show significant changes when moving between input
sizes. When one sees characteristics like these, one can say
that for this hardware, these input sizes do not play a signif-
icant role in determining the characteristics of the applica-
tion.

The other class of applications are more input-
dependent, meaning that runs with these smaller input sizes
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Figure 8. PCA analysis of Rodinia (left graph) and SPLASH-2 (right graph) when scaling from 4 to 16
threads, assuming large input sets. The crosses denote 16 threads, and the other end of the dotted
lines denote 4 threads.
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Figure 9. PCA analysis when changing the input set size from small to large; we assume 4 cores in
the left graph and 16 cores in the right graph. The crosses denote large input sets, and the other end
of the dotted lines denote small input sets.

cannot act as a proxy for performance for these applica-
tions. Moreover, the input dependence is not the same for 4-
core versus 16-core simulations: although in both cases the
memory (PC2) component increases for the large input sets,
decreasing the input size generally increases the floating-
point (PC1) component for 4-core simulations whereas the
16-core simulations show a decrease.

The fact that small inputs are not representative for large
inputs for some workloads has an important implication for
architectural simulation of multicore systems. For these
workloads, one needs large input sizes which are time-
consuming to simulate given the slow speed of contem-
porary detailed simulators. This observation makes the
case for simulation methods that scale with increasing core
counts and input data set sizes.

5 Related work

We identify three areas of related work in performance
analysis tools for parallel workloads, building cycle stacks,
and workload characterization.

5.1 Parallel workload analysis tools

There exist a number of tools for analyzing parallel per-
formance. Examples are Intel’s VTune Amplifier XE [13]
and Rogue Wave/Acumem ThreadSpotter [16], which en-
able the end user to identify performance bottlenecks in
parallel workloads and help build software that scales for
multicore and manycore processors. Although these tools
are powerful, they do not provide cycle stacks. Intel’s
VTune uses hardware performance counters provided by the



hardware; unfortunately, existing hardware counters do not
provide enough information for computing accurate cycle
stacks [8]. Furthermore, an approach that uses hardware
counters in existing hardware cannot extrapolate to future
hardware. Rogue Wave/Acumem ThreadSpotter samples
a running application to capture a fingerprint of its mem-
ory access behavior, and provides feedback to the user to
address memory performance problems. The information
provided by ThreadSpotter is limited to cache miss ratios
and similar aggregate event counts, and does not provide
detailed cycle stacks. Our methodology uses simulation to
build cycle stacks. While simulation is slower than profil-
ing an application as it runs on real hardware, it allows for
extrapolating beyond existing hardware.

5.2 Cycle stacks

Eyerman et al. [8] propose a cycle accounting architec-
ture for constructing CPI stacks on an out-of-order proces-
sor core. The key challenge in constructing CPI stacks for
out-of-order processors is how to deal with overlap effects
so that cycles during which useful work is performed un-
derneath a miss event are accounted as useful work and not
as lost cycles, the impact of overlapping miss events (e.g.,
overlapping memory accesses) are not be double-counted,
etc. This paper contributes over the work of Eyerman et
al. by proposing a mechanism for quantifying the impact of
ILP on the base cycle component; see Section 2.2. Further-
more, we make the case for cycle stacks for analyzing par-
allel performance, whereas Eyerman et al. focus on single-
core processors only. Additionally, the novel hardware per-
formance counters proposed by Eyerman et al. can be used
as a building block to perform the analysis described in this
paper in real hardware, removing the need for simulation.

Fields et al. [10] propose the notion of interaction cost
to quantify how two or more events interact with each other
during execution on a core. The interaction can be posi-
tive (parallel execution), negative (serial execution) or zero
(independent or no interaction). They use interaction cost
to build dependency graphs that highlight the critical exe-
cution path of the execution of a workload on a processor.
The critical path analysis proposed in Section 2.2 is similar
in concept, except that we characterize ILP only, in contrast
to Fields et al. who characterize the critical path throughout
the entire processor pipeline. Also, we build cycle stacks for
multi-threaded workloads on multicore processors, whereas
Fields et al. target single-threaded workloads on single-core
processors.

5.3 Workload analysis

Eeckhout et al. [7] propose a workload characterization
methodology based on principal component analysis. Their

motivation was to understand behavioral differences across
workloads in an insightful way. Nevertheless, their work fo-
cuses on single-threaded workloads. More recent work by
Bienia et al. [2] and Che et al. [5] use this methodology to
characterize parallel workloads, namely PARSEC and Ro-
dinia, respectively. However, the workload characterization
is limited to some high-level workload characteristics such
as instruction mix, working set size and sharing behavior —
too high a level to study performance scaling behavior. This
paper on the other hand uses cycle stacks as input to PCA
to gain insight into application scaling behavior.

6 Conclusion

This paper proposed a methodology that uses cycle
stacks and statistical data analysis for analyzing parallel
workload performance. Cycle stacks break up total ex-
ecution time into cycle components that quantify where
the cycles have gone, and are measured through simula-
tion using a novel critical path cycle accounting mecha-
nism. Statistical data analysis using principal component
analysis (PCA) allows for analyzing general performance
trends across workloads and system settings. The paper’s
main contributions are (i) the evidence for using cycle
stacks to analyze parallel workload performance, along with
(ii) a case study analyzing and comparing scaling behavior
across three prevalent benchmark suites, SPLASH-2, PAR-
SEC and Rodinia. We presented several case studies illus-
trating the value of cycle stacks for identifying performance
scaling bottlenecks in real workloads, due to load imbal-
ance, synchronization, poor memory performance, etc. Us-
ing the proposed methodology, we derived the insight that
although SPLASH-2, PARSEC and Rodinia stress similar
components of the system, their scaling behavior to larger
core counts and larger input sets differs: for instance, when
increasing the core count, many Rodinia benchmarks are
able to better use the extra cache available, whereas sev-
eral SPLASH-2 applications suffer from increased non-
local memory accesses. Our analysis therefore shows that
comparing benchmarks and benchmark suites is sensitive
to input size and to the machine configuration (number of
cores, cache size, etc.). The results also suggest directions
in which each suite might fruitfully be expanded to encom-
pass a wider range of scaling behaviors.
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