
Power-Aware Multi-Core Simulation for
Early Design Stage Hardware/Software Co-Optimization

Wim Heirman*† Souradip Sarkar*† Trevor E. Carlson*†

Ibrahim Hur‡† Lieven Eeckhout*
*ELIS Department †ExaScience Lab ‡Intel

Ghent University, Belgium Leuven, Belgium Leuven, Belgium

ABSTRACT
Stringent performance targets and power constraints push
designers towards building specialized workload-optimized
systems across a broad spectrum of the computing arena, in-
cluding supercomputing applications as exemplified by the
IBM BlueGene and Intel MIC architectures. In this pa-
per, we make the case for hardware/software co-design dur-
ing early design stages of processors for scientific comput-
ing applications. Considering an important scientific kernel,
namely stencil computation, we demonstrate that perfor-
mance and energy-efficiency can be improved by a factor of
1.66× and 1.25×, respectively, by co-optimizing hardware
and software.

To enable hardware/software co-design in early stages of
the design cycle, we propose a novel simulation infrastruc-
ture by combining high-abstraction performance simulation
using Sniper with power modeling using McPAT and cus-
tom DRAM power models. Sniper/McPAT is fast — sim-
ulation speed is around 2 MIPS on an 8-core host machine
— because it uses analytical modeling to abstract away core
performance during multi-core simulation. We demonstrate
Sniper/McPAT’s accuracy through validation against real
hardware; we report average performance and power pre-
diction errors of 22.1% and 8.3%, respectively, for a set of
SPEComp benchmarks.

Categories and Subject Descriptors
C.4 [Computer Systems Organization – Performance
of Systems]: Modeling techniques

General Terms
Performance, Experimentation, Design

Keywords
Performance modeling, power modeling, hardware/software
co-design, design space exploration, multi-core processor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’12, September 19–23, 2012, Minneapolis, Minnesota, USA.
Copyright 2012 ACM 978-1-4503-1182-3/12/09 ...$15.00.

1. INTRODUCTION
With limited increases in clock frequency because of

power constraints, improving next-generation processor per-
formance has become a real challenge. One increasingly at-
tractive way to improve performance within a given power
and energy budget is to optimize the system for a specific
workload — a paradigm that is broadly adopted for the de-
sign of smartphones, tablets, game machines, data centers
and supercomputers. Because computer systems are increas-
ingly power and energy-constrained, it is to be expected that
workload-optimized system design will become even more
prevalent in the future. Notable examples of processors opti-
mized for supercomputing applications are IBM’s BlueGene
processors and Intel’s Many Integrated Core (MIC) archi-
tecture. However, optimizing the hardware alone might not
be sufficient moving forward. Instead, co-optimizing the
workload along with the hardware — hardware/software co-
design — can be even more promising, as we experimentally
demonstrate in this paper. Hardware/software co-design is
already the design paradigm of choice for embedded sys-
tem design, however, it is not generally employed for high-
performance processor design.

A fundamental challenge regarding co-designing hardware
and software is how to evaluate design decisions and make
trade-offs early in the design cycle. A common approach
in architecture design is to employ detailed cycle-accurate
simulation. Unfortunately, cycle-accurate simulators are ex-
tremely slow, are difficult to scale to large multi-core sys-
tems, and take a long time to develop, hence they are in-
appropriate for early design stages. To make things even
worse, making a detailed cycle-accurate simulator power and
energy-aware further increases development and evaluation
time. Clearly, driving hardware/software co-design through
cycle-accurate simulation is particularly problematic.

In this paper, we make the case for architectural simu-
lation at a higher level of abstraction for driving early de-
sign stage hardware/software trade-off explorations, while
considering both performance and power. Our simulation
methodology leverages a mechanistic analytical performance
model to abstract away core performance, i.e., core per-
formance is estimated through an analytical model while
simulating the uncore (memory hierarchy, interconnection
network, etc.) at some level of detail in order to capture
inter-core performance interactions. Coupling this high-
abstraction performance simulation approach, called inter-
val simulation as implemented in Sniper [6], with high-
level power modeling using McPAT [18] and custom DRAM
power models, we achieve both good accuracy and speed.

3

We demonstrate the power of Sniper/McPAT which is a
hardware-validated, accurate (for both performance and
power), parallel simulator that can run multi-threaded and
multi-programmed workloads on multi-core hardware.

Having established the accuracy and speed of our simu-
lation methodology, we perform a number of architecture
explorations and we make the case for hardware/software
co-design towards higher levels of performance and energy
efficiency. To this end, we consider a widely used numerical
kernel, namely stencil computation. This case study illus-
trates the huge potential of hardware/software co-design,
which we believe is going to be a crucial design principle
towards future processor systems.

More specifically, we make the following contributions in
this paper.

• We propose Sniper/McPAT, a high-abstraction sim-
ulation methodology for simulating performance and
power of large multi-core systems. Sniper is a paral-
lel simulator that benefits from running on multi-core
hosts. Further, it employs analytical core modeling to
raise the level of abstraction. Both features make up
for a fast simulation approach, which enables running
more and longer running simulations within a given
time budget. With our simulation methodology, we
achieve simulation speeds around 2 MIPS when simu-
lating a 16-core target system on an 8-core host system.

• We validate Sniper/McPAT against real hardware and
we report good accuracy for both performance and
power. We find the average accuracy to be within
22.1% and 8.3% compared to real hardware (Intel Ne-
halem processor system with 8 cores) for performance
and power, respectively, when running benchmarks
from SPEComp [2]. These results show that even ba-
sic statistics can yield accurate power predictions. De-
tailed inputs such as activity factors and bit toggles,
as done in other power modeling frameworks such as
Wattch [5], are not needed in Sniper/McPAT: basic
event counts such as the number of cache misses and
duty cycles yield good accuracy. Power modeling is
part of the public Sniper release, which can be down-
loaded from http://snipersim.org.

• We use Sniper/McPAT to drive architecture explo-
rations using multi-threaded benchmarks from the
SPLASH-2, PARSEC, Rodinia, and SPEComp suites
in which we explore the performance and power impact
of 3D stacking, multi-core processing, core width, and
power settings. We show that 3D stacking, in which
the increase in memory bandwidth allows cache size to
be traded in for more cores, is an advantageous design
point for a broad range of multi-threaded applications.

• We make the case for hardware/software co-design of
processor chips for scientific applications. Using stencil
computation as a driver numerical kernel, we demon-
strate that co-designing the architecture along with the
software leads to improvements of a factor 1.66× in
terms of performance and 1.25× in terms of energy
efficiency.

2. BACKGROUND
Before introducing Sniper/McPAT, we first briefly de-

scribe its building blocks, namely interval simulation using
Sniper, and power modeling using McPAT.

2.1 Interval simulation
Interval simulation is a recently proposed simulation para-

digm for simulating multi/many-core and multi-processor
systems at a higher level of abstraction than current prac-
tice of detailed cycle-accurate simulation [10]. Interval sim-
ulation leverages a mechanistic analytical model to abstract
core performance by driving the timing simulation of an in-
dividual core without the detailed tracking of individual in-
structions through the core’s pipeline stages. The mecha-
nistic analytical model is constructed from the underlying
mechanisms of a superscalar processor core. The founda-
tion of the model is that miss events (e.g., branch mispre-
dictions, cache misses, serializing instructions) divide the
smooth streaming of instructions through the pipeline into
so-called intervals, and that progress between miss events is
determined by the amount of processor-exposed instruction-
level parallelism (number of inter-instruction dependencies
and instruction execution latencies). The branch predic-
tor, memory hierarchy, cache coherence and interconnection
network simulators determine the miss events while the an-
alytical model derives the timing of each interval. The co-
operation between the mechanistic analytical model and the
miss event simulators enables modeling of the tight perfor-
mance entanglement between co-executing threads on multi-
core processors at a higher level of abstraction than detailed
cycle-accurate simulators. The implementation of interval
simulation in Sniper, a parallel multi-core x86 simulator,
results in an accurate, high-abstraction level performance
simulator [6].

2.2 McPAT
McPAT [18] is a recently proposed and fully-integrated

power, area and timing modeling framework. It mod-
els all types of power dissipation and provides an inte-
grated solution for multithreaded and multi-core proces-
sors. The timing and area models in this tool are derived
from CACTI [27]. The dynamic power model is similar to
Wattch [5], while adding short circuit and leakage models.

3. SNIPER/MCPAT SIMULATION
Sniper/McPAT combines Sniper for performance model-

ing with McPAT and custom DRAM models for power mod-
eling. Sniper, in addition to generating an overall perfor-
mance estimate, also generates a number of statistics that
serve as input for estimating power consumption using Mc-
PAT (see Figure 1). Hence, we keep Sniper and McPAT
as separate executables. We first run Sniper to obtain per-
formance data and various other statistics. Once the per-
formance simulation is finished, a separate script parses the
results and generates an XML input file for McPAT. Finally,
the output from McPAT is parsed, and final representations
such as total power and/or per-component energy stacks are
generated.

3.1 Generating input for McPAT
McPAT’s input file consists of two main types of infor-

mation: architectural parameters and statistics about the

4

Sniper McPAT

architecture descriptionbinary

performance number
(execution time)

power number
(Watt)

activity
statistics

Figure 1: High-level overview of Sniper/McPAT.

activity of various architecture components during applica-
tion runtime. The architecture parameters, such as the pro-
cessor’s reorder buffer size and issue width, and the size,
associativity and latency of each cache level, are used to
calculate power and energy costs for each component, for a
specific technology node. We picked these parameters using
public information [15] when modeling an Intel Nehalem-like
system in our setup.

The activity statistics take the form of duty cycles which
indicate what fraction of time a component is in use, as well
as counts for events that have a per-event energy cost such as
a memory access. For high-level components such as hits and
misses at the various levels of the memory hierarchy, these
values are trivially obtained from Sniper’s output statistics.
Activities for other components, especially those related to
structures inside the core — which interval simulation does
not model deliberately in order to raise the level of abstrac-
tion and improve simulation speed — need to be estimated.
For instance, reads and writes to the reorder buffer (ROB)
or register allocation table (RAT) are not explicitly modeled
by interval simulation. Instead, we assume a constant usage
pattern by each instruction and estimate these statistics as
a fixed ratio of the number of instructions, e.g., one ROB
read and write per instruction, etc.

For other components such as ALUs and the load-store
units, McPAT expects an activity factor. We calculate these
using the following assumption. We assume these compo-
nents to achieve a throughput of one instruction per cycle.
This means that each instruction that uses a given com-
ponent, occupies this component for exactly one cycle. The
fact that the component is internally pipelined does not mat-
ter from a modeling perspective, as each pipeline stage is
kept busy by this instruction for just one cycle; even though
the activity caused by the instruction might be spread out
over multiple clock cycles, it still causes the complete com-
ponent to be active for one cycle, assuming aggressive clock
gating when parts of a component are not used. Thus, the
activity factor of the unit can be estimated by taking the
number of instructions that use it, implicitly multiplying
this number by one active cycle per instruction, and divid-
ing it by the total number of clock cycles the simulation
took. We also extended Sniper to output the dynamic in-
struction mix, which allows us to compute the usage of the
respective execution units.

3.2 DRAM power
McPAT does not model DRAM power, although this can

represent a significant fraction of total system power [17].
We therefore added a basic first-order DRAM power model.

Using Micron’s DDR3 System-Power calculator [21], we cal-
culate idle (static plus refresh) power and per-operation en-
ergy for reads and writes. Power consumption of the DRAM
interface, both for the regular DDR3 case as for 3D stacked
memory, is calculated according to the models from [9]. We
thus calculate static and dynamic DRAM chip and interface
power, and add these to McPAT’s power numbers.

3.3 Sniper/McPAT limitations
By using a high-abstraction user-level simulation infras-

tructure such as Sniper/McPAT, we opt for simulation speed
and short simulator development time at the expense of sac-
rificing some accuracy. Hence, Sniper/McPAT has its limita-
tions and should not be used for detailed microarchitecture
studies inside the core of a multi-core processor; however,
we believe Sniper/McPAT is an ideal simulation platform
for studying system-level design trade-offs at early stages in
the design cycle.

We now briefly summarize Sniper/McPAT’s limitations.
Sniper is a user-level simulator, hence, it does not model
system-level code. As we focus on HPC benchmarks, which
spend most of their time in user-level code [20], this is a
valid trade-off. Second, Sniper is built on top of Pin [19],
which is a dynamic binary instrumentation tool. This im-
plies that Pin enables instrumenting correct-path instruc-
tions only, i.e., wrong-path execution is not modeled. Again,
HPC workloads typically have a high branch prediction ac-
curacy [20], hence, this is a viable assumption. Third, Sniper
does not model the internals of a superscalar out-of-order
processor core, hence, it is unable to track the occupancy
and activity factors inside the core. (Recall the key moti-
vation behind interval simulation is to abstract away these
details in order to achieve higher simulation speed.) We
therefore need to approximate some of these core internal
statistics, as described in the previous section. Yet, in spite
of these limitations and simplifying modeling assumptions,
Sniper/McPAT is accurate compared against real hardware,
as we show in Section 5.

3.4 Simulation speed
Sniper’s simulation speed is up to around 2 MIPS when

simulating 16-core architectures on an 8-core host ma-
chine [6]. To enable power modeling, we extended Sniper to
export some additional statistics as described in Section 3.1.
All of these changes to the performance simulator do not
slow down simulation. Parsing the various statistics files
and generating McPAT’s input file is straightforward and
takes less than a second, as does parsing McPAT’s output
and generating the final results. The runtime for McPAT it-
self can be up to a few minutes, mainly taken up by CACTI
which searches for the optimum register file and cache or-
ganization. Still, compared to performance simulation us-
ing Sniper, which takes several hours when running realistic
benchmarks, the total increase in simulation time because
of power modeling is insignificant.

We can therefore state that, from a simulation time
perspective, power modeling is essentially free in Sniper/
McPAT. This is in contrast to a more detailed approach
such as Wattch, which incurs a slowdown of the Sim-
pleScalar performance simulator in which it is integrated,
by about 30% [5]. The reason for this slowdown in
Wattch/Simplescalar is that detailed activity factors and the

5

Component Parameters
Processor 2 sockets, 4 cores per socket
Core 2.66 GHz, 4-way issue, 128-entry ROB
Branch predictor Pentium M [28], 17 cycles penalty
L1-I 32 KB, 4 way, 4 cycle access time
L1-D 32 KB, 8 way, 4 cycle access time
L2 cache 256 KB per core, 8 way, 8 cycle
L3 cache 8 MB per 4 cores, 16 way, 30 cycle
Main memory 65 ns access time, 8 GB/s per socket

Table 1: Simulated system characteristics for the
dual-socket quad-core Intel Nehalem baseline archi-
tecture.

number of bit toggles need to be computed during perfor-
mance simulation.

3.5 Sniper/McPAT output
McPAT computes chip area and both static and dynamic

power, broken down into several architectural components
such as the reorder buffer and other core structures, caches,
etc. By multiplying total power consumption with the
benchmark’s execution time as obtained from Sniper’s per-
formance simulation, derived metrics such as static and dy-
namic energy, or energy-delay products can be computed —
both for the complete system or broken down per compo-
nent. In addition, power traces can be computed as well,
by running McPAT on a time series of runtime statistics
produced by Sniper. Examples will be given in the results
section.

4. EXPERIMENTAL SETUP
4.1 Baseline processor configuration

Our baseline processor configuration is configured after
a dual-socket, quad-core Intel Nehalem machine. The Ne-
halem chips consist of four 4-wide out-of-order cores running
at 2.66 GHz with private L1 and L2 caches and a shared L3
last-level cache. More details can be found in Table 1.

4.2 Benchmarks
Results in this paper combine applications from four

benchmark suites: SPLASH-2 [31], PARSEC [3], Rodinia [7]
and SPEComp [2], compiled with GCC 4.3.2. The input
sizes used are simsmall and simlarge for PARSEC and
train from SPEComp (medium). For SPLASH-2 and Ro-
dinia, we used the inputs defined in [12]. We only enable per-
formance modeling during the parallel section of the bench-
mark (the region of interest, ROI); the sequential parts at
the beginning and end of a benchmark execution are not
included in any timing or energy results given in this paper.

In addition to these standardized benchmark suites, we
also include a scientific kernel, namely stencil computation,
for driving a hardware/software co-design case study. Sten-
cil computation is part of the Berkeley dwarfs [1] (Structured
Grid), and is a widely used kernel in many applications, such
as physical dynamics simulations. This particular applica-
tion models heat transfer across a 2-D grid; we will refer to
this application as the heat benchmark. A more detailed
description can be found in Section 7.1.

5. HARDWARE VALIDATION
In this section, we evaluate the accuracy of Sniper/McPAT

against real hardware. We specifically focus on power con-

 60

 80

 100

 120

 140

 160

 180

O-ammp_m

O-applu_m

O-equake_m

O-fma3d_m

O-mgrid_m

O-swim_m

heat-64-1

heat-64-17

heat-128-21

heat-256-37

D
y
n

a
m

ic
 p

o
w

e
r

(W
)

Measured Predicted

Figure 2: Measured versus predicted dynamic power
consumption using Sniper/McPAT.

sumption here; Sniper has been hardware-validated for per-
formance previously, by Carlson et al. [6].

5.1 Setup
Our validation experiments compare McPAT’s Peak Dy-

namic Power prediction against that of a dual-socket, 45 nm
Intel Nehalem processor based server machine (an IBM
x3650 M2). Total system power was measured using a Rack-
tivity RC0816 [24] Power Distribution Unit (PDU) with in-
tegrated power metering. This PDU performs real-time true
RMS measurements of the server’s 230V AC power supply
and allows us to read out the server’s power consumption
once every second; the reported number is the average power
consumed over the second. We run our benchmarks on real
hardware and measure total system power. Since we only
have one power measurement per second, we selected only
benchmarks for which the ROI was longer than two seconds
to make sure we always have at least one valid power mea-
surement from the ROI. Out of the extensive set of bench-
marks that we considered in this work (see Section 4.2), only
six of the benchmarks from the SPEComp suite and the heat
benchmark run longer than two seconds; the other bench-
marks from SPLASH-2, PARSEC, Rodinia and SPEComp
did not run long enough to obtain meaningful power num-
bers. Each benchmark is run for two minutes. During the
first minute we allow the system to reach a thermal equilib-
rium. We then report the average power consumption during
the second minute for those samples that completely overlap
with the benchmark’s ROI. Finally, for validation purposes
of Sniper/McPAT’s dynamic power estimates, we subtract
the system’s idle power so our numbers do not include power
consumed by disks, motherboard, network interfaces, etc.,
but account for processor and DRAM dynamic energy only.

5.2 Results
Figure 2 compares measured against predicted dynamic

power consumption using Sniper/McPAT, for the selected
SPEComp benchmarks and several configurations of the
heat benchmark. The numbering scheme for the configura-
tions of heat consists of the tile size and number of steps (s)
computed per tile. These parameters can be used to tweak
the memory access behavior of this application, as we will
explain in more detail in Section 7.1. As expected, power
consumption is benchmark-dependent. Sniper/McPAT cap-
tures the trend fairly accurately with an average absolute
error of 8.3% and a maximum error of 16% for SPEComp’s
fma3d. We also re-evaluated Sniper’s performance accuracy
and found the average absolute error for this set of bench-
marks to be 22.1%, which is in line with the results reported
by Carlson et al. [6].

6

 0

 50

 100

 150

 0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

P
o
w

e
r

(W
)

IP
C

 (
in

s
tr

u
c
ti
o
n
s
/c

y
c
le

)

Time (ms)

CPU power DRAM power Average IPC

Figure 3: Simulated execution behavior for fft.

Figure 3 plots a trace of CPU and DRAM dynamic power
consumption over time for the fft benchmark, along with
an IPC trace (averaged across all eight cores). Execution
phases with low IPC are memory-intensive. Hence, CPU
power consumption is relatively low while DRAM power
consumption is high. During compute-intensive, high-IPC
phases, CPU power is high while DRAM power is relatively
low. This illustrates that Sniper/McPAT’s power predic-
tions track resource usage as expected.

Finally, we wanted to verify whether computing power
consumption at the end of the performance simulation us-
ing aggregate performance and activity statistics yields any
differences compared to computing power consumption at
smaller time granularities. We therefore ran McPAT once
per one millisecond time interval to obtain a power trace
over time. Computing the total energy consumption from
this power trace yielded the same total energy within two
percent as obtained from aggregate performance and activ-
ity statistics. This is because the power models in McPAT
are mostly linear; moreover, the thermal response of the
chip is slow enough such that short bursts in activity do not
significantly affect overall temperature.

6. ARCHITECTURAL EXPLORATION
Using our validated simulation framework, we now per-

form a design space exploration in which we compare four
architecture design points. We consider the processor con-
figuration inspired by the dual-socket Nehalem system as
described in Table 1 as a starting point, and asked ourselves
the following question:

Given a technological advancement by two
technology nodes, from 45 nm to 22 nm, how can
we best use the available improvements in tran-
sistor density and energy efficiency?

The first architecture considered is a conservative integra-
tion, in which we integrate the eight cores of the dual-socket
quad-core Nehalem machine onto a single chip. Along with
an increase in clock frequency from 2.66 GHz to 3.059 GHz,
and cache size (from 256 KB to 512 KB for L2, and from
8 MB to 32 MB for L3), this forms our 8-core design point.

In addition to this conservative scaling option, we also ex-
plore several more drastic modifications. The three alternate
architecture design points that we consider in this trade-off
study all have 16 cores (twice the number of cores), with
each core having half the L2 cache size (256 KB instead of
512 KB). Other modifications are as follows:

 0

 1

 2

 3

splash parsec rodinia specomp all

Performance

8-core
3D

low-frequency
dual-issue

 0

 1

 2

 3

 4

 5

splash parsec rodinia specomp all

Energy efficiency

8-core
3D

low-frequency
dual-issue

 0

 2

 4

 6

 8

splash parsec rodinia specomp all

EDP improvement

8-core
3D

low-frequency
dual-issue

Figure 4: Average improvements per benchmark
suite for the four 22 nm architecture design points
over the 45 nm Nehalem baseline machine in terms
of performance, energy efficiency and energy-delay
product (EDP).

• The 3D design point does not integrate an L3 cache but
uses 3D stacked memory instead, which has a higher
memory bandwidth and slightly shorter memory ac-
cess time compared to regular DDR3 memory. This
architecture results in a slightly bigger chip and nearly
twice the power budget.

• The low-frequency design point reduces clock frequency
and operating voltage which enables integrating 16
cores in a smaller power envelope. We assume a 16 MB
L3 cache (2 times 8 MB per 8 cores) in order to reduce
off-chip memory bandwidth pressure.

• The dual-issue design point replaces the 4-wide out-
of-order cores with 16 less aggressive dual-issue cores.
Reducing cache sizes compared to the 8-core architec-
ture allows for integrating twice the number of cores
at a slight increase in chip area.

The simulation parameters for these architectures are de-
scribed in Table 2, along with chip area estimates and max-
imum observed power consumption for any of the bench-
marks, as reported by Sniper/McPAT.

Note that the relatively high power consumption of the 3D
design point is caused by the fact that, for most of the bench-
marks, the processor cores are much more active: compared
to the other architectures, the time spent waiting for DRAM
is lower here. Power consumption in 3D-stacked DRAM it-
self is slightly lower than that of the other architectures,
mainly because long-distance off-chip communication on the
DRAM bus is replaced by much more efficient short-range
communication using through-silicon vias (TSVs).

6.1 Results
Figure 4 summarizes the average improvements per bench-

mark suite for the four 22 nm architecture design points over
the 45 nm baseline architecture in terms of performance, en-
ergy efficiency and energy-delay product (EDP). (Energy

7

Parameter Nehalem 8-core 3D low-frequency dual-issue
Sockets per system 2 1 1 1 1
Cores per socket 4 8 16 16 16
Core frequency 2.66 GHz 3.059 GHz 3.059 GHz 1.8 GHz 3.059 GHz
Core voltage 1.2 V 1.2 V 1.2 V 1.025 V 1.2 V
Issue width 4 4 4 4 2
ROB size 128 128 128 128 32
L2 cache size (per core) 256 KB 512 KB 256 KB 256 KB 256 KB
L3 cache size 8 MB per chip 32 MB — 8 MB per 8 cores 8 MB per 8 cores
Memory bandwidth 8 GB/s 8 GB/s 128 GB/s 8 GB/s 8 GB/s
Memory latency 65 ns 65 ns 50 ns 65 ns 65 ns
Technology node 45 nm 22 nm 22 nm 22 nm 22 nm
Chip area 2× 243 mm2 151 mm2 181 mm2 208 mm2 187 mm2

Maximum observed power 2× 99 W 80 W 130 W 58 W 102 W

Table 2: Simulated system characteristics used in the architectural exploration study.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

8-core 3D low-
frequency

dual-issue

R
u

n
 t

im
e

 (
s
)

S-ocean.cont

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

8-core 3D low-
frequency

dual-issue

R
u

n
 t

im
e

 (
s
)

P-streamcluster

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

8-core 3D low-
frequency

dual-issue

R
u

n
 t

im
e

 (
s
)

issue
depend
branch

ifetch
mem-l2
mem-l3

mem-dram
sync
other

 0

 10

 20

 30

 40

 50

 60

8-core 3D low-
frequency

dual-issue

E
n

e
rg

y
 (

J
)

S-ocean.cont

 0

 10

 20

 30

 40

 50

 60

 70

 80

8-core 3D low-
frequency

dual-issue

E
n

e
rg

y
 (

J
)

P-streamcluster

 0

 10

 20

 30

 40

 50

 60

 70

 80

8-core 3D low-
frequency

dual-issue

P
e

rc
e

n
t

o
f

ti
m

e

core-core
core-ifetch
core-alu

core-int
core-fp
core-mem

icache
dcache
l2

l3
noc
dram

Figure 5: Time and energy stacks for ocean.cont

from SPLASH-2 and streamcluster from PARSEC.

consumption in these results includes both dynamic and
static energy consumption as reported by Sniper/McPAT.)
Whereas the 3D design point yields the highest absolute im-
provement in performance, its power consumption is rather
high so it does not lead to the best architecture when energy
consumption is taken into account. Instead, when optimiz-
ing for energy, the low-frequency design point is the optimum
configuration for this set of benchmarks.

The high performance of the 3D design point is especially
apparent for benchmarks that are DRAM bandwidth bound.
One such example is S-ocean.cont, see Figure 5 (left col-
umn) for cycle and energy stacks. For other applications
with moderate working set sizes, the 3D architecture suf-
fers from the absence of an L3 cache. P-streamcluster for
instance (Figure 5, right column) has a working set that
does fit in the L3 cache for the 8-core, low-frequency and
dual-issue design points; on the 3D architecture on the other
hand, this benchmark needs to go out to the stacked DRAM,
which — even though it is faster and more energy-efficient
than regular DRAM — is still more expensive than using
data that can be found in on-chip caches.

 0

 1

 2

 3

S-barnes
S-fft S-ocean.ncont

P-streamcluster

R-srad

3
D

 v
s
.
8
-c

o
re

large

 0

 1

 2

S-barnes
S-fft S-ocean.ncont

P-streamcluster

R-srad

3
D

 v
s
.
8
-c

o
re

small

 0

 1

 2

 3

S-barnes
S-fft S-ocean.ncont

P-streamcluster

R-srad

3
D

 v
s
.
8
-c

o
re

large

Performance Power eff. Energy eff.

Figure 6: Improvement of the 3D design point over
the 8-core design point in terms of performance,
power and energy efficiency, using large (left) ver-
sus small (right) inputs: Different input sizes lead
to different conclusions.

Out of the four benchmark suites, Rodinia is the one that
stands out by having poor performance on all of the 16-
core architectures. Even though Rodinia is written with
GPUs in mind, which have many small cores, the Rodinia
benchmarks do not seem to parallelize very well on a multi-
core CPU environment. One problem is that the data sets
are not very large, which makes them fit in the caches —
removing the benefit the 3D design point had. Also, its fine-
grained parallelism using short inner loops does not work
well in a context where threads are heavy-weight and inter-
core synchronization is relatively expensive, as is the case in
the GNU OpenMP runtime that was used.

6.2 Dependence on input size
It is well understood that a benchmark’s input size may

have a major impact on performance, and simulations using
a small input may therefore not be a reliable proxy for larger
inputs. This is because working set size often scales with
input size, which may lead to very different cache behavior.
Therefore, simulations need to be done using larger and more
realistic input sizes, which further emphasizes the need for
a fast simulator because of increased runtimes.

This not only applies to performance, but also to power
and energy consumption. As an example, Figure 6 plots
performance, power and energy efficiency of the 3D design
point relative to the 8-core design point for a selection of
benchmarks, using both large and small inputs. For some
benchmarks, such as S-barnes, the conclusion as to which
architecture is more power or energy-efficient is the same ir-
respective of the input size; however, for other benchmarks,
the conclusion is reversed. For instance, using the small in-
put, one would conclude that 3D’s energy efficiency is worse

8

compared to 8-core for all of the selected benchmarks. How-
ever, when using the large input, 3D is considerably more
energy-efficient for three out of five of the applications con-
sidered. This shows that architecture studies should take
caution when using reduced input sizes.

7. HARDWARE/SOFTWARE CO-DESIGN
We now go one step further and we use Sniper/McPAT

to drive a case study in which we optimize both hardware
and software. We do this for an important scientific kernel,
namely stencil computation. Our kernel implementation al-
lows for trading off data locality with redundant computa-
tion, which enables finding an optimum software configura-
tion for a given hardware setting, and vice versa.

7.1 Heat transfer application
Our stencil computation benchmark models heat transfer

across a regular 2D grid over a number of time steps. The
heat transfer equation involves stencil computation in which
temperature at a given point in time at each grid location
is a linear combination of the temperatures of that location
and its neighbors at the previous time step.

A naive implementation of the heat transfer equation com-
putes a single time step at a time, and iterates over the
complete grid to apply the stencil operation at each grid lo-
cation (data element). This implementation has very poor
data reuse because each data element is used only once per
time step. By the time a data element is used again —
at the next time step — the processor will have touched
all other data elements, and hence, when simulating a large
grid, likelihood for seeing a hit in the cache is small.

To improve memory locality, the algorithm has been re-
organized to compute multiple time steps (s) on a small tile
of the complete grid. This allows the tile’s data elements
to be reused multiple times, before moving on to the next
tile. Additionally, when the application is parallelized by
distributing tiles across cores, synchronization can be post-
poned by allowing each core to do more independent work
before shared data at the tile boundaries needs to be commu-
nicated. A disadvantage is that at the edges of a tile, data
from a neighboring tile about future time steps is needed
— which is yet to be computed. This can be solved at the
expense of doing some redundant work, by overlapping the
edges of the tiles and letting the overlap decrease (by the
width of the stencil) at each iteration. This way, the com-
putation evolves — when time is represented as a dimension
perpendicular to the grid plane — in a pyramid-shaped fash-
ion, see Figure 7.

The heat benchmark was implemented using Intel Thread
Building Blocks (TBB). Tasks are spawned which each simu-
late s time steps for a single tile, which TBB’s work-stealing
scheduler distributes over the available cores. There are
many more tiles than cores so even in the presence of non-
homogeneous memory access latencies the load balance of
this application is typically very good.

7.2 Roofline model
The roofline model [30] provides a useful framework for

high-level reasoning about algorithm efficiency and perfor-
mance on a particular hardware platform. Figure 8 il-
lustrates the roofline model for this particular application
on our baseline architecture. The horizontal axis denotes
the arithmetic intensity which is defined as the number of

0
B

0

B
 0

 1

 2

 3

s

Figure 7: Illustration of three iterations of the heat
transfer simulation, applied to an 8×8 tile. To sat-
isfy the data dependencies up to the third step of
the stencil, redundant computations (on the darker
dots) are performed at the boundaries of the tile.
From [11].

 4

 8

 16

 32

1/2 1 2 4 8 16
P

e
rf

o
rm

a
n
c
e
 (

G
F

L
O

P
/s

)

Arithmetic intensity (FLOP/byte)

peak m
emory bandwidth

peak floating-point performance

redundant computation

Total performance

Useful performance (256
2
 tiles)

Useful performance (128
2
 tiles)

Figure 8: Expected performance profile of the heat
benchmark using the roofline model [30], for the 8-
core configuration with 1282 and 2562-sized tiles.

floating-point operations performed per byte loaded from
memory. Initially, at low arithmetic intensities the prob-
lem is essentially memory bandwidth bound. Improving
data reuse increases arithmetic intensity and increases per-
formance, up to the peak floating-point performance of the
machine.

In this kernel, arithmetic intensity can be raised by
increasing the number of time steps computed per tile.
Unfortunately, this optimization also increases redundant
work, which causes useful performance to fall back once the
amount of redundant computation becomes too high (dot-
ted lines in Figure 8). The crossover point at which redun-
dant work offsets the additional benefit of increased locality,
moves towards higher values of s (higher levels of arithmetic
intensity, to the right in Figure 8) for larger tile sizes. In
addition, introducing too much redundant work will also
flatten the useful performance curve, in the sense that an
increasing fraction of the available machine’s peak perfor-
mance will be used for doing redundant work.

Trading off the amount of redundant computation against
the increase in data locality is the main challenge in opti-
mizing the heat transfer algorithm in particular, and stencil
computations in general. This problem is difficult to solve
analytically or through intuition because of the complex in-
terplay between redundant work versus improving locality
and how this affects energy consumption and performance.
This reinforces the need for a fast simulation methodology

9

(a) Performance (simulated time steps per second)

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4

S
te

p
s
/t

im
e

 (
1

/s
)

Arithmetic intensity (FLOP/byte)

8-core

32 64 128 256 512

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4

S
te

p
s
/t

im
e

 (
1

/s
)

Arithmetic intensity (FLOP/byte)

3D

32 64 128 256 512

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4

S
te

p
s
/t

im
e

 (
1

/s
)

Arithmetic intensity (FLOP/byte)

low-frequency

32 64 128 256 512

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4

S
te

p
s
/t

im
e

 (
1

/s
)

Arithmetic intensity (FLOP/byte)

dual-issue

32 64 128 256 512

(b) Energy efficiency (simulated time steps per Joule)

0.0

0.5

1.0

1.5

2.0

2.5

 0 1 2 3 4

S
te

p
s
/E

n
e

rg
y
 (

1
/J

)

Arithmetic intensity (FLOP/byte)

8-core

32 64 128 256 512

0.0

0.5

1.0

1.5

2.0

2.5

 0 1 2 3 4

S
te

p
s
/E

n
e

rg
y
 (

1
/J

)

Arithmetic intensity (FLOP/byte)

3D

32 64 128 256 512

0.0

0.5

1.0

1.5

2.0

2.5

 0 1 2 3 4

S
te

p
s
/E

n
e

rg
y
 (

1
/J

)

Arithmetic intensity (FLOP/byte)

low-frequency

32 64 128 256 512

0.0

0.5

1.0

1.5

2.0

2.5

 0 1 2 3 4

S
te

p
s
/E

n
e

rg
y
 (

1
/J

)

Arithmetic intensity (FLOP/byte)

dual-issue

32 64 128 256 512

Figure 9: Hardware/software co-design for the heat benchmark when optimizing for performance and energy
efficiency: four architecture design points are considered while varying software parameters such as tile size
(see legend) and arithmetic intensity (horizontal axes).

for performance and power to explore these trade-offs and
hardware/software interactions.

7.3 Co-design analysis
Figure 9 plots the simulation results for hard-

ware/software co-design for the heat benchmark application.
The grid domain is 4096×4096 elements. This domain is
split up into square tiles measuring between 32 and 512 data
points on each side. The complete domain is 128 MB in total
and does not fit in the last-level cache for any of the archi-
tectures considered, so tiles always have to be loaded from
main memory. The number of time steps performed on each
tile before moving on to the next one varies between 1 and
65 steps. The graphs plot the achieved number of time steps
per second, or per Joule of consumed energy, as a function of
arithmetic intensity. The performance graphs in Figure 9(a)
follow the basic roofline model from Figure 8: initially, in-
creasing the number of time steps improves performance,
which later falls back once the amount of redundant com-
putation becomes too high. Additionally, each architecture
has an optimal tile size which maximizes data reuse while
still fitting in the cache. For example, the 8-core design point
reach a performance level of around 150 simulated time steps
per second, using a tile size of 128×128. The working set of
this application is two tiles worth of data, corresponding to
the previous and current time steps. At one double-precision
floating-point number or 8 bytes per element, the working
set of 256 KB for the 1282-sized tile fits in a core’s private
512 KB L2 cache, whereas for the larger 2562 tiles it does
not — which makes performance significantly lower than
that predicted by the roofline model. The three other ar-
chitectures, which have an L2 cache of only 256 KB, reach
their optimal performance using the smaller 642 tiles.

If we consider the effect of arithmetic intensity on energy
rather than performance, we see that generally the optimum
has shifted towards the left, meaning that less redundant
work — and a slightly increased access rate to main mem-

ory — is preferred. This is because the ratio between access
times of caches and DRAM is very high, making the perfor-
mance aspect of more redundant work cheap when compared
to extra DRAM accesses. On the other hand, when compar-
ing the energy cost of DRAM accesses versus that of extra
computation, the ratio is lower which makes the relative cost
of the redundant work higher. Note that this extra cost con-
sists of not just extra floating-point operations, which are in
themselves very cheap (in the order of 0.5 nJ per double-
precision operation, vs. 100 nJ per DRAM access1) but
also the cost of extra instructions flowing through all stages
of the out-of-order pipeline, extra cache accesses, etc. (In
Figure 5, floating-point ALU energy represents only a small
fraction of total core energy.)

When considering performance alone, the 3D architecture
clearly wins for this benchmark. The additional bandwidth
of the 3D stacked memory allows for a steeper performance
slope in the leftmost part of the performance graph, while
the availability of 16 full-sized cores results in the highest
peak performance across all architecture design points con-
sidered. Yet, tiles have to be kept small enough such that
they fit in L2 cache; this architecture does not have an L3
cache so the cost of L2 misses, which become significant
with tile sizes larger than 642, is much higher here than in
the other architectures.

On the other hand, the low-frequency architecture, while
being less high-performance than both the 8-core and 3D
design points, reaches the highest energy efficiency. Because
this application scales fairly good with core count, and the
power envelope of the low-frequency chip is still modest, one
could even consider another doubling of the number of cores
which should almost double performance at very little addi-
tional cost in energy.

1According to the relevant component in the dynamic en-
ergy stacks computed by Sniper/McPAT, scaled by the num-
ber of FP operations or DRAM accesses throughout the
benchmark, respectively.

10

Finally, the dual-issue architecture performs poorly for all
software configurations. It was designed to be a middle-of-
the-road out-of-order core, with a ROB size of 32 entries.
This usually makes sense, as the complexity of a ROB (and
hence area and energy cost) doubles superlinearly with its
size, and it is not useful to discover more parallelism than
the dual-issue execution stage is able to exploit. Yet, for
this particular benchmark, performance is limited by de-
pendencies, not the core’s issue width. Significant amounts
of instruction-level and memory-level parallelism do exist in
the code; but since they are hidden behind long chains of
dependencies, this parallelism would only be uncovered by
a larger ROB.

The benefit from co-design. This case study clearly illus-
trates the necessity and huge potential of hardware/software
co-design in order to achieve optimum performance and en-
ergy efficiency. If the algorithm would have been tuned for
a specific architecture only, say the 8-core design point, this
would have yielded a maximum performance of 152 time
steps per second or 1.99 time steps per Joule. However, by
co-optimizing the hardware and the software, substantially
better performance and energy efficiency can be achieved, up
to 252 time steps per second if optimized for performance
through the 3D design point — an improvement by a fac-
tor 1.66× — or up to 2.48 time steps per Joule if optimized
for energy through the low-frequency design point — an im-
provement by a factor 1.25×.

8. RELATED WORK
We now briefly describe related work in modeling and sim-

ulation, and architecture exploration.

8.1 Modeling and simulation
Architects in industry and academia heavily rely on de-

tailed cycle-accurate simulation. The key benefit of cycle-
accurate simulation obviously is accuracy, however, its slow
speed is a significant limitation. Industry simulators typ-
ically run at a speed of 1 to 10 kHz. Academic simula-
tors, such as gem5 [4] and PTLsim [34], are not truly cycle-
accurate compared to real hardware, and therefore they are
typically faster, with simulation speeds in the tens to hun-
dreds of KIPS (kilo simulated instructions per second) range.
Whereas cycle-accurate simulation is indispensable for de-
tailed microarchitecture design studies inside a processor
core, it does not scale to large multi-core systems.

Speeding up architectural simulation is an active field of
research. Sampled simulation is likely the most widely used
simulation speedup technique. The idea of sampled simu-
lation is to simulate a limited, but representative number
of simulation points [8, 25, 32]. Another approach that has
gained interest recently is to accelerate simulation by map-
ping timing models on FPGAs [22, 29]. The timing models
in FPGA-accelerated simulators are typically cycle-accurate,
with the speedup coming from the fine-grained parallelism
in the FPGA. Higher abstraction simulation, as employed in
Sniper/McPAT, uses a different, and orthogonal, method for
speeding up simulation: it models the processor at a higher
level of abstraction. By doing so, higher abstraction mod-
els not only speed up simulation, they also reduce simulator
complexity and development time compared to sampled and
FPGA-accelerated simulation.

Existing power simulation methodologies typically rely on
detailed activity factors. Wattch [5] uses SimpleScalar to ob-
tained these activity factors at the cost of a 30% hit in simu-
lation speed. PrEsto [26] incorporates power modeling in an
FPGA-based simulation platform. Other work focuses on
increasing the abstraction level of power modeling by using
few high-level parameters and analytical scaling models [14,
18, 23]. Sniper/McPAT combines the high-abstraction levels
for both performance (interval simulation) and power mod-
eling (McPAT) into a fast yet accurate, hardware-validated
simulation framework, that is still of low implementation
complexity. All these characteristics are essential in allow-
ing simulation to be used at early stages of design, and in
achieving a short turn-around time for hardware/software
co-design.

8.2 Design space exploration
The goal of architectural simulation is to drive design

space exploration. A typical approach is to vary one ar-
chitecture parameter at a time while holding the other ar-
chitecture parameters constant in order to understand the
sensitivity to that parameter. The number of simulation ex-
periments that need to be performed quickly explodes with
a large number of architecture parameters. Yi et al. [33]
propose a method for identifying the most important ar-
chitecture parameters to explore through a limited number
of experiments. Empirical modeling is another popular ap-
proach to more quickly explore large design spaces, see for
example [13, 16]. All of this prior work focuses on architec-
ture exploration only, and is unlikely to be effective for hard-
ware/software co-design, because these techniques rely on
detailed cycle-accurate simulation to build the models. Em-
ploying these approaches for hardware/software co-design
would require numerous detailed simulations for each version
of the software; this would be prohibitively time-consuming.

9. CONCLUSIONS
There are significant performance and energy benefits to

be achieved by co-designing hardware and software for high-
performance processors and scientific applications. We ar-
gued that making design decisions that involve both hard-
ware and software changes should be done early in the de-
sign cycle, so that correct high-level design decisions are
made and both hardware and software evolve in the right
direction. In order to do so, we developed Sniper/McPAT, a
fast simulation platform that predicts both performance and
power. Sniper, which is a parallel, high-abstraction multi-
core performance simulator, predicts activity statistics that
serve as input to McPAT which then predicts power con-
sumption. We validated Sniper/McPAT against real hard-
ware and we report average performance and power errors of
22.1% and 8.3%, respectively. Collecting activity statistics
for McPAT does not slow down performance simulation in
Sniper, which achieves a simulation speed around 2 MIPS
on an 8-core simulation host machine.

Sniper/McPAT is a useful tool for driving architecture
explorations as well as hardware/software co-design studies.
Through a case study in which we considered an important
scientific kernel, namely stencil computation, we demon-
strated that co-designing hardware and software can lead to
substantial performance and energy-efficiency improvements
that cannot be achieved by exploring the architecture space
only. More specifically, for our case study, we reported 1.66×

11

and 1.25× improvements in performance and energy effi-
ciency, respectively. Overall, this paper makes the case for
hardware/software co-design as an important and promising
design paradigm for future processor system design.

10. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their valuable feed-

back. This work is supported by Intel and the Institute for
the Promotion of Innovation through Science and Technol-
ogy in Flanders (IWT). Experiments were run on computing
infrastructure at the ExaScience Lab, Leuven, Belgium; the
Intel HPC Lab, Swindon, UK; and the VSC Flemish Su-
percomputer Center. Additional support is provided by the
European Research Council under the European Commu-
nity’s Seventh Framework Programme (FP7/2007-2013) /
ERC Grant agreement no. 259295.

11. REFERENCES
[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,

P. Husbands, K. Keutzer, D. A. Patterson, W. Lester,
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick. The
landscape of parallel computing research: A view from
Berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California at Berkeley, 2006.

[2] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner,
W. Jones, and B. Parady. SPEComp: A new benchmark
suite for measuring parallel computer performance. In
OpenMP Shared Memory Parallel Programming, LNCS,
2104:1–10, 2001.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural
implications. In PACT, pages 72–81, 2008.

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The gem5 simulator. SIGARCH
Comput. Archit. News, 39(2):1–7, 2011.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In ISCA, pages 83–94, 2000.

[6] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper:
Exploring the level of abstraction for scalable and accurate
parallel multi-core simulations. In SuperComputing, 2011.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H.
Lee, and K. Skadron. Rodinia: A benchmark suite for
heterogeneous computing. In IISWC, pages 44–54, 2009.

[8] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing
state loss for effective trace sampling of superscalar
processors. In ICCD, pages 468–477, 1996.

[9] M. Facchini, T. E. Carlson, A. Vignon, M. Palkovic,
F. Catthoor, W. Dehaene, L. Benini, and P. Marchal.
System-level power/performance evaluation of 3D stacked
DRAMs for mobile applications. In DATE, pages 923–928,
2009.

[10] D. Genbrugge, S. Eyerman, and L. Eeckhout. Interval
simulation: Raising the level of abstraction in architectural
simulation. In HPCA, pages 307–318, 2010.

[11] P. Ghysels, P. K losiewicz, and W. Vanroose. Improving the
arithmetic intensity of multigrid with the help of
polynomial smoothers. In Copper Mountain Conference on
Multigrid Methods, 2011.

[12] W. Heirman, T. E. Carlson, S. Che, K. Skadron, and
L. Eeckhout. Using cycle stacks to understand scaling
bottlenecks in multi-threaded workloads. In IISWC, 2011.

[13] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, and
M. Schulz. Efficiently exploring architectural design spaces
via predictive modeling. In ASPLOS, 2006.

[14] H. Jacobson, A. Buyuktosunoglu, P. Bose, E. Acar, and
R. Eickemeyer. Abstraction and microarchitecture scaling
in early-stage power modeling. In HPCA, pages 394–405,
2011.

[15] D. Kanter. Inside Nehalem: Intel’s future processor and
system. http://www.realworldtech.com, 2008.

[16] B. Lee, J. Collins, H. Wang, and D. Brooks. CPR:
Composable performance regression for scalable
multiprocessor models. In MICRO, pages 270–281, 2008.

[17] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler,
and T. W. Keller. Energy management for commercial
servers. IEEE Computer, 36:39–48, 2003.

[18] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi. McPAT: An integrated power,
area, and timing modeling framework for multicore and
manycore architectures. In MICRO, MICRO 42, pages
469–480. 2009.

[19] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building customized program analysis tools with
dynamic instrumentation. In PLDI, pages 190–200. 2005.

[20] A. M. G. Maynard, C. M. Donnelly, and B. R. Olszewski.
Contrasting characteristics and cache performance of
technical and multi-user commercial workloads. In
ASPLOS, pages 145–156, 1994.

[21] Micron. TN-41-01: Calculating memory system power for
DDR3, 2007.

[22] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer.
HAsim: FPGA-based high-detail multicore simulation using
time-division multiplexing. In HPCA, pages 406–417, 2011.

[23] M. Powell, A. Biswas, J. Emer, S. Mukherjee, B. Sheikh,
and S. Yardi. CAMP: A technique to estimate per-structure
power at run-time using a few simple parameters. In
HPCA, pages 289–300, 2009.

[24] Racktivity RC0816 datasheet. Available from
http://www.racktivity.com.

[25] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behavior.
In ASPLOS, pages 45–57, 2002.

[26] D. Sunwoo, G. Y. Wu, N. A. Patil, and D. Chiou. PrEsto:
An FPGA-accelerated power estimation methodology for
complex systems. In FPL, pages 310–317, 2010.

[27] S. Thoziyoor, J. Ahn, M. Monchiero, J. Brockman, and
N. Jouppi. A comprehensive memory modeling tool and its
application to the design and analysis of future memory
hierarchies. In ISCA, pages 51–62, 2008.

[28] V. Uzelac and A. Milenkovic. Experiment flows and
microbenchmarks for reverse engineering of branch
predictor structures. In ISPASS, pages 207–217, 2009.

[29] J. Wawrzynek, D. Patterson, M. Oskin, S.-L. Lu,
C. Kozyrakis, J. C. Hoe, D. Chiou, and K. Asanovic.
RAMP: Research accelerator for multiple processors. IEEE
Micro, 27(2):46–57, 2007.

[30] S. Williams, A. Waterman, and D. A. Patterson. Roofline:
An insightful visual performance model for multicore
architectures. Communications of the ACM, 52(4):65–76,
Apr. 2009.

[31] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and
methodological considerations. In ISCA, pages 24–36, 1995.

[32] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe.
SMARTS: Accelerating microarchitecture simulation via
rigorous statistical sampling. In ISCA, pages 84–95, 2003.

[33] J. Yi, D. Lilja, and D. Hawkins. A statistically rigorous
approach for improving simulation methodology. In HPCA,
pages 281–291, 2003.

[34] M. Yourst. PTLsim: A cycle accurate full system x86-64
microarchitectural simulator. In ISPASS, pages 23–34.
2007.

12

