
AfterImage: Leaking Control Flow Data and
Tracking Load Operations via Hardware Prefetcher

Yun Chen*, Lingfeng Pei*, and Trevor E. Carlson

*co-first author

Introduction to Microarchitecture Attacks

• Microarchitecture Attacks:
• Many rely on cache primitives and speculative

execution.
• Lack of study on not speculative-execution path.

• Our focus is on the prefetcher
• Bringing data into cache in advance to improve

performance.
• Located in the processor back-end and

not speculative-execution dependent.

2

Outline

• Reverse-Engineering Intel IP-Stride Prefetcher
• Threat Model and Experimental Setup
• AfterImage Attack Flow
• Breaking Different Levels of Isolation
• Attacking Real-World Application via AfterImage
• A Lightweight Defense
• Conclusion

3

Reverse-Engineering Intel IP-Stride Prefetcher

4

for (int i = 0; i < 100; i++)
 0x40285c: load array[i * 2]

• IP-stride prefetcher:
• Tracks the Instruction Pointer (IP) of the load, e.g., 0x40285c
• Records the strided access pattern, e.g., 2
• Predicts the memory access address and loads it in advance

Reverse-Engineering Intel IP-Stride Prefetcher

5

for (int i = 0; i < 100; i++)
 0x....5c: load array[i * 2]

• Index policy of IP-stride prefetcher in Intel:
• 24 entries
• Indexed by lower 8 bits of IP
• No extra tag (e.g., PID, TID) checking
• A potential contention resource!

Reverse-Engineering Intel IP-Stride Prefetcher

6

for (int i = 0; i < 100; i++)
 0x....5c: load array[i * 2]

• Stride Update Policy of IP-stride prefetcher in Intel:

Reverse-Engineering Intel IP-Stride Prefetcher

• Stride Update Policy of IP-stride prefetcher in Intel:

7

- - - -
.
.
.

for (int i = 0; i < 100; i++)
 0x....5c: load array[i * 2]

Memory

Prefetch

0 2 4 7 11

6 9

5c array[0] 0 1array[2] 2 1array[4] 2 2

• Enable prefetching if the confidence reaches 2.
• First prefetch then update. Make a potential attack channel.

array[7] 2 2array[7] 3 1array[11] 4 1

IP Last Addr Stride Conf.

Domain Switch

+2 +2 +3 +4

Threat Model and Experimental Setup

• We assume the attacker can analyze the victim’s binary.
• We assume the attacker is running on the same physical core with the

victim.

8

Experiment
Machines

i7-4770 (Haswell)
i7-9700 (Coffee Lake)

OS Ubuntu 18.04

Kernel Version 5.4.0

(K)ASLR Enable

Compiler GCC 8.4.0 with –O0

DRAM DDR4 2 x 8G, 1330.1 MHz

AfterImage Attack Flow

9

5c 0x1234 7 3

IP Last Addr Stride Conf.

Cache

IP-stride Prefetcher

❸Victim Execution

#4
Stride=7

#11
…

Attacker
for(i = 0; i < train; i++)
 0x....5c: load (i*stride)

❷Prefetcher Mistraining

❶IP analysis

Victim
if(secret)
 0x....5c: load array[idx0]
else
 0x....8e: load array[idx1]

Leakage - Cache

Prefetcher Triggerable?

Leakage – Prefetcher Status Checking

IP Last Addr Stride Conf.

Outline

• Reverse-Engineering Intel IP-Stride Prefetcher
• Threat Model and Experimental Setup
• AfterImage Attack Flow
• Breaking Different Levels of Isolation
• Attacking Real-World Application via AfterImage
• A Lightweight Defense
• Conclusion

10

Breaking User-User Isolation

❶ Attacker analyzes the target load
instructions and creates local “duplicates”

11

if(secret)
 0x....5c: load array[idx0]
else
 0x....8e: load array[idx1]

Victim Thread/Process
 Core 0

int std_0 = 7, std_1 = 13;
for (int i = 0; i < 5; i++)
 0x....5c: load arr[i * std_0]
 ……
 0x....8e: load arr[i * std_1]
}

Attacker Thread/Process
 Core 0

5c xxxx 7 2

8e xxxx 13 2
❷ Attacker trains two entries of the
prefetcher with the gadget
❸ Victim executes the target branch.

Attacker detects the existence of
stride in cache.

IP Last Addr Stride Conf.

Breaking User-User Isolation Results

Variant 1: cross processes
• Cache primitive:

• Modified Flush+Reload

• Stride:
1. If-path: 7 cache lines stride
2. Else-path: 13 cache lines stride

12

#Cache Line

Breaking User-User Isolation Results

Variant 1: cross processes
• Cache primitive:

• Modified Flush+Reload

• Stride:
1. If-path: 7 cache lines stride
2. Else-path: 13 cache lines stride

13

#Cache Line

Breaking User-User Isolation Results

Variant 1: cross processes
• Cache primitive:

• Modified Flush+Reload

• Stride:
1. If-path: 7 cache lines stride
2. Else-path: 13 cache lines stride

• Result:
• 7 exists (11 – 4)
• 13 exists (17 – 4)

14

#Cache Line

Breaking User-Kernel/SGX Isolation Results

Variant 2: cross user-
kernel/SGX isolation
• Cache primitive:

• Modified Flush+Reload

• Stride:
1. If-path: 13 cache lines stride

• Result:
• 13 exists (56 – 43)

16

#Cache Line

Attack Real-World Application via AfterImage

❶ 0x5c is trained by the attacker with
stride of 7.

17

int std_0 = 7;
for (int i = 0; i < 5; i++)
 0x....5c: load arr[i * std_0]
}

Attacker Thread/Process
 Core 0

5c arr[14] 7 2

❷ The victim accesses with another address
and data, the stride will be updated.

❸ The prefetcher status will be reset.

Prefetcher Status Checking (PSC) Technique

if(secret)
 0x....5c: load arr1[idx0]
else
 0x....8e: load arr1[idx1]

Victim Thread/Process
 Core 0

IP Last Addr Stride Conf.

5c arr1[x] N 1

if(secret)
 0x....5c: load arr1[idx0]

Victim’s Branch Executed

1

Attack Real-World Application via AfterImage

• Montgomery-Ladder RSA[1,2]
• Why it is timing-constant:

• Different directions always
execute the same function call.

• Only inputs are different.

18

• Private key determines the branch
direction.

[1] https://github.com/merinjo/RSA-Montgomery-Ladder-Implementation
[2] OpenSSL 1.0.1e

Attack Real-World Application via AfterImage

• We break timing-constant RSA within 188 mins
• Some distinguished load instructions are generated in different directions.
• We leverage PSC technique to avoid using cache primitives.

19

Attacker matches
load instruction’s PC

in this branch and
train prefetcher.

Lightweight Defense

• Defense: Clear the prefetcher at the context switch
• Implementation: ChampSim
• Overhead: less than 0.2%, disable prefetcher introduce 15% overhead.

20

Conclusion

1. We reverse-engineer Intel IP-stride prefetcher.

2. We leak control flow data and track load instruction's timing
information across different privilege regions.

3. We extract the private key of the timing-constant RSA.

4. We propose a defense with 0.2% perf. overhead.

21

AfterImage: Leaking Control Flow Data and
Tracking Load Operations via Hardware Prefetcher

Yun Chen*, Lingfeng Pei*, and Trevor E. Carlson

*co-first author

