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The goal of this work is to accommodate long CGRA compilation times with 
upfront analysis and and low-impact kernel restrictions. Specifically, the time-
consuming CGRA compilation is evaluated upfront and the light-weight, high-
performance optimizer generates floorplans to maximize throughput.

Upfront processing
• C source code → CGRA compiler → Tatami blocks
• The blocks’ width are W/2 or W (4 or 8 in Figure 2).

l ① :  2 memory ports at each row
l ② :  1 memory ports at each row on its left

• Performing compilation at run time is too time consuming; instead, we focus 
on the easier tasks that uses predefined compilation targets, called Tatami 
blocks.

Run time processing
• Floorplanning is completed in microseconds by composing Tatami blocks.
• ③: on the right half, to map a half-width Tatami block, the block using 

memory ports on the left (②) is rotated.
• Maximizing throughput ( :=                 )

Methodology

In traditional upfront CGRA scheduling, for m-combinations of all n kernels, 
there exist !

" optimal floorplans for each case. Then, the total number of 
floorplans to be stored is ∑"#$! !

" = 2!

Storage savings over upfront compilation            Throughput gain over dedicated CGRAs             

Overview
In accelerating dynamic multi-core systems with Coarse Grained Reconfigurable 
Arrays (CGRAs), offloading and mapping multiple kernels to a CGRA at run time 
can help to achieve higher performance. In this work, we introduce a novel CGRA 
programming methodology to configure the CGRA at run time in a multi-core 
system to exploit opportunities for acceleration.

Introduction
• Embedded systems are seeing increased computation demands.

• Multi-core CPUs can help to achieve energy-efficient performance.
• CGRAs provide reconfigurability with a much larger potential throughput and 

energy efficiency.

• Limitations of traditional CGRAs
• Typically paired to a single processor.
• Can have a long compilation time (seconds to hours).

• Our approach: Tatami – a flexible methodology for near-optimal floorplanning
• Upfront Processing: Tatami blocks in multiple sizes.
• Run time Processing: Floorplanning by composing Tatami blocks.

Figure 2. Target CGRA architecture with 64 (8⨉8) Processing 
Elements (PEs) and 2 scratchpad memories.

Figure 1. Tatami framework.

Figure 3. # of  kernels vs. required storage for     floorplans.𝑛
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Figure 4. # of  kernels vs. average throughput.

We achieve higher performance as we can fully utilize the existing 
resources while the dedicated CGRAs are underutilizing them.

①: A full-width Tatami block  

②: Memory access on the left ③ : Memory access on the right

Results
• 99% of the performance of the fully-flexible system.
• 13% higher performance over private CGRA accelerators.
• Fast run time configuration. Specifically, when 4 kernels are mapped 

among 12 kernels, the best performing floorplan is found in 0.5 
microseconds.


