National University
of Singapore

=2 NUS
0%

4)
A Methodology

The goal of this work 1s to accommodate long CGRA compilation times with
upiront analysis and and low-1mpact kernel restrictions. Specifically, the time-
consuming CGRA compilation 1s evaluated upfront and the light-weight, high-
performance optimizer generates floorplans to maximize throughput.

"o

In accelerating dynamic multi-core systems with Coarse Grained Reconfigurable
Arrays (CGRASs), offloading and mapping multiple kernels to a CGRA at run time
can help to achieve higher performance. In this work, we introduce a novel CGRA
programming methodology to configure the CGRA at run time in a multi-core

verview

system to exploit opportunities for acceleration. (1): A full-width Tatami block
\ / Y G g T - gy s G D o —
PE [« PE [« PE > PE +» PE > PE [« PE >
g . h S Sl Dibe Sl Ble S
Introduction PE > PE || PE «f PE > PE s PE - PE

 Embedded systems are seeing increased computation demands.
* Multi-core CPUs can help to achieve energy-efficient performance.
* CGRAsSs provide reconfigurability with a much larger potential throughput and
energy efficiency.

* Limitations of traditional CGRAs
* Typically paired to a single processor.
* Can have a long compilation time (seconds to hours).

(2): Memory access on the left (3) : Memory access on the right

Figure 2. Target CGRA architecture with 64 (8X8) Processing
Elements (PEs) and 2 scratchpad memories.

CGRA
compiler

Run time
Optimizer

Upfront processing
* C source code — CGRA compiler — Tatami blocks

Upfront Processing Run time Processing

Figure 1. Tatami framework. The blocks’ width are W/2 or W (4 or 8 in Figure 2).
. (1) : 2 memory ports at each row
* Our approach: Tatami — a flexible methodology for near-optimal floorplanning . (2) : 1 memory ports at each row on its left
‘ Upfrqnt Processin.g: Tatami blOleS in multiple s.izes. | Performing compilation at run time is too time consuming; instead, we focus
_ Run time Processing: Floorplanning by composing Tatami blocks. . on the easier tasks that uses predefined compilation targets, called Tatami
P N blocks.
Results - -
Run time processing
* 99% of the performance of the fully-flexible system. * Floorplanning 1s completed in microseconds by composing Tatami blocks.
* 13% higher performance over private CGRA accelerators. » (3): on the right half, to map a half-width Tatami block, the block using
* Fast run time configuration. Specifically, when 4 kernels are mapped memory ports on the left ((2)) is rotated.
among 12 kernels, the best performing floorplan 1s found in 0.5 * Maximizing throughput (:= Z#i"m')
microseconds "
\ ' J K /
: Storage savings over upfront compilation Throughput gain over dedicated CGRASs A
80000 - 45 - ' '
® Upfront compilation | L dedicated
—~ 700001 4 Tatami | s
X 60000 - Q 35
$ 50000 € 30|
@ 500 1'_:,
S 40000+ a #f
N g 20
E 30000 - >
320000 - © ol
Q © 10}
&€ 10000 0
0- A —h—Ah—h—Ah—h—h—A—A < 5}
4 6 8 10 12 14 16 18 20 0 2 3 4
Number of kernels Number of offloaded kernels
Figure 3. # of kernels vs. required storage for (Z) floorplans. Figure 4. # of kernels vs. average throughput.
In traditional upfront CGRA scheduling, for m-combinations of all n kernels, We achieve higher performance as we can fully utilize the existing
there exist (7’;‘1) optimal floorplans for each case. Then, the total number of resources while the dedicated CGRAs are underutilizing them.

\ floorplans to be stored is Z%=O(;}1) = 2" /

