
Tatami: Dynamic CGRA Reconfiguration for Multi-Core General Purpose Processing
Jinho Lee and Trevor E. Carlson

School of Computing
National University of Singapore

DAC ’21 WIP Poster December 2021

The goal of this work is to accommodate long CGRA compilation times with
upfront analysis and and low-impact kernel restrictions. Specifically, the time-
consuming CGRA compilation is evaluated upfront and the light-weight, high-
performance optimizer generates floorplans to maximize throughput.

Upfront processing
• C source code → CGRA compiler → Tatami blocks
• The blocks’ width are W/2 or W (4 or 8 in Figure 2).

l ① : 2 memory ports at each row
l ② : 1 memory ports at each row on its left

• Performing compilation at run time is too time consuming; instead, we focus
on the easier tasks that uses predefined compilation targets, called Tatami
blocks.

Run time processing
• Floorplanning is completed in microseconds by composing Tatami blocks.
• ③: on the right half, to map a half-width Tatami block, the block using

memory ports on the left (②) is rotated.
• Maximizing throughput (:=)

Methodology

In traditional upfront CGRA scheduling, for m-combinations of all n kernels,
there exist !

" optimal floorplans for each case. Then, the total number of
floorplans to be stored is ∑"#$! !

" = 2!

Storage savings over upfront compilation Throughput gain over dedicated CGRAs

Overview
In accelerating dynamic multi-core systems with Coarse Grained Reconfigurable
Arrays (CGRAs), offloading and mapping multiple kernels to a CGRA at run time
can help to achieve higher performance. In this work, we introduce a novel CGRA
programming methodology to configure the CGRA at run time in a multi-core
system to exploit opportunities for acceleration.

Introduction
• Embedded systems are seeing increased computation demands.

• Multi-core CPUs can help to achieve energy-efficient performance.
• CGRAs provide reconfigurability with a much larger potential throughput and

energy efficiency.

• Limitations of traditional CGRAs
• Typically paired to a single processor.
• Can have a long compilation time (seconds to hours).

• Our approach: Tatami – a flexible methodology for near-optimal floorplanning
• Upfront Processing: Tatami blocks in multiple sizes.
• Run time Processing: Floorplanning by composing Tatami blocks.

Figure 2. Target CGRA architecture with 64 (8⨉8) Processing
Elements (PEs) and 2 scratchpad memories.

Figure 1. Tatami framework.

Figure 3. # of kernels vs. required storage for floorplans.𝑛
4

!
#𝑖𝑛𝑠𝑡𝑟.
𝐼𝐼

Figure 4. # of kernels vs. average throughput.

We achieve higher performance as we can fully utilize the existing
resources while the dedicated CGRAs are underutilizing them.

①: A full-width Tatami block

②: Memory access on the left ③ : Memory access on the right

Results
• 99% of the performance of the fully-flexible system.
• 13% higher performance over private CGRA accelerators.
• Fast run time configuration. Specifically, when 4 kernels are mapped

among 12 kernels, the best performing floorplan is found in 0.5
microseconds.

