
© Copyright National University of Singapore. All Rights Reserved. 

GraphWave: A Highly-Parallel Compute-at-Memory
Graph Processing Accelerator

Jinho Lee, Burin Amornpaisannon, Tulika Mitra, Trevor E. Carlson
Design, Automation and Test in Europe Conference (DATE) 2022

1



© Copyright National University of Singapore. All Rights Reserved. 

Overview

2

• Background: Graph processing
– Vertex-centric approach
– Challenges in vertex-centric approaches
– Related works

• GraphWave
– Methodology
– Microarchitecture
– Message Propagation & Congestion Avoidance

• Experimental Setup & Evaluation
• Conclusion



© Copyright National University of Singapore. All Rights Reserved. 

Background: graph proceccing

3

[1] Steven Kay, "perth road network analysis", 2011, <https://www.flickr.com/photos/stevefaeembra/6109227974>
[2] Grandjean Martin, "Introduction à la visualisation de données, l'analyse de réseau en histoire" Geschichte und Informatik, 18/19, 2015, 109-128.

[1] [2]



© Copyright National University of Singapore. All Rights Reserved. 

Vertex-centric approach

4

• Also known as Think Like a Vertex (TLAV)
• Gather-Apply-Scatter (GAS) paradigm

gather apply scatter



© Copyright National University of Singapore. All Rights Reserved. 

Vertex-centric approach (continued)

5

CPU

Mem. • Gather: load requests to 
read inbound messages.

• Apply: updating status for 
each vertex.

• Scatter: write requests to 
the outbound links.



© Copyright National University of Singapore. All Rights Reserved. 

Challenges [3]

6

• Workload imbalance
– A few vertices can have a very high degree while others have only a few 

neighbors.

• Data locality
– Random memory access patterns can result when iterating neighboring 

vertices.

• Communication cost
– Poor data locality tends to lead to frequent long latency off-chip memory 

accesses.
[3] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, “Challenges in parallel graph processing.” Parallel Processing Letters, vol. 17, pp. 5–20, Mar. 2007.



© Copyright National University of Singapore. All Rights Reserved. 

Related works

7

• Graphicionado [4]
– Aims to reduce off-chip memory accesses with an on-chip eDRAM scratchpad.

• GraphH [5], GraphQ [6], and Tesseract [7]
– Processing-in-Memory approaches are used to reduce access latency and improve bandwidth 

between storage and compute.

• PolyGraph [8]
– Points out the importance of flexible graph processing e.g., flexibility in synchronicity as well 

as vertex scheduling.

[4] J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, “Graphicionado: A high-performance and energy-efficient accelerator for graph analytics,” in MICRO, 2016.
[5] Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and X. Qian,“GraphQ: Scalable PIM-based graph processing,” in MICRO, 2019.
[6] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie, and H. Yang, “GraphH: A processing-in-memory architecture for large-scale graph processing,”, TCAD, vol. 38, no. 4, pp. 640–653, 2019
[7] Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-in-memory accelerator for parallel graph processing,” in ISCA, 2015.
[8] Dadu, S. Liu, and T. Nowatzki, “PolyGraph: Exposing the value of flexibility for graph processing accelerators,” in ISCA, 2021



© Copyright National University of Singapore. All Rights Reserved. 

Methodology: GraphWave

8

• Realization of the Think Like a Vertex abstraction
– Message passing between vertices
– Store intermediate status in each vertex

• Processing-at-memory
– Scalable compute capabilities (one execution unit paired to each vertex)
– The messages are processed where the vertex status is stored

• Efficient message propagation
– Multi-level multicasting

• Results in propagation & reduction for all vertices in parallel

reg



© Copyright National University of Singapore. All Rights Reserved. 

Our Approach: GraphWave (continued)

9

• Contributions
– GraphWave microarchitecture
• Highly-parallel vertex-level microarchitecture

– Efficient multi-level data multicasting
• Tackles both workload imbalance and high data communication cost

• Achieves one of the highest levels of efficiency
– 63.94 GTEPS/W on a social network graph with 7k vertices & 9.4m edges



© Copyright National University of Singapore. All Rights Reserved. 

Microarchitecture

10

Vertex Processing Unit (VPU)
• Represents a single vertex in a graph
• Reduce Module
– Processes received messages
– Reduces the results

• Apply Module
– Propagates the vertex data to other VPUs
– Updates the vertex state at the end of a 

super-step
Vertex Processing Unit (VPU)



© Copyright National University of Singapore. All Rights Reserved. 

Processing Element (PE)

Microarchitecture

11

Processing Element (PE)
• 256 VPUs and routing tables
• Connected using Network-on-Chip (NoC)
• Intra-PE datapath

– Computes messages inside the PE
• Inter-PE datapath

– Generates packets for other VPUs



© Copyright National University of Singapore. All Rights Reserved. 

Processing Element (PE)

Microarchitecture

12

Intra-PE Datapath
• Receives messages from the NoC or inter-PE 

datapath
• Intra-PE multicasting
– Relies on masking bits
– Multicasts a message to multiple VPUs

• VPUs generate messages to inter-PE 
datapath or NoC



© Copyright National University of Singapore. All Rights Reserved. 

Processing Element (PE)

Microarchitecture

13

Inter-PE Datapath
• Receives messages from the NoC or intra-PE 

datapath
• Inter table 
– Stores neighbors’ destinations

• To-PE address generator
– Generates a message for local 

computations
• To-NoC address generator
– Generates packets for other PEs



© Copyright National University of Singapore. All Rights Reserved. 14

• Mapper statically predetermines the mapping and 
routing tables
– Goal: minimize travel distance
– Goal: increase throughput

• Inter-PE multicasting
– Sends messages to its neighboring PEs
– The neighboring PEs compute and relay messages to 

their neighbors

Message Propagation

Message Propagation



© Copyright National University of Singapore. All Rights Reserved. 15

• Center PEs can still suffer from network congestion
• Goal: Avoid overusing center PEs
• How: Considers travel distance and number of packets to be relayed
• In-flight reduce operation merges messages in a distributed way to reduce 

congestion

Congestion 
Avoidance

Congestion Avoidance

Message Propagation Message Propagation &
Congestion Avoidance



© Copyright National University of Singapore. All Rights Reserved. 

Experimental Setup

16

Graph |V| |E| Davg domain
gnutella05 (GT) 9k 31k 3.4 web

wiki-vote (WV) 7k 103k 14.7 web

grid-yeast (GY) 6k 314k 52.3 biology

spam-detection (SD) 9k 506k 56.2 web

reality (RE) 7k 9,429k 1,344.4 social
Input graph dataset

Davg is average vertex degree
[9] H. Kwon and T. Krishna, "OpenSMART: Single-cycle multi-hop NoC generator in BSV and Chisel," 2017 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), 2017, pp. 195-204

• GraphWave is implemented in SystemVerilog with power gating
– Evaluated with Page Rank, Breadth First Search and Connected Components

• OpenSMART NoC [9] is used as the network connecting the PEs
• The system has 42 PEs with 22nm technology at 200 MHz
• Total area is less than 92mm2



© Copyright National University of Singapore. All Rights Reserved. 

Performance Evaluation

17

• Achieves 2.9-97.8 GTEPS depending on the edge count
• GraphWave can take advantage of higher edge counts and scale with the 

benchmark
• Compared to the version without intra-PE and inter-PE multicasting
– Intra-PE muticasting has 36x higher throughput
– Intra-PE and inter-PE multicasting achieves 39x higher throughput

Edges/cycle for each input graph
with standard deviation



© Copyright National University of Singapore. All Rights Reserved. 

#Edges vs #packets

Packet vs Edge Count

18

• On the reality graph (RE), 200k packets are transferred for 9.4M edges
– Eliminates 97.8% of messages from being transmitted through the NoC 

compared to the version without inter-PE and intra-PE multicasting
• Network congestion is significantly reduced due to inter-PE multicasting that 

multicasts a message to multiple VPUs



© Copyright National University of Singapore. All Rights Reserved. 

Storage Usage & Scalability

19

• A graph with a high degree tends to have higher compression rate
– Lower streaming time and fewer hardware resources used

• Maximum number of packets = VPU-count ⋅ PE-count
– Significantly lower than edge count in dense graphs

Graph Savings
gnutella05 (GT) 1.23%

wiki-vote (WV) 31.45%

grid-yeast (GY) 23.84%

spam-detection (SD) 30.19%

reality (RE) 83.93%

|V| |E| Davg GTEPS #Packets Savings
4k 0.04M 10 1.74 27,957 -25.69%

4k 0.40M 100 8.33 59,548 37.95%

4k 4.00M 1,000 83.80 60,000 93.80%

4k 8.00M 2,000 166.61 60,000 96.82%

4k 16.00M 3,999 377.01 60,000 98.41%
Storage savings for the input graphs Scalability with large degree synthetic graphs

Davg is average vertex degree



© Copyright National University of Singapore. All Rights Reserved. 

Power Breakdown

20

• Power consumption ranges from 1.36W to 2.05W
• For the reality graph (RE), GraphWave consumes 1.54W

– Leads to 63.94 GTEPS/W, one of the highest levels of efficiency compared to 
the current state-of-the-art graph accelerators [6, 8]

Power breakdown of GraphWave based on 
reality graph

[6] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie, and H. Yang, “GraphH: A processing-in-memory architecture for large-scale graph processing,”, TCAD, vol. 38, no. 4, pp. 640–653, 2019
[8] Dadu, S. Liu, and T. Nowatzki, “PolyGraph: Exposing the value of flexibility for graph processing accelerators,” in ISCA, 2021



© Copyright National University of Singapore. All Rights Reserved. 

Conclusion

21

• Efficiently handles workload imbalance
– A VPU needs to send only one message regardless of the number of outbound 

edges due to multicasting
• Eliminates frequent irregular memory accesses and minimizes communication 

latency
– Achieved by the inter-PE and intra-PE multicasting techniques

• Attains high performance and efficiency
– Up to 97.8 GTEPS at 63.94 GTEPS/W



© Copyright National University of Singapore. All Rights Reserved. 22

Thank you


