
CAPSTONE: A Capability-based Foundation for

Trustless Secure Memory Access

Jason Zhijingcheng Yu, Conrad Watt, Aditya Badole,

Trevor E. Carlson, Prateek Saxena

National University of Singapore

University of Cambridge

32nd USENIX Security Symposium

World of Security Extensions

Pointer Integrity

Spatial Memory Safety

Temporal Memory Safety

Concurrent Thread Safety

Intra-process Sandboxing

Process Sandboxing

Virtualization

[ARMv8 Pointer Authentication Code]

[Intel MPX, RISC-V/ARM CHERI][Intel MPK, x86/64 DEP/NX]

[Intel SGX]

[AMD SEV]

[x86/64 Privilege Rings]

[Intel VT-x]

[Intel TSX – Transactional Synchronization Extensions]

Red-Green Secure Worlds [ARM TZ]

Nested / App Virtualization

[x86 Segmentation]

[Intel VT-x]

[Intel SGX]

[Intel TXT]

[None]

2

[Intel TDX] [ARM CCA]

https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://en.wikipedia.org/wiki/Intel_MPX
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://arxiv.org/pdf/1811.07276v1.pdf
https://en.wikipedia.org/wiki/Executable_space_protection
https://en.wikipedia.org/wiki/Software_Guard_Extensions
https://developer.amd.com/sev/
https://en.wikipedia.org/wiki/Protection_ring
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-vmcs-shadowing-paper.pdf
https://en.wikipedia.org/wiki/Transactional_Synchronization_Extensions
https://sefcom.asu.edu/publications/trustzone-explained-cic2016.pdf
https://en.wikipedia.org/wiki/X86_memory_segmentation
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-vmcs-shadowing-paper.pdf
https://en.wikipedia.org/wiki/Software_Guard_Extensions
https://en.wikipedia.org/wiki/Trusted_Execution_Technology
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture

SGXLock

[1]

Problems with Security Extensions

3

1. Unreliable availability of security features 2. Poor interoperability for multiple security goals

MPK

SGX

MPX

VMX

SGXBounds

[2]

KVM

[3]

[1]

Y. Chen et al., ‘SGXLock: Towards Efficiently Establishing Mutual Distrust Between Host Application and Enclave for SGX’, in 31st USENIX Security Symposium, USENIX Security 2022, Boston,

MA, USA, August 10-12, 2022, K. R. B. Butler and K. Thomas, Eds., USENIX Association, 2022, pp. 4129–4146. [Online]. Available:

https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yuan

Source: https://edc.intel.com/content/www/us/en/design/ipla/software-development-

platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-

2/010/deprecated-technologies/ accessed 30 July 2023

[2]

D. Kuvaiskii et al., ‘SGXBOUNDS: Memory Safety for Shielded Execution’, in Proceedings of the Twelfth European Conference on Computer Systems, Belgrade Serbia: ACM, Apr. 2017, pp.

205–221. doi: 10.1145/3064176.3064192.

https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yuan
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://doi.org/10.1145/3064176.3064192

SGXLock

[1]

Problems with Security Extensions

4

1. Unreliable availability of security features 2. Poor interoperability for multiple security goals

MPK

SGX

MPX

VMX

SGXBounds

[2]

KVM

[3]

[1]

Y. Chen et al., ‘SGXLock: Towards Efficiently Establishing Mutual Distrust Between Host Application and Enclave for SGX’, in 31st USENIX Security Symposium, USENIX Security 2022, Boston,

MA, USA, August 10-12, 2022, K. R. B. Butler and K. Thomas, Eds., USENIX Association, 2022, pp. 4129–4146. [Online]. Available:

https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yuan

Source: https://edc.intel.com/content/www/us/en/design/ipla/software-development-

platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-

2/010/deprecated-technologies/ accessed 30 July 2023

[2]

D. Kuvaiskii et al., ‘SGXBOUNDS: Memory Safety for Shielded Execution’, in Proceedings of the Twelfth European Conference on Computer Systems, Belgrade Serbia: ACM, Apr. 2017, pp.

205–221. doi: 10.1145/3064176.3064192.

Is there a unified foundation for multiple security goals?

https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yuan
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://doi.org/10.1145/3064176.3064192

Traditional Architectures Rely on Access Control

5

Hypervisor

OS kernel

App App App

MMU/

MPU

Allow/disallow

Trust

Physical

memory

Traditional Architectures Rely on Access Control

6

Hypervisor

OS kernel

App App App

MMU/

MPU

Allow/disallow

Trust

Physical

memory

Relies on explicitly managed security policies

Assumes a central trusted authority

→ limiting in expressiveness

Can we make memory access trustless?

Contributions

7

CAPSTONE

Minimal set of properties

P1: Exclusive Access

P2: Revocable Delegation

P3: Extensible Hierarchy

P4: Secure Domain Switching

Goal: Unified Foundation for

Trustless Memory Access

Pointer Integrity

Spatial Memory Safety

Temporal Memory Safety

Concurrent Thread Safety

Intra-process Sandboxing

Process Sandboxing

Virtualization

Red-Green Secure Worlds

Nested / App Virtualization

Threat Model: Benign Scenario

8

Domain A

Domain B

Domain A

Domain B

Domain A

Domain B

Time

𝑡0

Physical

memory

𝑡1 𝑡2

A invokes B B returns

Threat Model: Malicious Scenario

9

Domain A

Domain B

Domain A

Domain B

Time

𝑡0

Physical

memory

𝑡1

A invokes B
Secret leakage

Broken integrity

TOCTTOU

Threat Model: Malicious Scenario

10

Domain A

Domain B

Domain A

Domain B

Time

𝑡0

Physical

memory

𝑡1

A invokes B

Denial-of-service

Domain A

Domain B

𝑡2

B returns

Minimal set of
properties for a unified
foundation

11

Property 1: Exclusive Access

12

I know I have

exclusive access!

J. Z. Yu, S. Shinde, T. E. Carlson, and P. Saxena, ‘Elasticlave: An Efficient Memory Model for Enclaves’, in 31st USENIX Security Symposium

Domain A

Domain B

𝑡1

A delegates

memory to B

Domain C

...

Domain A

Domain B

Time

𝑡0

Physical

memory

Property 2: Revocable Delegation

13J. Z. Yu, S. Shinde, T. E. Carlson, and P. Saxena, ‘Elasticlave: An Efficient Memory Model for Enclaves’, in 31st USENIX Security Symposium

Domain A

Domain B

Domain A

Domain B

𝑡0

Physical

memory

𝑡1

A delegates

memory to B

Domain A

Domain B

𝑡2

A revokes

access from B

I don't want B

to have access

anymore!

Time

Property 3: Extensible Hierarchy

14

I can also delegate

access to other

domains!

J. Z. Yu, S. Shinde, T. E. Carlson, and P. Saxena, ‘Elasticlave: An Efficient Memory Model for Enclaves’, in 31st USENIX Security Symposium

Domain A

Domain B

Physical

memory

𝑡1

Domain A

Domain B

𝑡2

Domain C

B delegates

memory to C

Domain A

Domain B

𝑡3

A revokes

access from B

Domain C

Time

Property 4: Secure Domain Switching

15

J. Cui, J. Z. Yu, S. Shinde, P. Saxena, and Z. Cai, ‘SmashEx: Smashing SGX Enclaves Using Exceptions’, in Proceedings of the 2021 ACM SIGSAC Conference on

Computer and Communications Security

Domain A

Domain B

Physical

memory

𝑡1

Domain A

Domain B
(switched out)

A pre-empts B B resumes execution

My data is

secured when I

am switched out.

Time

Domain A

Domain B

𝑡3𝑡2

Properties for a Trustless Unified Foundation

16

How to enforce those

properties through a

unified interface?

P1: Exclusive Access

P2: Revocable Delegation

P3: Extensible Hierarchy

P4: Secure Domain Switching

Architectural Capabilities: A Baseline

17R. N. M. Watson et al., ‘Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Version 8)’.

Physical Memory

:= (cursor, base, end, perms, …)

Capability

LD/ST addr, ...

LD/ST , ...

Unforgeability

Monotonicity

Minting

op

𝑡0 𝑡1

Enforcing Property 1: Exclusive Access

18

Domain A

Domain B

𝑡0

Physical

memory

Time

Domain A

Domain B

𝑡1

A delegates

memory to B

Domain C
A delegates same

memory to C

Domain A

Domain B

𝑡2

Capability

Enforcing Property 1: Exclusive Access

19

Domain A

Domain B

𝑡0

Physical

memory

Time

Domain A

Domain B

𝑡1

A delegates

memory to B

Domain C
A delegates same

memory to C

Domain A

Domain B

𝑡2

Capability

We need something more to enforce exclusive access!

Exclusive Access: Linear Capabilities

20

Linear

capability

Exclusive access

Linear Capability Operations

Move

Delinearize

Loc A

Loc B

𝑡0 𝑡1

move

𝑡0 𝑡1

delinearize

Memory Delegation with Linear Capabilities

21

Domain A

Domain B

𝑡0

Physical

memory

Time

Domain A

Domain B

𝑡1

A splits

capability

A delegates

capability to B

𝑡2

Domain A

Domain B

I want B to

return the

capability!

Non-linear

capability

Linear capability

Enforcing Property 2: Revocable Delegation

22

𝑡1

Physical

memory

Domain A

Domain B

Domain A

Domain B

𝑡2

A mints a

revocation

capability

𝑡3

Domain A

Domain B

A delegates

capability to B

𝑡4

Domain A

Domain B

A performs

revocation

Time

Non-linear

capability

Linear capability

Revocation

capability

Problem: Secret Leakage Can Still Happen

23

𝑡3

Physical

memory

Domain A

Domain B

Domain A

Domain B

𝑡4

B writes

secrets

A performs

revocation

𝑡5

Domain A

Domain B

Non-linear

capability

Linear capability

Revocation

capability

Problem: Secret Leakage Can Still Happen

24

𝑡3

Physical

memory

Domain A

Domain B

Domain A

Domain B

𝑡4

B writes

secrets

A performs

revocation

𝑡5

Domain A

Domain B

Non-linear

capability

Linear capability

Revocation

capability

How to prevent secret leakage while allowing revocation?

Solution: Uninitialized Capabilities

25

𝑡3

Physical

memory

Domain A

Domain B

Domain A

Domain B

𝑡4

B writes

secrets

A performs

revocation

𝑡5

Domain A

Domain B

write-only

Time

Non-linear

capability

Linear capability

Revocation

capability

Uninitialized

capability

CAPSTONE: Putting It Together

26

Sealed-return

Sealed Linear

Revocation Uninitialized

Non-linear

call retseal
mint

rev
revoke

revoke

delinearize

initialize

seal

ISA with capability types and instructions

https://capstone.kisp-lab.org/

https://capstone.kisp-lab.org/

Implementation and
Evaluation

27

Functional Prototype

28

CapstoneEmu

CapstoneLib

CapstoneCC
C-like code CAPSTONE

instructions

Output

Machine

configurations

Case studies

• Full memory safety (Rust-like semantics)

• Untrusted memory allocator

• Untrusted scheduler

• Nestable enclaves

Full Memory Safety (Rust-like Semantics)

29

Spatial Memory Safety

Temporal Memory Safety

Concurrent Thread Safety
Linear capabilities + revocation

Architectural capabilities

Operation Rust semantics CAPSTONE

Move let a = b; mov ra, rb;

Immutable borrow let a = &b;

mrev rr, rb; delin rb; li r0,

0; tighten rb, r0; mov ra, rb;

(use ra) revoke rr; mov rb, rr

Mutable borrow let a = &mut b;
mrev rr, rb; mov ra, rb; (use

ra) revoke rr; mov rb, rr

Trustless Memory Allocator

30

Allocatable

memory

Allocator code

Allocator

data

Non-linear

capability

Linear capability

Revocation

capability

Uninitialized

capability

Sealed capability

Allocated

memory

Trustless Scheduler

31

Non-linear

capability

Linear capability

Revocation

capability

Uninitialized

capability

Sealed capability

Thread B's

context

Scheduler code

Scheduler

data

Thread C's

context

Thread A's

context

Nestable Enclaves

32

Physical

memory

Domain A

Domain B

Domain A

Domain B

Domain A

Non-linear

capability

Linear capability

Revocation

capability

Uninitialized

capability

Sealed capability

Time

shared

buffer

B's

memory

A's

memory
Split, mint rev,

and

delinearize

A passes

capabilities

to B

𝑡0 𝑡1 𝑡2

Case Studies

33

Pointer Integrity

Spatial Memory Safety

Temporal Memory Safety

Concurrent Thread Safety

Intra-process Sandboxing

Process Sandboxing

Virtualization

Red-Green Secure Worlds

Nested / App Virtualization

Rust-like semantics

Nestable enclaves

Trustless memory allocator

Trustless scheduler

Takeaway: CAPSTONE is highly expressive

Preliminary Performance Evaluation

34

Results: within ~50% run time overhead

SimpleTimingCPU model

Modified SimpleTimingCPU

model with revocation &

validity metadata maintenance

SPEC CPU 2017 intspeed

Workload

Map to CAPSTONE

pointers to heap allocations →

non-linear capabilities

free → revoke

• Goal: unified foundation for trustless memory access

• Required properties

• Exclusive access

• Revocable delegation

• Extensible hierarchy

• Secure domain switching

• CAPSTONE

• Capability-based architecture

• Core ideas: linear capabilities, revocation, uninitialized capabilities

• Prototype implementations with emulator, compiler, and library

• Case studies: CAPSTONE is highly expressive

Conclusion

35

https://capstone.kisp-lab.org/

Thanks for listening!

https://capstone.kisp-lab.org/

	Slide 1
	Slide 2: World of Security Extensions
	Slide 3: Problems with Security Extensions
	Slide 4: Problems with Security Extensions
	Slide 5: Traditional Architectures Rely on Access Control
	Slide 6: Traditional Architectures Rely on Access Control
	Slide 7: Contributions
	Slide 8: Threat Model: Benign Scenario
	Slide 9: Threat Model: Malicious Scenario
	Slide 10: Threat Model: Malicious Scenario
	Slide 11: Minimal set of properties for a unified foundation
	Slide 12: Property 1: Exclusive Access
	Slide 13: Property 2: Revocable Delegation
	Slide 14: Property 3: Extensible Hierarchy
	Slide 15: Property 4: Secure Domain Switching
	Slide 16: Properties for a Trustless Unified Foundation
	Slide 17: Architectural Capabilities: A Baseline
	Slide 18: Enforcing Property 1: Exclusive Access
	Slide 19: Enforcing Property 1: Exclusive Access
	Slide 20: Exclusive Access: Linear Capabilities
	Slide 21: Memory Delegation with Linear Capabilities
	Slide 22: Enforcing Property 2: Revocable Delegation
	Slide 23: Problem: Secret Leakage Can Still Happen
	Slide 24: Problem: Secret Leakage Can Still Happen
	Slide 25: Solution: Uninitialized Capabilities
	Slide 26: Capstone: Putting It Together
	Slide 27: Implementation and Evaluation
	Slide 28: Functional Prototype
	Slide 29: Full Memory Safety (Rust-like Semantics)
	Slide 30: Trustless Memory Allocator
	Slide 31: Trustless Scheduler
	Slide 32: Nestable Enclaves
	Slide 33: Case Studies
	Slide 34: Preliminary Performance Evaluation
	Slide 35: Conclusion

