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World of Security Extensions

Pointer Integrity

Spatial Memory Safety

Temporal Memory Safety

Concurrent Thread Safety

Intra-process Sandboxing

Process Sandboxing

Virtualization

[ARMv8 Pointer Authentication Code]

[Intel MPX, RISC-V/ARM CHERI][Intel MPK, x86/64 DEP/NX]

[Intel SGX]

[AMD SEV]

[x86/64 Privilege Rings]

[Intel VT-x]

[Intel TSX – Transactional Synchronization Extensions]

Red-Green Secure Worlds [ARM TZ]

Nested / App Virtualization

[x86 Segmentation]

[Intel VT-x]

[Intel SGX]

[Intel TXT]

[None]
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[Intel TDX] [ARM CCA]

https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://en.wikipedia.org/wiki/Intel_MPX
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://arxiv.org/pdf/1811.07276v1.pdf
https://en.wikipedia.org/wiki/Executable_space_protection
https://en.wikipedia.org/wiki/Software_Guard_Extensions
https://developer.amd.com/sev/
https://en.wikipedia.org/wiki/Protection_ring
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-vmcs-shadowing-paper.pdf
https://en.wikipedia.org/wiki/Transactional_Synchronization_Extensions
https://sefcom.asu.edu/publications/trustzone-explained-cic2016.pdf
https://en.wikipedia.org/wiki/X86_memory_segmentation
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-vmcs-shadowing-paper.pdf
https://en.wikipedia.org/wiki/Software_Guard_Extensions
https://en.wikipedia.org/wiki/Trusted_Execution_Technology
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture


SGXLock

[1]

Problems with Security Extensions
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1. Unreliable availability of security features 2. Poor interoperability for multiple security goals

MPK

SGX

MPX

VMX

SGXBounds

[2]

KVM

[3]

[1] 

Y. Chen et al., ‘SGXLock: Towards Efficiently Establishing Mutual Distrust Between Host Application and Enclave for SGX’, in 31st USENIX Security Symposium, USENIX Security 2022, Boston, 

MA, USA, August 10-12, 2022, K. R. B. Butler and K. Thomas, Eds., USENIX Association, 2022, pp. 4129–4146. [Online]. Available: 

https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yuan

Source: https://edc.intel.com/content/www/us/en/design/ipla/software-development-

platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-

2/010/deprecated-technologies/ accessed 30 July 2023

[2]

D. Kuvaiskii et al., ‘SGXBOUNDS: Memory Safety for Shielded Execution’, in Proceedings of the Twelfth European Conference on Computer Systems, Belgrade Serbia: ACM, Apr. 2017, pp. 

205–221. doi: 10.1145/3064176.3064192.

https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yuan
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://doi.org/10.1145/3064176.3064192
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MPK

SGX

MPX

VMX
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[2]

KVM

[3]

[1] 

Y. Chen et al., ‘SGXLock: Towards Efficiently Establishing Mutual Distrust Between Host Application and Enclave for SGX’, in 31st USENIX Security Symposium, USENIX Security 2022, Boston, 

MA, USA, August 10-12, 2022, K. R. B. Butler and K. Thomas, Eds., USENIX Association, 2022, pp. 4129–4146. [Online]. Available: 

https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yuan

Source: https://edc.intel.com/content/www/us/en/design/ipla/software-development-

platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-

2/010/deprecated-technologies/ accessed 30 July 2023

[2]

D. Kuvaiskii et al., ‘SGXBOUNDS: Memory Safety for Shielded Execution’, in Proceedings of the Twelfth European Conference on Computer Systems, Belgrade Serbia: ACM, Apr. 2017, pp. 

205–221. doi: 10.1145/3064176.3064192.

Is there a unified foundation for multiple security goals?

https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yuan
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://doi.org/10.1145/3064176.3064192


Traditional Architectures Rely on Access Control
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Hypervisor

OS kernel

App App App

MMU/

MPU

Allow/disallow

Trust

Physical 

memory



Traditional Architectures Rely on Access Control
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Hypervisor

OS kernel

App App App

MMU/

MPU

Allow/disallow

Trust

Physical 

memory

Relies on explicitly managed security policies

Assumes a central trusted authority

→ limiting in expressiveness

Can we make memory access trustless?



Contributions
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CAPSTONE

Minimal set of properties

P1: Exclusive Access

P2: Revocable Delegation

P3: Extensible Hierarchy

P4: Secure Domain Switching

Goal: Unified Foundation for

Trustless Memory Access

Pointer Integrity

Spatial Memory Safety

Temporal Memory Safety

Concurrent Thread Safety

Intra-process Sandboxing

Process Sandboxing

Virtualization

Red-Green Secure Worlds

Nested / App Virtualization



Threat Model: Benign Scenario
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Domain A

Domain B

Domain A

Domain B

Domain A

Domain B

Time

𝑡0

Physical 

memory

𝑡1 𝑡2

A invokes B B returns



Threat Model: Malicious Scenario
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Domain A

Domain B

Domain A

Domain B

Time

𝑡0

Physical 

memory

𝑡1

A invokes B
Secret leakage

Broken integrity

TOCTTOU



Threat Model: Malicious Scenario
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Domain A

Domain B

Domain A

Domain B

Time

𝑡0

Physical 

memory

𝑡1

A invokes B

Denial-of-service

Domain A

Domain B

𝑡2

B returns



Minimal set of 
properties for a unified 
foundation
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Property 1: Exclusive Access
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I know I have 

exclusive access!

J. Z. Yu, S. Shinde, T. E. Carlson, and P. Saxena, ‘Elasticlave: An Efficient Memory Model for Enclaves’, in 31st USENIX Security Symposium

Domain A

Domain B

𝑡1

A delegates 

memory to B

Domain C

...

Domain A

Domain B

Time

𝑡0

Physical 

memory



Property 2: Revocable Delegation 

13J. Z. Yu, S. Shinde, T. E. Carlson, and P. Saxena, ‘Elasticlave: An Efficient Memory Model for Enclaves’, in 31st USENIX Security Symposium

Domain A

Domain B

Domain A

Domain B

𝑡0

Physical 

memory

𝑡1

A delegates 

memory to B

Domain A

Domain B

𝑡2

A revokes 

access from B

I don't want B 

to have access 

anymore!

Time



Property 3: Extensible Hierarchy
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I can also delegate 

access to other 

domains!

J. Z. Yu, S. Shinde, T. E. Carlson, and P. Saxena, ‘Elasticlave: An Efficient Memory Model for Enclaves’, in 31st USENIX Security Symposium

Domain A

Domain B

Physical 

memory

𝑡1

Domain A

Domain B

𝑡2

Domain C

B delegates 

memory to C

Domain A

Domain B

𝑡3

A revokes 

access from B

Domain C

Time



Property 4: Secure Domain Switching
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J. Cui, J. Z. Yu, S. Shinde, P. Saxena, and Z. Cai, ‘SmashEx: Smashing SGX Enclaves Using Exceptions’, in Proceedings of the 2021 ACM SIGSAC Conference on 

Computer and Communications Security

Domain A

Domain B

Physical 

memory

𝑡1

Domain A

Domain B
(switched out)

A pre-empts B B resumes execution

My data is 

secured when I 

am switched out.

Time

Domain A

Domain B

𝑡3𝑡2



Properties for a Trustless Unified Foundation
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How to enforce those 

properties through a 

unified interface?

P1: Exclusive Access

P2: Revocable Delegation

P3: Extensible Hierarchy

P4: Secure Domain Switching



Architectural Capabilities: A Baseline

17R. N. M. Watson et al., ‘Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Version 8)’.

Physical Memory

:= (cursor, base, end, perms, …)

Capability

LD/ST addr, ...

LD/ST     , ...

Unforgeability

Monotonicity

Minting

op

𝑡0 𝑡1



Enforcing Property 1: Exclusive Access
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Domain A

Domain B

𝑡0

Physical 

memory

Time

Domain A

Domain B

𝑡1

A delegates 

memory to B

Domain C
A delegates same 

memory to C

Domain A

Domain B

𝑡2

Capability



Enforcing Property 1: Exclusive Access
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Domain A

Domain B

𝑡0

Physical 

memory

Time

Domain A

Domain B

𝑡1

A delegates 

memory to B

Domain C
A delegates same 

memory to C

Domain A

Domain B

𝑡2

Capability

We need something more to enforce exclusive access!



Exclusive Access: Linear Capabilities
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Linear 

capability

Exclusive access

Linear Capability Operations

Move

Delinearize

Loc A

Loc B

𝑡0 𝑡1

move

𝑡0 𝑡1

delinearize



Memory Delegation with Linear Capabilities
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Domain A

Domain B

𝑡0

Physical 

memory

Time

Domain A

Domain B

𝑡1

A splits 

capability

A delegates 

capability to B

𝑡2

Domain A

Domain B

I want B to 

return the 

capability!

Non-linear 

capability 

Linear capability



Enforcing Property 2: Revocable Delegation
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𝑡1

Physical 

memory

Domain A

Domain B

Domain A

Domain B

𝑡2

A mints a 

revocation 

capability

𝑡3

Domain A

Domain B

A delegates 

capability to B

𝑡4

Domain A

Domain B

A performs 

revocation

Time

Non-linear 

capability 

Linear capability

Revocation 

capability



Problem: Secret Leakage Can Still Happen
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𝑡3

Physical 

memory

Domain A

Domain B

Domain A

Domain B

𝑡4

B writes 

secrets

A performs 

revocation

𝑡5

Domain A

Domain B

Non-linear 

capability 

Linear capability

Revocation 

capability



Problem: Secret Leakage Can Still Happen
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𝑡3

Physical 

memory

Domain A

Domain B

Domain A

Domain B

𝑡4

B writes 

secrets

A performs 

revocation

𝑡5

Domain A

Domain B

Non-linear 

capability 

Linear capability

Revocation 

capability

How to prevent secret leakage while allowing revocation?



Solution: Uninitialized Capabilities
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𝑡3

Physical 

memory

Domain A

Domain B

Domain A

Domain B

𝑡4

B writes 

secrets

A performs 

revocation

𝑡5

Domain A

Domain B

write-only

Time

Non-linear 

capability 

Linear capability

Revocation 

capability

Uninitialized 

capability



CAPSTONE: Putting It Together
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Sealed-return

Sealed Linear

Revocation Uninitialized

Non-linear

call retseal
mint

rev 
revoke

revoke

delinearize

initialize

seal

ISA with capability types and instructions

https://capstone.kisp-lab.org/

https://capstone.kisp-lab.org/


Implementation and 
Evaluation

27



Functional Prototype
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CapstoneEmu

CapstoneLib

CapstoneCC
C-like code CAPSTONE

instructions

Output

Machine 

configurations

Case studies

• Full memory safety (Rust-like semantics)

• Untrusted memory allocator

• Untrusted scheduler

• Nestable enclaves



Full Memory Safety (Rust-like Semantics)
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Spatial Memory Safety

Temporal Memory Safety

Concurrent Thread Safety
Linear capabilities + revocation

Architectural capabilities

Operation Rust semantics CAPSTONE

Move let a = b; mov ra, rb;

Immutable borrow let a = &b;

mrev rr, rb; delin rb; li r0, 

0; tighten rb, r0; mov ra, rb; 

(use ra) revoke rr; mov rb, rr

Mutable borrow let a = &mut b;
mrev rr, rb; mov ra, rb; (use 

ra) revoke rr; mov rb, rr



Trustless Memory Allocator
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Allocatable 

memory

Allocator code

Allocator 

data

Non-linear 

capability 

Linear capability

Revocation 

capability

Uninitialized 

capability

Sealed capability

Allocated 

memory



Trustless Scheduler
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Non-linear 

capability 

Linear capability

Revocation 

capability

Uninitialized 

capability

Sealed capability

Thread B's 

context

Scheduler code

Scheduler 

data

Thread C's 

context

Thread A's 

context



Nestable Enclaves
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Physical 

memory

Domain A

Domain B

Domain A

Domain B

Domain A

Non-linear 

capability 

Linear capability

Revocation 

capability

Uninitialized 

capability

Sealed capability

Time

shared 

buffer

B's 

memory

A's 

memory
Split, mint rev,

and 

delinearize

A passes 

capabilities 

to B

𝑡0 𝑡1 𝑡2



Case Studies
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Pointer Integrity

Spatial Memory Safety

Temporal Memory Safety

Concurrent Thread Safety

Intra-process Sandboxing

Process Sandboxing

Virtualization

Red-Green Secure Worlds

Nested / App Virtualization

Rust-like semantics

Nestable enclaves

Trustless memory allocator

Trustless scheduler

Takeaway: CAPSTONE is highly expressive



Preliminary Performance Evaluation

34

Results: within ~50% run time overhead

SimpleTimingCPU model 

Modified SimpleTimingCPU 

model with revocation & 

validity metadata maintenance

SPEC CPU 2017 intspeed

Workload

Map to CAPSTONE

pointers to heap allocations → 

non-linear capabilities

free → revoke



• Goal: unified foundation for trustless memory access

• Required properties

• Exclusive access

• Revocable delegation

• Extensible hierarchy

• Secure domain switching

• CAPSTONE

• Capability-based architecture

• Core ideas: linear capabilities, revocation, uninitialized capabilities

• Prototype implementations with emulator, compiler, and library

• Case studies: CAPSTONE is highly expressive

Conclusion

35

https://capstone.kisp-lab.org/

Thanks for listening!

https://capstone.kisp-lab.org/

	Slide 1
	Slide 2: World of Security Extensions
	Slide 3: Problems with Security Extensions
	Slide 4: Problems with Security Extensions
	Slide 5: Traditional Architectures Rely on Access Control
	Slide 6: Traditional Architectures Rely on Access Control
	Slide 7: Contributions
	Slide 8: Threat Model: Benign Scenario
	Slide 9: Threat Model: Malicious Scenario
	Slide 10: Threat Model: Malicious Scenario
	Slide 11: Minimal set of properties for a unified foundation
	Slide 12: Property 1: Exclusive Access
	Slide 13: Property 2: Revocable Delegation 
	Slide 14: Property 3: Extensible Hierarchy
	Slide 15: Property 4: Secure Domain Switching
	Slide 16: Properties for a Trustless Unified Foundation
	Slide 17: Architectural Capabilities: A Baseline
	Slide 18: Enforcing Property 1: Exclusive Access
	Slide 19: Enforcing Property 1: Exclusive Access
	Slide 20: Exclusive Access: Linear Capabilities
	Slide 21: Memory Delegation with Linear Capabilities
	Slide 22: Enforcing Property 2: Revocable Delegation
	Slide 23: Problem: Secret Leakage Can Still Happen
	Slide 24: Problem: Secret Leakage Can Still Happen
	Slide 25: Solution: Uninitialized Capabilities
	Slide 26: Capstone: Putting It Together
	Slide 27: Implementation and Evaluation
	Slide 28: Functional Prototype
	Slide 29: Full Memory Safety (Rust-like Semantics)
	Slide 30: Trustless Memory Allocator
	Slide 31: Trustless Scheduler
	Slide 32: Nestable Enclaves
	Slide 33: Case Studies
	Slide 34: Preliminary Performance Evaluation
	Slide 35: Conclusion

