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World of Security Extensions

Pointer Integrity [ARMv8 Pointer Authentication Code]
Spatial Memory Safety Intel MPK, x86/64 DEP/NX][Intel MPX, RISC-V/ARM CHERI]

Temporal Memory Safety ‘None]

Concurrent Thread Safety Intel TSX —Transactional Synchronization Extensions]

Intra-process Sandboxing Intel SGX] [x86 Segmentation]

Process Sandboxing x86/64 Privilege Rings]

Virtualization AMD SEV] [Intel VI-x] [Intel TDX] [ARM CCA]
Red-Green Secure Worlds ARMTZ] [Intel TXT]

Nested / App Virtualization Intel VI-x] [Intel SGX]


https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://en.wikipedia.org/wiki/Intel_MPX
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://arxiv.org/pdf/1811.07276v1.pdf
https://en.wikipedia.org/wiki/Executable_space_protection
https://en.wikipedia.org/wiki/Software_Guard_Extensions
https://developer.amd.com/sev/
https://en.wikipedia.org/wiki/Protection_ring
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-vmcs-shadowing-paper.pdf
https://en.wikipedia.org/wiki/Transactional_Synchronization_Extensions
https://sefcom.asu.edu/publications/trustzone-explained-cic2016.pdf
https://en.wikipedia.org/wiki/X86_memory_segmentation
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-vmcs-shadowing-paper.pdf
https://en.wikipedia.org/wiki/Software_Guard_Extensions
https://en.wikipedia.org/wiki/Trusted_Execution_Technology
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture

Problems with Security Extensions

|. Unreliable availability of security features 2. Poor interoperability for multiple security goals

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse3
6 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpelgb rdtscp lm constant_ MPK

tsc art arch_perfmon pebs bts rep_good nopl xtopolegy nonstop_tsc cpuid aperfmperf pni p
clmulqdg dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse
4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx fl16c rdrand lahf_1m abm 3dnowpr
efetch cpuid_fault epb invpcid_single pti ssbhd ibrs ibpb stibp tpr_shadow vnmi flexprior
ity ept vpid ept_ad fsgsbase tsc_adjust sgx bmil avx2 smep bmi2 erms invpcid mpx rdseed

adx smap clflushopt intel_pt xsaveopt xsavec xgetbvl xsaves dtherm ida arat pln pts hwp

hwp_notify hwp_act_window hwp_epp sgx_lc md_clear flush_l1d arch_capabilities

Deprecated Technologies

SGXBounds
[2]

SGXLock

The processor has deprecated the following technologies and they are no longer supported:

¢ Intel® Memory Protection Extensions (Intel® MPX)

Branch Monitoring Counters

Hardware Lock Elision (HLE), part of Intel® TSX-NI
Intel® Software Guard Extensions (Intel® SGX)
Intel® TSX-NI

e Power Aware Interrupt Routing (PAIR)

VMX

Source: https://edc.intel.com/content/www/us/en/design/ipla/software-development-
platforms/client/platforms/alder-lake-desktop/ | 2th-generation-intel-core-processors-datasheet-volume- | -of-
2/010/deprecated-technologies/ accessed 30 July 2023

[
Y. Chen et al.,'SGXLock:Towards Efficiently Establishing Mutual Distrust Between Host Application and Enclave for SGX, in 3 /st USENIX Security Symposium, USENIX Security 2022, Boston,
MA, USA, August 10-12, 2022, K.R. B. Butler and K.Thomas, Eds., USENIX Association, 2022, pp. 4129—4146. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yuan

[2]

D. Kuvaiskii et al.,'SGXBOUNDS: Memory Safety for Shielded Execution’, in Proceedings of the Twelfth European Conference on Computer Systems, Belgrade Serbia:ACM,Apr. 2017, pp.
205-221.doi: 10.1145/3064176.3064192. 3



https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yuan
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://doi.org/10.1145/3064176.3064192

Is there a unified foundation for multiple security goals?


https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yuan
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://doi.org/10.1145/3064176.3064192

Traditional Architectures Rely on Access Control

Allow/disallow

Physical
memory

Trust
OS kernel

Hypervisor




Relies on explicitly managed security policies
Assumes a central trusted authority
- limiting in expressiveness

Can we make memory access trustless!?



Contributions

Goal: Unified Foundation for
Trustless Memory Access

Minimal set of properties

Pl: Exclusive Access

P2: Revocable Delegation
P3: Extensible Hierarchy

P4: Secure Domain Switching

CAPSTONE

—

Pointer Integrity
Spatial Memory Safety
Temporal Memory Safety
Concurrent Thread Safety
Intra-process Sandboxing
Process Sandboxing
Virtualization

Red-Green Secure Worlds

Nested / App Virtualization



Threat Model: Benign Scenario

Domain A Domain A Domain A

Physical
memory

)

A invokes B

)

B returns

Domain B Domain B Domain B

to t %)




Threat Model: Malicious Scenario

Domain A Domain A il

! A invokes B Secret leakage

Broken integrity
Domain B Domain B TOCTTOU

Physical
memory

tO tl




Threat Model: Malicious Scenario

Domain A Domain A Domain A

Denial-of-service

Physical
memory

)

A invokes B

Domain B Domain B Domain B i

to t %)

)

B returns




Minimal set of
properties for a unified
foundation




Property |: Exclusive Access

Domain A Domain A
Domain C
Physical
memory )
A delegates
memory to B
Domain B Domain B
to t : e

J. Z.Yu, S. Shinde, T. E. Carlson, and P. Saxena, ‘Elasticlave: An Efficient Memory Model for Enclaves’, in 3 1st USENIX Security Symposium



Property 2: Revocable Delegation

| don't want B

Domain A

Physical
memory

Domain B

Lo

)

A delegates
memory to B

Domain A

Domain B

1

to have access
anymore!

)

A revokes
access from B

Domain A

Domain B

)

J. Z.Yu, S. Shinde, T. E. Carlson, and P. Saxena, ‘Elasticlave: An Efficient Memory Model for Enclaves’, in 3 1st USENIX Security Symposium



Property 3: Extensible Hierarchy

Physical
memory

Domain A

Domain B

Domain A

Domain C

)

B delegates

memory to C

Domain B

| can also delegate
access to other
domains!

)

A revokes
access from B

Domain A

Domain C

Domain B

J. Z.Yu, S. Shinde, T. E. Carlson, and P. Saxena, ‘Elasticlave: An Efficient Memory Model for Enclaves’, in 3 1st USENIX Security Symposium




Property 4: Secure Domain Switching

Domain A Domain A Domain A

Physical
memory ) )
A pre-empts B * B resumes execution
Domain B ngain 2 Domain B
(switched out)
My data is
t4 t, secured when | ts

am switched out.

J. Cui, ). Z.Yu, S. Shinde, P. Saxena, and Z. Cai, ‘SmashEx: Smashing SGX Enclaves Using Exceptions’, in Proceedings of the 202 | ACM SIGSAC Conference on
Computer and Communications Security



Properties for a Trustless Unified Foundation

. Pl: Exclusive Access i How to enforce those

" P2: Revocable Delegation i properties through 2
_________________________________________________ | unified interface?

P3: Extensible Hierarchy

P4: Secure Domain Switching




Architectural Capabilities: A Baseline

Physical Memory

E\ := (cursor, base,

Capability

LD/ST axr,

to/st &,

end, perms, ..)

Unforgeability

-y
. . ’¢ \\ ’--.~~
Minting) .~ ~ R ~~» &5
op et

Monotonicity

R.N. M.Watson et al.,‘Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Version 8)’. 17



Enforcing Property |:Exclusive Access

Physical
memory

Domain A

o

Domain B

to

&

. Capability

A delegates
memory to B

Domain A

Domain B

1

 Time 2

A delegates same
memory to C

Domain A

o

Domain C

Domain B

ty




We need something more to enforce exclusive access!



Exclusive Access: Linear Capabilities

e i O

LocA &
'~

) 2 X %x\ Loc B move '8 |
Linear
capability Lo t1

L4 . . W_‘
< Exclusive access | —
delinearize

20



Memory Delegation with Linear Capabilities

Domain A Domain A Domain A
| want B to
return the
capability!
Physical
memory ) —

A splits A delegates
capability capability to B

3
Domain B Domain B Domain B i

to tq )

o Non-linear

Linear capability

21



Enforcing Property 2: Revocable Delegation

Domain A

Domain A

Physical

memory )
A mints a
revocation
capability

Domain B Domain B
t1 )
o Non-linear Revocation
Y capability capability

Linear capability

 Time 2

A delegates
capability to B

Domain A

)

Domain B

t3

)

A performs
revocation

Domain A

Domain B

()

22



Problem: Secret Leakage Can Still Happen

Domain A

Domain A

Physical

memory )
B writes
secrets

Domain B Domain B
L3 Ly
£  Non-linear Revocation
8 capability capability

Linear capability

A performs
revocation

Domain A

Domain B

ts

23



How to prevent secret leakage while allowing revocation!?



Solution: Uninitialized Capabilities

Domain A

Domain A

Physical
memory
B writes A performs
secrets revocation
Domain B Domain B
t3 )
£  Non-linear Revocation
S capability capability
e Uninitialized

Linear capability

capability

Domain A

Domain B

ts

25



CAPSTONE: Putting It Together

ISA with capability types and instructions

Sealed-return

call

Sealed

Revocation

revoke

)

Uninitialized

mint 1
retseal revoke initialize
rev

seal

<

Linear

delinearize

Non-linear

https://capstone.kisp-lab.org/

26


https://capstone.kisp-lab.org/

Implementation and
Evaluation




Functional Prototype

CapstonelLib

/- Case studies

* Full memory safety (Rust-like semantics)
* Untrusted memory allocator
* Untrusted scheduler

C-like code

\_ * Nestable enclaves

CapstoneCC

CAPSTONE

Machine
configurations

CapstoneEmu

Output

28



Full Memory Safety (Rust-like Semantics)

Spatial Memory Safety } Architectural capabilities
Temporal Memory Safety
Linear capabilities + revocation
Concurrent Thread Safety

Move let a = b; mov ra, rb;

mrev rr, rb; delin rb; 1i ro0O,
Immutable borrow let a = &b; 0; tighten rb, r0; mov ra, rb;
(use ra) revoke rr; mov rb, rr

mrev rr, rb; mov ra, rb; (use

Mutable borrow let a = &mut b;
ra) revoke rr; mov rb, rr

29



Trustless Memory Allocator

Allocatable
memory

Allocated
memory /
Allocator
data
o Non-I‘il?ear Revocja.tion Sealed capability
S capability capability

Linear capability

&

Uninitialized
capability

Allocator code

J

<

7/

J

~

30



Trustless Scheduler

Thread A's
context
Scheduler code
g J
........ N
R N\ J
ThreadBs £ | | | Y
comext £ Lo | L Q\r\w\\w
niax
ThreadC'sE } R
context /
Scheduler

data

£  Non-linear Revocation
S capability capability
e Uninitialized
capability

Sealed capability

Linear capability




Nestable Enclaves

Domain A

N

Domain A

Physical %
memory &
Split, mint rey, x
and
delinearize
Domain B
to t,
< Non-linear Revocation Sealed capability
Y capability capability
e Uninitialized

Linear capability

capability

e

N

Domain A

A\ 4

)

shared
buffe

X
B's - JA'S NN

memoryimemory

ttttttttt

A passes | x
capabilities
to B 3
Domain B
L2

 Time

32



Case Studies

Pointer Integrity

_J

Spatial Memory Safety

Temporal Memory Safety > Rust-like semantics

Concurrent Thread Safety

&

Intra-process Sandboxing Trustless memory allocator

Process Sandboxing Trustless scheduler

> Nestable enclaves
Virtualization

Red-Green Secure Worlds

Nested / App Virtualization y

Takeaway: CAPSTONE is highly expressive

33



Preliminary Performance Evaluation

cembd

SPEC CPU 2017 intspeed

b RISC

SimpleTimingCPU model

®

pointers to heap allocations =

non-linear capabilities
Map to CAPSTONE

free = revoke

- Workload

Modified SimpleTimingCPU

- model with revocation &

validity metadata maintenance

Results: within ~50% run time overhead

34



Conclusion

Goal: unified foundation for trustless memory access
Required properties

* Exclusive access

* Revocable delegation

* Extensible hierarchy

* Secure domain switching
CAPSTONE

* Capability-based architecture https://capstone.kisp-lab.org/
Core ideas: linear capabilities, revocation, uninitialized capabilities
Prototype implementations with emulator, compiler; and library
Case studies: CAPSTONE is highly expressive

Thanks for listening!

35


https://capstone.kisp-lab.org/
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