ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

REPRODUCED

CAPSTONE: A Capability-based Foundation for
Trustless Secure Memory Access

32" USENIX Security Symposium

Jason Zhijingcheng Yu, Conrad Watt, Aditya Badole,
Trevor E. Carlson, Prateek Saxena

National University of Singapore
University of Cambridge

57 UNIVERSITY OF

& '
NUS ‘computing @Y CAMBRIDGE




World of Security Extensions

Pointer Integrity [ARMv8 Pointer Authentication Code]
Spatial Memory Safety Intel MPK, x86/64 DEP/NX][Intel MPX, RISC-V/ARM CHERI]

Temporal Memory Safety ‘None]

Concurrent Thread Safety Intel TSX —Transactional Synchronization Extensions]

Intra-process Sandboxing Intel SGX] [x86 Segmentation]

Process Sandboxing x86/64 Privilege Rings]

Virtualization AMD SEV] [Intel VI-x] [Intel TDX] [ARM CCA]
Red-Green Secure Worlds ARMTZ] [Intel TXT]

Nested / App Virtualization Intel VI-x] [Intel SGX]


https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://en.wikipedia.org/wiki/Intel_MPX
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://arxiv.org/pdf/1811.07276v1.pdf
https://en.wikipedia.org/wiki/Executable_space_protection
https://en.wikipedia.org/wiki/Software_Guard_Extensions
https://developer.amd.com/sev/
https://en.wikipedia.org/wiki/Protection_ring
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-vmcs-shadowing-paper.pdf
https://en.wikipedia.org/wiki/Transactional_Synchronization_Extensions
https://sefcom.asu.edu/publications/trustzone-explained-cic2016.pdf
https://en.wikipedia.org/wiki/X86_memory_segmentation
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-vmcs-shadowing-paper.pdf
https://en.wikipedia.org/wiki/Software_Guard_Extensions
https://en.wikipedia.org/wiki/Trusted_Execution_Technology
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture

Problems with Security Extensions

|. Unreliable availability of security features 2. Poor interoperability for multiple security goals

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse3
6 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpelgb rdtscp lm constant_ MPK

tsc art arch_perfmon pebs bts rep_good nopl xtopolegy nonstop_tsc cpuid aperfmperf pni p
clmulqdg dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse
4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx fl16c rdrand lahf_1m abm 3dnowpr
efetch cpuid_fault epb invpcid_single pti ssbhd ibrs ibpb stibp tpr_shadow vnmi flexprior
ity ept vpid ept_ad fsgsbase tsc_adjust sgx bmil avx2 smep bmi2 erms invpcid mpx rdseed

adx smap clflushopt intel_pt xsaveopt xsavec xgetbvl xsaves dtherm ida arat pln pts hwp

hwp_notify hwp_act_window hwp_epp sgx_lc md_clear flush_l1d arch_capabilities

Deprecated Technologies

SGXBounds
[2]

SGXLock

The processor has deprecated the following technologies and they are no longer supported:

¢ Intel® Memory Protection Extensions (Intel® MPX)

Branch Monitoring Counters

Hardware Lock Elision (HLE), part of Intel® TSX-NI
Intel® Software Guard Extensions (Intel® SGX)
Intel® TSX-NI

e Power Aware Interrupt Routing (PAIR)

VMX

Source: https://edc.intel.com/content/www/us/en/design/ipla/software-development-
platforms/client/platforms/alder-lake-desktop/ | 2th-generation-intel-core-processors-datasheet-volume- | -of-
2/010/deprecated-technologies/ accessed 30 July 2023

[
Y. Chen et al.,'SGXLock:Towards Efficiently Establishing Mutual Distrust Between Host Application and Enclave for SGX, in 3 /st USENIX Security Symposium, USENIX Security 2022, Boston,
MA, USA, August 10-12, 2022, K.R. B. Butler and K.Thomas, Eds., USENIX Association, 2022, pp. 4129—4146. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yuan

[2]

D. Kuvaiskii et al.,'SGXBOUNDS: Memory Safety for Shielded Execution’, in Proceedings of the Twelfth European Conference on Computer Systems, Belgrade Serbia:ACM,Apr. 2017, pp.
205-221.doi: 10.1145/3064176.3064192. 3



https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yuan
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://doi.org/10.1145/3064176.3064192

Is there a unified foundation for multiple security goals?


https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yuan
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/010/deprecated-technologies/
https://doi.org/10.1145/3064176.3064192

Traditional Architectures Rely on Access Control

Allow/disallow

Physical
memory

Trust
OS kernel

Hypervisor




Relies on explicitly managed security policies
Assumes a central trusted authority
- limiting in expressiveness

Can we make memory access trustless!?



Contributions

Goal: Unified Foundation for
Trustless Memory Access

Minimal set of properties

Pl: Exclusive Access

P2: Revocable Delegation
P3: Extensible Hierarchy

P4: Secure Domain Switching

CAPSTONE

—

Pointer Integrity
Spatial Memory Safety
Temporal Memory Safety
Concurrent Thread Safety
Intra-process Sandboxing
Process Sandboxing
Virtualization

Red-Green Secure Worlds

Nested / App Virtualization



Threat Model: Benign Scenario

Domain A Domain A Domain A

Physical
memory

)

A invokes B

)

B returns

Domain B Domain B Domain B

to t %)




Threat Model: Malicious Scenario

Domain A Domain A il

! A invokes B Secret leakage

Broken integrity
Domain B Domain B TOCTTOU

Physical
memory

tO tl




Threat Model: Malicious Scenario

Domain A Domain A Domain A

Denial-of-service

Physical
memory

)

A invokes B

Domain B Domain B Domain B i

to t %)

)

B returns




Minimal set of
properties for a unified
foundation




Property |: Exclusive Access

Domain A Domain A
Domain C
Physical
memory )
A delegates
memory to B
Domain B Domain B
to t : e

J. Z.Yu, S. Shinde, T. E. Carlson, and P. Saxena, ‘Elasticlave: An Efficient Memory Model for Enclaves’, in 3 1st USENIX Security Symposium



Property 2: Revocable Delegation

| don't want B

Domain A

Physical
memory

Domain B

Lo

)

A delegates
memory to B

Domain A

Domain B

1

to have access
anymore!

)

A revokes
access from B

Domain A

Domain B

)

J. Z.Yu, S. Shinde, T. E. Carlson, and P. Saxena, ‘Elasticlave: An Efficient Memory Model for Enclaves’, in 3 1st USENIX Security Symposium



Property 3: Extensible Hierarchy

Physical
memory

Domain A

Domain B

Domain A

Domain C

)

B delegates

memory to C

Domain B

| can also delegate
access to other
domains!

)

A revokes
access from B

Domain A

Domain C

Domain B

J. Z.Yu, S. Shinde, T. E. Carlson, and P. Saxena, ‘Elasticlave: An Efficient Memory Model for Enclaves’, in 3 1st USENIX Security Symposium




Property 4: Secure Domain Switching

Domain A Domain A Domain A

Physical
memory ) )
A pre-empts B * B resumes execution
Domain B ngain 2 Domain B
(switched out)
My data is
t4 t, secured when | ts

am switched out.

J. Cui, ). Z.Yu, S. Shinde, P. Saxena, and Z. Cai, ‘SmashEx: Smashing SGX Enclaves Using Exceptions’, in Proceedings of the 202 | ACM SIGSAC Conference on
Computer and Communications Security



Properties for a Trustless Unified Foundation

. Pl: Exclusive Access i How to enforce those

" P2: Revocable Delegation i properties through 2
_________________________________________________ | unified interface?

P3: Extensible Hierarchy

P4: Secure Domain Switching




Architectural Capabilities: A Baseline

Physical Memory

E\ := (cursor, base,

Capability

LD/ST axr,

to/st &,

end, perms, ..)

Unforgeability

-y
. . ’¢ \\ ’--.~~
Minting) .~ ~ R ~~» &5
op et

Monotonicity

R.N. M.Watson et al.,‘Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Version 8)’. 17



Enforcing Property |:Exclusive Access

Physical
memory

Domain A

o

Domain B

to

&

. Capability

A delegates
memory to B

Domain A

Domain B

1

 Time 2

A delegates same
memory to C

Domain A

o

Domain C

Domain B

ty




We need something more to enforce exclusive access!



Exclusive Access: Linear Capabilities

e i O

LocA &
'~

) 2 X %x\ Loc B move '8 |
Linear
capability Lo t1

L4 . . W_‘
< Exclusive access | —
delinearize

20



Memory Delegation with Linear Capabilities

Domain A Domain A Domain A
| want B to
return the
capability!
Physical
memory ) —

A splits A delegates
capability capability to B

3
Domain B Domain B Domain B i

to tq )

o Non-linear

Linear capability

21



Enforcing Property 2: Revocable Delegation

Domain A

Domain A

Physical

memory )
A mints a
revocation
capability

Domain B Domain B
t1 )
o Non-linear Revocation
Y capability capability

Linear capability

 Time 2

A delegates
capability to B

Domain A

)

Domain B

t3

)

A performs
revocation

Domain A

Domain B

()

22



Problem: Secret Leakage Can Still Happen

Domain A

Domain A

Physical

memory )
B writes
secrets

Domain B Domain B
L3 Ly
£  Non-linear Revocation
8 capability capability

Linear capability

A performs
revocation

Domain A

Domain B

ts

23



How to prevent secret leakage while allowing revocation!?



Solution: Uninitialized Capabilities

Domain A

Domain A

Physical
memory
B writes A performs
secrets revocation
Domain B Domain B
t3 )
£  Non-linear Revocation
S capability capability
e Uninitialized

Linear capability

capability

Domain A

Domain B

ts

25



CAPSTONE: Putting It Together

ISA with capability types and instructions

Sealed-return

call

Sealed

Revocation

revoke

)

Uninitialized

mint 1
retseal revoke initialize
rev

seal

<

Linear

delinearize

Non-linear

https://capstone.kisp-lab.org/

26


https://capstone.kisp-lab.org/

Implementation and
Evaluation




Functional Prototype

CapstonelLib

/- Case studies

* Full memory safety (Rust-like semantics)
* Untrusted memory allocator
* Untrusted scheduler

C-like code

\_ * Nestable enclaves

CapstoneCC

CAPSTONE

Machine
configurations

CapstoneEmu

Output

28



Full Memory Safety (Rust-like Semantics)

Spatial Memory Safety } Architectural capabilities
Temporal Memory Safety
Linear capabilities + revocation
Concurrent Thread Safety

Move let a = b; mov ra, rb;

mrev rr, rb; delin rb; 1i ro0O,
Immutable borrow let a = &b; 0; tighten rb, r0; mov ra, rb;
(use ra) revoke rr; mov rb, rr

mrev rr, rb; mov ra, rb; (use

Mutable borrow let a = &mut b;
ra) revoke rr; mov rb, rr

29



Trustless Memory Allocator

Allocatable
memory

Allocated
memory /
Allocator
data
o Non-I‘il?ear Revocja.tion Sealed capability
S capability capability

Linear capability

&

Uninitialized
capability

Allocator code

J

<

7/

J

~

30



Trustless Scheduler

Thread A's
context
Scheduler code
g J
........ N
R N\ J
ThreadBs £ | | | Y
comext £ Lo | L Q\r\w\\w
niax
ThreadC'sE } R
context /
Scheduler

data

£  Non-linear Revocation
S capability capability
e Uninitialized
capability

Sealed capability

Linear capability




Nestable Enclaves

Domain A

N

Domain A

Physical %
memory &
Split, mint rey, x
and
delinearize
Domain B
to t,
< Non-linear Revocation Sealed capability
Y capability capability
e Uninitialized

Linear capability

capability

e

N

Domain A

A\ 4

)

shared
buffe

X
B's - JA'S NN

memoryimemory

ttttttttt

A passes | x
capabilities
to B 3
Domain B
L2

 Time

32



Case Studies

Pointer Integrity

_J

Spatial Memory Safety

Temporal Memory Safety > Rust-like semantics

Concurrent Thread Safety

&

Intra-process Sandboxing Trustless memory allocator

Process Sandboxing Trustless scheduler

> Nestable enclaves
Virtualization

Red-Green Secure Worlds

Nested / App Virtualization y

Takeaway: CAPSTONE is highly expressive

33



Preliminary Performance Evaluation

cembd

SPEC CPU 2017 intspeed

b RISC

SimpleTimingCPU model

®

pointers to heap allocations =

non-linear capabilities
Map to CAPSTONE

free = revoke

- Workload

Modified SimpleTimingCPU

- model with revocation &

validity metadata maintenance

Results: within ~50% run time overhead

34



Conclusion

Goal: unified foundation for trustless memory access
Required properties

* Exclusive access

* Revocable delegation

* Extensible hierarchy

* Secure domain switching
CAPSTONE

* Capability-based architecture https://capstone.kisp-lab.org/
Core ideas: linear capabilities, revocation, uninitialized capabilities
Prototype implementations with emulator, compiler; and library
Case studies: CAPSTONE is highly expressive

Thanks for listening!

35


https://capstone.kisp-lab.org/

	Slide 1
	Slide 2: World of Security Extensions
	Slide 3: Problems with Security Extensions
	Slide 4: Problems with Security Extensions
	Slide 5: Traditional Architectures Rely on Access Control
	Slide 6: Traditional Architectures Rely on Access Control
	Slide 7: Contributions
	Slide 8: Threat Model: Benign Scenario
	Slide 9: Threat Model: Malicious Scenario
	Slide 10: Threat Model: Malicious Scenario
	Slide 11: Minimal set of properties for a unified foundation
	Slide 12: Property 1: Exclusive Access
	Slide 13: Property 2: Revocable Delegation 
	Slide 14: Property 3: Extensible Hierarchy
	Slide 15: Property 4: Secure Domain Switching
	Slide 16: Properties for a Trustless Unified Foundation
	Slide 17: Architectural Capabilities: A Baseline
	Slide 18: Enforcing Property 1: Exclusive Access
	Slide 19: Enforcing Property 1: Exclusive Access
	Slide 20: Exclusive Access: Linear Capabilities
	Slide 21: Memory Delegation with Linear Capabilities
	Slide 22: Enforcing Property 2: Revocable Delegation
	Slide 23: Problem: Secret Leakage Can Still Happen
	Slide 24: Problem: Secret Leakage Can Still Happen
	Slide 25: Solution: Uninitialized Capabilities
	Slide 26: Capstone: Putting It Together
	Slide 27: Implementation and Evaluation
	Slide 28: Functional Prototype
	Slide 29: Full Memory Safety (Rust-like Semantics)
	Slide 30: Trustless Memory Allocator
	Slide 31: Trustless Scheduler
	Slide 32: Nestable Enclaves
	Slide 33: Case Studies
	Slide 34: Preliminary Performance Evaluation
	Slide 35: Conclusion

