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Abstract

Time Warp (TW) protocol executes simulation events without the consideration for event safety,
and a rollback mechanism is used to correct out-of-order event execution. For the simulator to
perform the rollback operation, the system state must be checkpointed. While decreasing the
checkpointing frequency reduces the state saving cost, this is done at the risk of escalating the
coast forward effort when a large number of executed events are redone. In this paper we improve
the TW performance by optimizing its recovery cost. Probabilistic model and combinatorial
analysis are used, and logical processes of the TW simulation and their processing elements
are assumed to be homogeneous. Given a set of system states, our scheme selects the best
combination of checkpointing positions based on the sum of coast forward cost and state saving
cost. Our experiments show that the proposed checkpointing scheme reduces the simulation
elapsed time by 35% as compared to saving the system state after each event execution, and
20% as compared to infrequent approach.

Keywords: performance optimization, optimistic simulation, state saving, rollback, cost model,
combinatorial analysis

1 Introduction

Parallel discrete-event simulation (PDES) is performed by a set of logical processes (LP) that
communicate to each other by passing timestamped messages representing the simulation events.
Each LP has its own local clock, also called local virtual time (LVT), to indicate the progress
of simulation. The LVT is advanced whenever an event is executed in the LP, and the parallel
simulation is complete when all LVTs reach the duration of simulation. Two PDES mechanisms
have been widely discussed: conservative [15] and optimistic [9]. The conservative approach ensures
that an event execution will not cause any causality error before it is carried out. On the other
hand, the optimistic approach performs the event execution greedily without adhering to the safety

constraint [5].

This paper focuses on the optimistic approach. The TW mechanism [9] is the most well-known
optimistic algorithm for PDES. As the TW mechanism does not enforce a strict time-ordered
event execution, it can potentially uncover a higher degree of parallelism in the simulated system.
This, in turn, may also lead to a better or even super-critical speedup which cannot be found in
any conservative schemes [26]. However, the TW mechanism also incurs an overhead as it has to
facilitate the rollback recovery. An out-of-sequence event message (M), also called straggler, is
identified if the local virtual time (LVT) of the destined LP is greater than the timestamp of the
arriving straggler (TS(M)). When such a causality error occurs, the destined LP performs the
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recovery by sending notifications to its successors to cancel the messages it has erroneously sent,
restoring itself to a latest state before TS(M), and re-executing its simulation from thereon. Hence,
each LP of TW has to maintain a timestamped state queue to allow for recovering a correct past
state!. Checkpointing the simulated system can be costly in TW mechanism [18]. The conventional
approach is to save the state whenever an event is executed (or the checkpointing interval w = 1).
As in the conventional scheme every event can be a potential recovery point, it allows rollback to
be carried out efficiently, i.e, M can be immediately executed after the closest state of timestamp
less than TS(M) is restored. Nonetheless, such a checkpointing scheme can become expensive in
terms of wall-clock time especially when the size of state vector is huge?.

Other schemes are incremental, infrequent, adaptive or hybrid. Instead of saving the entire vector,
the incremental approach [4, 24, 30] saves only those changes to the state. When memory consump-
tion is concerned, the incremental approach is useful if the size of state vector is large and only
a small portion is modified after an event has been executed. However, the incremental approach
requires additional processor time to reconstruct the desired state from the incremental changes
thereby incurring a performance penalty. The infrequent approach [11, 19] reduces the frequency
of state saving, i.e., w > 1. As a result, the state saving cost is also decreased proportionally.
However, the infrequent state saving approach also has drawbacks. Suppose a state § of timestamp
TS(S) is restored after a straggler is detected. All the events in the time interval from TS(S) to
TS(M) will need to be redone before M can be executed. Such a performance penalty is actually a
repeated effort and is proportional to the size of checkpointing interval. Adaptive schemes use the
dynamic of the simulator at runtime, and allows LPs to adjust their checkpointing interval on the
fly with respect to the simulation advancement. Variations of such schemes depend on the parame-
ters used, such as memory usage [3], time spent in saving state and event and restoration time [23],
and rollback behavior [12]. Such an adaptiveness depends on the characteristics of statistical data
collected, thus the decision to save a state or not is also based on the extrapolation of the runtime
history. The prediction is accurate provided the system is stable throughout the whole simulation
run. Otherwise, the extrapolation may not be appropriate and can produce adverse effect. Re-
cently, hybrid approaches such as combining periodic (or infrequent) approach and probabilistic
approach [22], combining event history and incremental approach [21], embedding the incremental
state saving mode on a sparse state saving basis [20], multiplexing the incremental approach and
infrequent approach at fixed interval [8], and switching automatically from periodic approach and
incremental approach based on the cost model constructed by runtime statistics [25] have been

proposed.

Instead of using the incremental, infrequent, adaptive or hybrid approaches, we use probabilistic
model and combinatorial analysis to determine the best combination of checkpointing positions.
We derive the rollback probability using mathematical convolution, and use it to compute the coast
forward effort. The advantages of the proposed scheme are:

1. It does not need to collect statistical data at runtime so no extrapolation is performed.

Instead, the proposed scheme is based on a strong mathematical foundation.

2. It ensures that the recovery cost incurred by the PDES using the proposed set of checkpoints
is minimal among all possible checkpoint combinations, thus the overall simulation program

execution time can be reduced.

'"The LP also has to maintain an input queue and an output queue for storing the incoming and outgoing event
messages respectively.

2Saving the state vector after each event execution is also expensive in terms of memory space but the details are
beyond the scope of this paper.



The rest of this paper is organized as follows. Section 2 adopts a probabilistic approach to model the
LVT advancement in LPs. By the use of convolution technique, we derive the rollback probability
due to the occurrence of stragglers. Section 3 constructs the cost function for rollback recovery based
on the probability derived, the coast forward effort and the checkpointing effort, and determines
the combination of checkpoints that incurs the least recovery cost among all possible combinations.
Section 4 investigates the effectiveness of the proposed checkpoint combination in reducing the
overall simulation elapsed time against two existing checkpointing schemes. We also evaluate the
average number of coasted forward events incurred in a rollback, the hit ratio where coasting
forward is not needed, and the ratio of the number of states saved with respect to the number
of events executed. The aggregate effect of these factors to the simulation elapsed time is also
analyzed. Finally, section 5 contains our concluding remarks and some discussions on future work.

2 Mathematical Formulation of Causality

The following assumptions are made:

1. a simulator contains p homogeneous [.Ps and p homogeneous processing elements (PEs)

2. the placement of LPs on PEs is one-to-one

3. simulator executes two types of events: arrival and departure

4. each arrival event has a corresponding departure event in the same LLP and the execution of
each departure event will in turn schedule an arrival event in one of its succeeding LPs?
inter-arrival time and service time are exponentially distributed*

same granularity for arrival and departure routines

same amount of access time for transmit buffer and receive buffer

memory space is sufficient to complete the simulation

O 00 ~1 O Ot

GVT is calculated after a constant number of events are executed, and the GVT window also

serves as the barrier for LPs to be synchronized®

Table 1 contains a list of parameters used to derive the rollback probability. Wall clock time (or
CPU time equivalently) is used in the measurements represented by 7. Based on its timestamp
order, each executed event is dynamically assigned an increasing event number, or event index
synonymously. The distribution of the current event numbers in LPs does not exhibit large fluc-
tuation due to the homogeneity in LLPs and the homogeneity in PEs. We model the distribution
of the current event numbers by a normalized discrete probability density function (pdf) with a
parameter y representing the deviation of the event numbers® (refer to Appendix A). Normal dis-
tribution is chosen due to its clustered density on the mean and median where more than 95%
of the occurrences are included within two standard deviations on either sides of the mean. y is
also regarded as the spread of the current event numbers in LPs. As the current event numbers
also represents the latest LVTs of their LLPs, the normal function also represents the distribution
of LP advancement during a simulation run. In our formulation, event numbers are re-used after a
rollback is activated but not after a fossil collection.

3This corresponds to the queuing model where each customer will arrive to and depart from a service counter,
and a customer after leaving the counter will enter one of the succeeding counters. Consequently, each customer will
generate two events in the queuing model.

4This assumption is commonly used in literatures for mathematical tractability.

5While this assumption constrains the optimism of TW mechanism, the LPs still execute asynchronously within
the GVT window. The window size is a constant but its value is not assumed in our analysis.

6y is similar to the o in the continuous normal function.
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PARAMETER

DESCRIPTION

A arrival rate (per simulated time) of each LP
I service rate (per simulated time) of each LP
I} LVT advancement rate (per simulated time)
p number of PEs
N number of events processed in sequential simulation
N, number of true events processed by an LP (N, = A}CS)
system c communication delay (in terms of number of events processed)
a lower bound of GVT window (in terms of event index)
u number of events processed during an LP visit
d diameter (longest path) of LP interconnections
f(d) number of events spreading on the longest path of LP inter-connections
GVT number of events processed (less number of events rolled back)
before a GVT computation is activated
Tovent event (arrival or departure) execution time
measured | Tsiqte state saving time
Thusfer buffer (receive or transmit) access time
Tiransit message transmission time
PROBABILISTIC ROLLBACK
rb(Io, Jo) probability (prob.) that an event message sent at index Iy will
cause a rollback when it is processed at index Jy
RB(Jo)* prob. that a straggler is processed at index Jy
haltg‘; (dk) prob. that a rollback caused by a straggler sent at index I of the
derwed source LP and processed at index Ji of the destined LP will stop after
di events are undone
RECOVERY OVERHEAD
Vi, the ¢-th combination of checkpoints with & saved states
Nerey(Vi,) | the number of coasted forward events due to the actual checkpoints taken in Vj,

Table 1: Parameters and Measures for the Optimal Combination of Checkpointing Positions




Message passing among the simulation processes (see figure 1) is modeled by communication time
consisting of buffer access time (Tyyffer) and transit time (Tirapnsit), where Thygse, refers to the
time duration required to pack data into an output buffer or unpack a message into an input
buffer, and T%.qysi: refers to the time duration required for the message to travel from the source
to destination. In this paper we assume constant for 14,4, More complicated formulation based
on the connection topology of processors can be further studied. The reception of data is modeled
by buffer access time only, and transit time is excluded to prevent double accounting. In the
abstraction the duration for a sender to transmit a message to the receiver includes three time

intervals in:

1. construction of message in the transmission buffer (T, fer)
2. message transmission on communication link (74qqnsit)

3. reception of message in the reception buffer (T, fer)

. . . . . 2x T T, si
Thus, the number of events processed during this communication delay is ¢ = [ buffert ransit],

jévent

charged to receiver
| ‘ charged to sender iTi—ﬂ
| _'buffer
L Thufter } Tiransit | ‘
\ \
| \ \ \
transmission
prepare receive
message message
Sender Receiver

Figure 1: Communication Time Accounting

2.1 Characterization of Rollback Probability

Let a denote the lower bound (in terms of event index) of the the GVT window. We denote the
window by [a,a + G/V\T], where GVT is the number of events executed and not rolled back before
the next GVT computation is activated. For the ease of illustration, we let @ = 0 in the following
characterization. General case of the rollback abstraction is obtained by sliding the GVT window

on the simulation time scale, i.e., by changing the value of @ where 0 <a < N, — 1.

2.1.1 Proximity of Current Event Numbers in LPs

If the difference of LVTs in LPs is small so is the rollback probability. Such a difference in LVTs can
also be translated into the deviation of event numbers since each event execution in the LPs will
cause an advancement in their LVT. Let u be the number of events processed when one message is
sent across an LP, and d the diameter (or the longest path) of the LP interconnection. The number
of LPs on the longest path is d — 1. In our assumption we let u = 2, i.e., a message will generate
an arrival event and a departure event on each LP visit. Suppose LPF, is the first LP, and LP, the
last LP on the diameter (figure 2). As the longer the diameter, the later L P, will start its event
execution. Consequently, the deviation of the current event indices in LP, and LP; is increased.
For the normalized discrete pdf, we therefore approximate the deviation of current event numbers
in LPs based on the diameter of LP interconnections.



d : diameter of LP interconnections

¢ : number of events processed
during an inter-LP communication

u : number of events processed
during an LP visit

A : arrival event

d D : departure event
u

5
2 LR,

fd)=dx c + (d-1) x u

Figure 2: Spread of Current Event Numbers in LPs

Since ¢ events can be executed during each inter-LP transmission, and u events during each LP
visit, the total number of events executed for the duration in traversing the longest path is f(d) =
d X ¢+ (d—1) x u. This number of events is used to approximate the deviation of current event
numbers in LPs, i.e.,

X ~ f(d) (1)

2.1.2 Abstraction of Causality Error

We assume that the time interval of consecutive LVTs is exponentially distributed with a mean of
1

7 where 3 is the LVT advancement rate defined as follows:

5= 2) i A<y
| A+ pu otherwise

where A is the arrival rate, and p the service rate. The LVT after the n-th event is executed,
denoted by LV, is modeled based on the following observations.

e The first event processed by an LP is an arrival event. Otherwise, the causality constraint is
violated.

e An LP cannot advance its LVT until the first arrival event is processed.

e An LP with LVT,, has advanced its LVT n — 1 times after the first arrival event is executed.

Assume that the inter-arrival time and service time are identically and independently distributed
(IID). We can parameterize LVT,, (see figure 3) as a sum of two random variables Ry and Rj,
where Ry ~ exp(A), and Ry ~ gamma (5, n — 1).

Let random variable Z represent the LVT of an LP after the n-th event is executed. The probability
density function of Z can be derived by convolution technique (refer to [27]), and is given as follows:
{ AT x (e‘AZ —e Py pl @—kZ,Lk) itz>0

z) =
9() 0 otherwise
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Figure 3: LVT Advancement

Suppose the straggler M is generated immediately after the p-th event is executed in the sending
LP, and processed after the g-th event is executed in the receiving LP. Let the timestamp of M
be LVT, send, and the LVT of the receiving LP be LVT, ,c.,, and the two LVTs are modeled by
random variables X and Y respectively. Similarly, the probability density functions, denoted by
g1(z) and g2(y) respectively are given as follows:

gi(z) = { AP (e — e b Bl if > 0

0 otherwise

g—1 Ny _ —Byya=2 (09
gz(y)—{ AT X(e e =0 T ) ify>0

0 otherwise

We want to compute Pr(LVT), seng < LV T, recy), which is the probability for M to cause a causality
error in the receiving LP. Let gx y (2, y) be the joint density function of X and Y. To simplify the
mathematical expressions we let G, (z) = E?:_OQ b = 1_1””_:1 in the following derivations. We also
assume that the summation expression returns a zero if their lower index is greater than their upper

index. Suppose the timestamp of M and the LVT of the destined LLP are statistically independent,
we have

o ry
PT(L‘/Tp,send < L‘/Tq,recv) = / / gX,Y(:Ca y) dx dy
0 0

— /OOO /Oygl(a;) X g2(y) dz dy

o [y =2 (a)k
— ATp—l -z _ _—f=x Ve
[ ( e S ED)

k=0

From equation (13) in Appendix B, we have Pr(LVT, send < LVT, recr)

2 0 6 ] ]
A2 TPta=2 g [L _ Gy (Hﬁ) _ Golp) G, (Aw) Gp(3) x G4(3)

222 MM+ 5) AB - AAEB) B
1) e[ (5) x (i
RN g(g) P 9 7 ) 3)



2.2 Rollback Probability

Suppose an LP has executed the .Jo-th event, we want to know the probability (RB(Jo)T) that
the next event message received will cause a rollback in the LP. Equation (3) can compute the
rollback probability provided the event indices in both source and destined LPs are known. In
practice, however, the TW LPs execute events asynchronously so the event index in the source LP
is unknown. The only information available is that the advancement in the source LP is confined
within the GVT window”. For the ease of discussion, we let L Py send an event message M to LP;
(see figure 4). Let the index® of LP, be Iy when M is generated, and the index of LP; be Jy when

Communication
. Delay
GVT Window /
Saelnde 0 12 ... a ..., 1 . @yevr-1 ..., N-1
LP, =t ; o :
Time Scale | \
| \
| \
| M \
| \
| \
LP, l \\
Time Scale ’ \
1 — | ) | 1
State Index: 0 1 2...La ...... , J .../F+GVT—1P.. N -1
timely untimely !
arrival arrival
GVT Window

Figure 4: Causality Error

M is executed, where 0 < Ip < N, — 1, and 0 < Jy < N, — 1. We observe that M will become
a straggler in LP; provided the timestamp of M (denoted by LVT7, 1.p,) is less than the LVT of
the receiving LP at index Jy (denoted by LVTj rp,). Since LP; processes M at index .Jg, the
probability for the message to be generated when LF, is at index Jy — ¢, where ¢ is the number of
events processed by L P; during the communication delay, is the highest among other event numbers
in LF,. We therefore assign a normalized discrete pdf which is peaked at maz(.Jy — ¢,0) to Iy.

Let rb(lo, Jo) = Pr(LVTy, p, < LVTy, 1p,). The rollback probability (due to the reception of
straggler) after the .Jo-th state is executed is

GVT-1

RB(']O)+ = E meaz(JO—c,O) (IO) X rb(107 JO) (4)
Ip=0

2.3 Halt Probability

Suppose an LP at index .Jy receives a straggler M sent by the preceding LP at index Iy (see figure
5), and M causes the destined LP to rollback dy events, where dy < .Jy. During the restoration, the
ideal state vector to be restored should be the one saved at index (Jy — dp) so that the simulator
does not need to coast forward. In the optimal checkpoint combination we have to make use of a

"We assume that all LPs cannot proceed beyond the GVT window until the next GVT is computed.

8The index refers to the current event index of LP from hereafter.



halt probability (halt 5‘; (do)), which is the probability that the rollback will stop after dy events are

undone. The following observations are made for the abstraction of halt{fé(do):

o VT p, > LVTj_4,,1.p,- Otherwise the rollback will still continue after dy events are

undone.
o VT 1p, < LVTj_4,+1,0p, . Otherwise the number of events undone is less than dp.

N\
StateIndex: 0 1 2 a .., | a+GVT-1 , N-1
LP | L] | | |
0 T ) ]
Time Scale \
\
\
M \

——— \

i

|

|

'l

, \

, \
, \
|

.’

LP
1 — ~
Time Scale f dogever.lt.s.undone \‘
—————
StateIndex: 0 1 2...a,d;th d-d+1 ..., J .Ja+GVvT-1,.. N-1

Figure 5: Rollback Events

Since a rollback cannot go below the lower bound of the GVT window, we impose the total prob-

ability constraint on halt{}é(do). In general, we ensure the condition

for £ > 0. This is done by normalizing the halt probability with respect to its sum as follows:

halt {i (dk) _ (1 T‘b(]k, Jk dk)) X T?(Ik, -]k dk 1) (5)
R_SUMJ};
Jx
where R.SUMJP = > (1= rb(Ix, Jx — d)) X rb(Iy, Jy — dj + 1)
dp=1

3 Optimal Checkpointing Positions

Consider a scenario (see figure 6) where the Jo-th event, 0 < Jy < GVT — 1, is executed in an
LP, and subsequently it receives a straggler M after the .J;-th event is executed, where Jy + 1 <
Ji < GVT — 1. If M undoes or rolls back J1 — Jo events and the state vector at .Jy has been
saved, such a state will be restored and M can be executed immediately. Otherwise, the straggler

will continue to undo the executed events until a saved state is found. Suppose the restored state
corresponds to the Js;-th event, where —1 < J; < Jy — 1 (see footnoteg) The TW simulator

will have to redo (or re-execute) from the (J; 4+ 1)-th event to the Jo-th event before M can

9J, = —1 means the TW simulator has to restore the state saved in the previous GVT interval.



be executed!®. We refer to .J; as the restored state number (RSN) of Jo, i.e., RSN(Jo) = Js.
If RSN (Jo) = Jo, the rollback operation needs not coast forward. With reference to figure 6,
RSN(13) = 13, RSN(12) = RSN(11) = 11,RSN(10) = RSN(9) = 9,RSN(8) = RSN(7) =
RSN(6)= RSN(5)= RSN(4) = RSN(3) =3, RSN(2) =2, and RSN(1) = RSN(0) = —1.

‘ : saved state ideal state to be
restored but not
O : unsaved state available
| undone events |
\ \ straggler
‘ \ received
redone events
restored state I (coast forward) [ \ \
! ) |
\ | I |
\ v/
—_—
0 Js N’ J GVT-1
stateindex: 1 (00 (1) (2) (3) (4) (5) (6) (7 (8 (9) (10) (11) (12) (13)
[ [
1 1
| GVT interval

Figure 6: Coasting Forward After a State is Restored

3.1 Undo Probability

Let Pr(Jo,J1) be the probability for a rollback to undo from the .Ji-th event to the (Jo + 1)-th
event (figure 6). The probability is derived based on the following observations:

e The straggler arrives immediately after the Ji-th event is executed, thereby causing the LP
to rollback.

e The rollback halts after .J; — .Jy events are undone provided the state at index .Jg has been
checkpointed.

By equations (4) and (5), we have
Pr(Jo,J1) = RB(J1)* x halt] (J1 — Jo) (6)

3.2 Coasted Forward Events

Let 7 be the current value of GVT, and GVT = n. The mazimum number of checkpoints saved in
the state queue will be equal to n+1 (see footnote!!). Let Vi = {vo, vy, v, .o, vp_1},0 < k < n, bea
set of checkpointing positions taken in the GVT interval, and ||V%|| be the number of combinations
for Vi (see figure 7). Since n events are executed in the GVT interval and only k states are

checkpointed, ||[Vi| = W'—k)' We denote each combination of Vi, by Vi, 0 <1 < W'—k)' - 1.

10This is also called the coast forward phase.

Out of the n 4 1 vectors saved in state queue, there is one vector (denoted as V_1) with timestamp less than or
equal to the current GVT (= 7). To facilitate the rollback recovery, V_; is not deleted during the garbage collection.

10
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Figure 7: Checkpoint Combinations

Let RSNy, (Jo) be the restored state number based on the combination V,, and Norg.(Vi,) be
the number of coasted forward events due to Vi,. We compute Ncrg,(Vk,) based on the following
observations:

e The rollback can occur only when .J; > Jo + 1 (refer to figure 6).

e The number of coasted forward events for each rollback is dependent on the actual checkpoints
taken in V.

By equations (6), the number of coasted forward events due to Vi, is

GVT—1 GVT-1

]VCFEU Z Z PT’ ]0, ]1 (]0 — RS]VVIW (]0)) (7)
Jo=0 Ji=Jp+1

3.3 Optimization of Rollback Recovery Cost

The recovery cost of TW protocol contains two major components: (i) coast forward effort where
the events executed in the right sequence are redone, and (ii) state saving effort used to facilitate
rollback. Our recovery cost function, denoted as C'(V},), is abstracted as follows:

C(‘fkt) = NOFE’U(‘/]W) X Tevemf + k X Tstate (8)

The main objective is to determine the combination of checkpointing positions that minimizes the

recovery cost. First, we compute C(Vp,) corresponding to the coast forward effort where none of

11



the state vectors is saved!?. From equation (8)

C(VOO) = NCFE’U(‘/O()) X Tevent 4+ 0 x Tsmte (9)

where - .
GVT-1 GVT-1
Nerpo(Voo) = >, >, Pr(Jo,J1) x (Jo— RSNy, (o))
Jo=0 Ji=Jp+1

GVT-1 GVT-1

= 3 3 Prdo,Ji) x (Jo— (=1))

Jo=0 Ji=Jp+1
GVT-1 GVT—-1

= Z E P?‘(-](),Jl) X (.]0 + 1) (10)

Jo=0 Ji=Jpg+1

Figure 8 shows the search algorithm used to find the optimal checkpoint combination. In general,
the search needs not complete the nested loop. The set of checkpointing positions is determined as
soon as C'(Vi,) < (k4 1) * Tstate since the recovery costs for (k+1)th and onward iterations are at
least equal to (k+ 1) X Tstare (refer to equation 8).

// n is the number of events executed before a GVT computation is activated
// k is the actual number of checkpoints taken in the GVT interval

// t is the index to the Eﬁﬁ%zﬁﬁ combinations with k& checkpoints

// C(Vy;) is computed using equation (8) and the checkpoints taken in Vi,

/! Viink,,,, denotes the optimal checkpoint combination

minCost = C'(Vy, ) ;
mink = 0;
minl = 0;

for (k=1 k<n—-1;k++)
{

{
if (C'(Vi,) < minCost)
{
minCost = C'(Vy,);
minK = k;
minl = 1;
}
}
if (minCost < (k+ 1) * Tstare) exit loop;

}

return VminKmmI ;

Figure 8: Search Algorithm used to find the Optimal Checkpoint Combination

2There is only one combination for Vo, i.e., Vo, = {}.
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4 Model Validation and Performance Analysis

We implemented three checkpointing schemes, including the conventional (or frequent) approach,
infrequent approach and the proposed checkpoint combination on the Fujitsu AP3000 distributed-
memory parallel computer using the simulation workbench called SPaDES/C++ (Structured Parallel
Discrete-Event Simulation) [29]. The modular design of SPaDES/C++ supports experimental re-
search in synchronization protocols, and ease of parallel simulator development without dealing
with the intricacies of simulation synchronization and parallelism. To handle the spawning, com-
munication, and synchronization of processes, the PVM (Parallel Virtual Machine) library [7] is
adopted.

Four parameter values used in the checkpoint combination are obtained by taking measurements
(see table 2) on the implementation platform, Fujitsu AP3000 distributed-memory parallel com-
puter. The values for computation costs (T.yent and Tiqee) in table 2 are obtained by timing the
execution time of the respective code segments in the simulation program over 1000 iterations and
taking their average. The buffer access time (Thyffer) is obtained by clocking the elapsed time

| parameter | time (usec) |

Tevent 4700
Tstate 3600
Thuf fer 2750
Ttransit 1290

Table 2: Granularity of Parameter

of PVM code segment for packing and unpacking the message and taking their average over 1000
iterations. As additional protocols are required by the PVM to allocate memory space for the
transmission and reception buffers, Ty, s, has a high value as compared to the other measure-
ments. Transmission time (T4 qnsit) is also obtained by clocking the elapsed time of two ping-pong

programs over 1000 iterations and taking their average. The communication delays in term of

number of processed events is ¢ = f%] = 6. The GVT interval chosen is GVT = n = 100
after a series of sample runs to get the least elapsed time. The rollback probability and the optimal
checkpoint combination are computed in advance, and the checkpointing positions in V,;,x, . , are
implemented by a look-out table in the simulation program. Performance figures presented below

have been averaged over 50 replicated simulation runs.

4.1 Application Examples

Exponential distribution is assumed for arrival time and service time. Figure 9 consists of (i) MIN
(Feed-Forward configuration) and (ii) Torus (Feedback configuration). As for the 8 X 8 Omega
MIN, the diameter of the LP interconnection is 3, and the deviation of the current state number
is x ®3x6+4 (3—1)x2=22. The mean inter-arrival time used in the packet generator is 50
pusec, and the mean service time used in each switching elementis 30 usec. The 4 x 4 torus consists
of 16 nodes each with the same mean service time of 800 usec. For the n x n torus network, the
diameter is d = n due to the feedback connection so x =4 X 6+ (4 — 1) X 2 = 30. The routing on

the torus network is uniformly distributed on the four directions.
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Figure 9: Application Examples

4.2 Checkpointing and Coasting Forward Overheads

Let BuCE _ total no. of coasted forward events . average number of events coasted forward for
RB total mo. of rollback occurrences

a rollback. and hit ratio — ™2 of rollback occurrences where the reﬂstored stateﬂ corresponds to inder Jy be the
’ total mo. of rollback occurrences

percentage of rollback occurrences where coasting forward is not needed (refer to figure 6), and

State  __ total no. of states saved
FEvEre ~— total no. of executed events

the number of events executed. Tables 3 and 4 compare the effectiveness of the optimal checkpoint

be the percentage of the number of states saved with respect to

combination against two existing checkpointing schemes. As observed, the conventional scheme

H scheme E]“%%F ‘ hit ratio ‘ qujgafe H
frequent (w = 1) 0 100% | 100%
infrequent (w = 40) 15.5 4.2% | 2.5%
optimal checkpoint combination 4.6 60.3% 22%

Table 3: Comparison of Overheads - 8 x 8 MIN

H scheme E]%%F ‘ hit ratio ‘ ;Jgie H
frequent (w = 1) 0 100% | 100%
infrequent (w = 40) 16.7 3.6% | 2.5%
optimal checkpoint combination 5.1 56.4% 25%

Table 4: Comparison of Overheads - 4 x 4 Torus

(w = 1) has a 100% hit ratio and coasting forward effort is not needed because the state vector
is saved whenever an event is executed. The overheads incurred by the infrequent approach vary
with w and we present the best experimental result when w = 40. On the average, the number
of states saved for the infrequent scheme is inversely proportional to the checkpointing interval,
and the number of coasted forward events is directly proportional to the interval. The optimal
checkpoint combination outperforms the infrequent approach for the number of coasted forward
events and hit ratio, but it saves more states than the infrequent scheme. The aggregate effect of

these factors to the simulation elapsed time is analyzed in the next section.
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4.3 Elapsed Time

Figures 10 and 11 show that the elapsed time of the optimal checkpoint combination is better
than that of the other two schemes in application examples. This effect is due to the use of the
checkpointing positions that is computed based on the constraint of least recovery cost. Although
the conventional scheme has a 100% hit ratio and does not incur any overhead to coast forward
the simulator (refer to tables 3 and 4), its elapsed time does not outperform the other two schemes
due to the huge amount of time incurred in saving the state vectors.

1800 F | | T —

1600 frequent (w =1) ——
infrequent (w = 40) ——
1400 - optimal checkpoint combination —5—

1200

ela.psed 1000 F
time
(sec) 800
600 -

400

200 -

0 ! ! ! ! ! !
1 2 3 4 5 6

duration (><104 seconds)

Figure 10: Elapsed Time of MIN Simulation
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2000 |- optimal checkpoint combination —8—

1800
elapsed 1600 -
time 1400 |
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1000 |

800 |

600

400

200

0 ! ! ! ! ! !

b} 10 15 20 25 30

duration (><105 seconds)

Figure 11: Elapsed Time of Torus Simulation

On the other hand, the infrequent scheme as compared to the proposed scheme has reduced the
state saving overhead but the checkpoints are statically selected without any consideration for their
associated rollback risk and coasting forward cost. As such the elapsed time for the infrequent
scheme is higher than that for the proposed scheme. Comparing the infrequent scheme and the
conventional scheme, the gain in not saving the state vectors in the infrequent scheme outweighs

its loss in coasting forward the simulator, thus the infrequent scheme yields a net gain in overall
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elapsed time as compared to the conventional approach. Out of the three checkpointing schemes,

the optimal checkpoint combination has the best performance. Although the proposed combination

State i
FEvEzre

tables 3 and 4), its hit ratio is substantially higher, i.e., a higher probability for the TW simulator

incurs a larger state saving overhead as compared to that of infrequent scheme (refer to

not to incur the coast forward overhead when a causality error occurs. Even when coasting forward
is need, the number of coasted events for the checkpoint combination is also smaller as compared to
that of infrequent scheme. On the average, the optimal checkpoint combination reduces the elapsed
time by 31% as compared to the conventional checkpointing scheme and 20% as compared to the
infrequent scheme for MIN simulation, and 40% and 24% respectively for the torus simulation.

5 Conclusions and Future Work

While the frequent checkpointing scheme incurs a substantial overhead in saving the system states,
the infrequent approach also introduces a coast forward risk in redoing the executed events. Thus,
an analytical approach to the checkpointing problem is necessary in order to ensure that the decision
to save a state or not will result in a net gain. This paper uses probabilistic approach and combina-
torial analysis to compute a set of checkpointing positions that incurs the least recovery cost among
all possible combinations. We consider the aggregate effect of saving the states and coasting foward
the simulator when the states are not saved in the TW protocol. The proposed model considers a
homogeneous system (both LPs and PEs are assumed to be homogeneous) and derives the rollback
probability due to the arrival of straggler. As the rollback probability and the optimal checkpoint
combination are computed in advance and implemented as a look-out table, the proposed scheme
does not incur substantial overhead during simulation. Our implementation results as compared
to two existing checkpointing schemes show that the optimal checkpoint combination is effective
in reducing the overall elapsed time in both feed-forward and feedback configurations. We are
extending the research work to cover heterogeneous simulation and platform through different pa-
rameterizations of LVT advancement rates and communication delays respectively, and to consider
the impact of cascading rollbacks on the coast forward effort.
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Appendix A

We construct a normalized discrete pdf fn, (see

figure 12) as follows. Let x denote the spread of fy,. In

this pdf x is approximately equal to the standard deviation of the continuous normal distribution. Let

coef_Ny (z)

and N_SUM,

1 _ (z—w)?
= e 2x2
V2my
GVT-1
= Z coef_Ny (z)
=0

For each w € {0,1,2,.. .,G/V\T — 1}, the corresponding pdf is defined as

N_SUM,,

In,(z) = { 0

coef N, (&

if z € {0,1,2,...,GVT — 1}

otherwise

fote

= = =

INw(@)
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X

Figure 12: Normalized Distribution with different Peak (w) and Spread (x)

Note that fn, (z) has a peak value when z = w, and fy, (w+1i) = fn, (w —1) (symmetrical with respect to
w), ¢ > 1, if they exist. We also observe that V w

GVT-1 GVT-1 coef Ny (2)
1;) v (@) = 4 NSUM,
_ T coef Ny (2)
- N_SU M,
_ N.SUM,
= N_SUM,

1

Appendix B

(Total Probability Constraint)

In the following derivations we use the integrals from [27] directly. From equation (2), we have

00 ry p—2 9 )k q-2 (9 )l
ATp_l e—)\x _ 6—[31‘ ( x % )\Tq—l 6—)\1‘/ _ e—ﬁy —y dr d
[ [ 2w aon)
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oo q-2 l =P p=2 k e—Bw
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0

=0 k=0

To simplify the mathematical expression, we denote the geometric sum 2?2_02 z! by
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Substitute equation (12) to (11), we have
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We evaluate H; to Hy as follows.
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