

 1

Conservative Simulation using
Distributed-Shared Memory

Y.M. Teo, Y.K. Ng and B.S.S. Onggo
Department of Computer Science
National University of Singapore

3 Science Drive 2
Singapore 117543

email: teoym@comp.nus.edu.sg

Abstract

This paper focuses on conservative simulation using
distributed-shared memory for inter-processor communi-
cation. JavaSpaces, a special service of Java Jini, provides
a shared persistent memory for simulation message
communication among processors. Two benchmark
programs written using our SPaDES/Java parallel
simulation library are used. The first program is a linear
pipeline system representing a loosely-coupled open system.
The PHOLD program represents a strongly-connected
closed system. Experiments are carried out using a cluster
of Pentium II PCs. We used a combination of Wood Turner
carrier null, flushing and demand-driven algorithms for null
message synchronization. To optimize message
communication, we replace SPaDES/Java inter-processor
communication implemented using Java’s Remote Method
Invocation (RMI) with one JavaSpace. For PHOLD (16x16,
16) running on eight processors, this change reduces
simulation runtime by more than half, null message
overhead reduces by a further 15%, and event rate more
than doubled. Based on our memory analysis methodology,
the memory cost of null message synchronization for
PHOLD is less than 9% of the total memory needed by the
simulation.

1. Introduction

Computer simulation is a useful tool to study the behavior
of many types of application problems, from military field
stratagems in the olden days to commercial and industrial
resources to the performance analysis of superscalar
processor systems in modern days. Interest in the research

domain of parallel discrete-event simulation (PDES) has
been fuelled by the notion of exploiting execution
parallelism in a number of domains including network
design and configuration, personal communication systems,
parallel programs, digital battlefields, and digital circuits [2].
The increasing sophistication and scalability of newer
systems has motivated researchers to investigate techniques
in exploiting event parallelism so as to reduce simulation
runtime.

Event synchronization is an essential part of parallel
simulation. In general, synchronization protocols can be
categorized into two different families: conservative and
optimistic. Conservative protocols fundamentally maintain
causality in event execution by strictly disallowing the
processing of events out of timestamp order. Examples of
conservative mechanisms include Chandy, Misra and
Byrant's null message (CMB) protocol [7] and the Moving
Time Windows [1]. In the past decade, PDES research has
developed variants of the null message protocol, with the
objective of reducing the high null message overhead. For
example, PARSEC [3] attempts to simplify the
communication topology in a given problem, and the Cai-
Turner carrier-null scheme [6] tries to resolve the problem of
transmitting redundant null messages due to low lookahead
cycles in digital circuit simulations on up to 24 processors.

This paper discusses a dual approach in improving the
performance of conservative simulation using null messages,
and presents an alternative measure of the costs of parallel
simulation, i.e., in terms of memory usage. With respect to
SPaDES/Java [23], we present various optimizations to
enhance the efficiency of null message synchronization,
emphasizing on the reduction of inter-processor
communications overhead through a shared persistent
memory architecture implemented using Java-Jini's

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

 2

JavaSpaces [14] service. Section 2 discusses these various
optimizations that we have incorporated in SPaDES/Java.
The two benchmarks used are linear pipeline and PHOLD.
Section 3 summarizes our experimental results. Section 4
concludes this paper.

2. Performance Issues

SPaDES/Java (Structured Parallel Discrete-event
Simulation in Java) is a parallel simulation library [21][23].
It adopts a process-oriented world-view whereby entities in
the real world are mapped into processes in the conceptual
model, and these processes are represented as either logical
processes (LPs) or dynamic processes that have a shorter life
span than the simulation duration. SPaDES/Java supports
both sequential and parallel simulation. Parallel simulation
is supported in SPaDES/Java using the null message
protocol. Event lists and queues in SPaDES/Java are
implemented as binary minheaps [8], which are more
efficient than the vectors provided in Java. SPaDES/Java
implements LPs as threads, while dynamic processes are
modeled as normal Java objects.

This paper addresses two main performance issues:
reduce null message synchronization and reduce inter-
processor communication among remote LPs with the use of
JavaSpaces, with greater focus on the latter. In addition, we
analyze the memory cost of conservative simulation.

2.1 Null Message Synchronization

Many implementations of conservative simulation adopt

the null message approach, originally developed by Chandy
and Misra [7], for the synchronization of simulation events
among LPs in parallel simulation. However, the CMB
protocol is rather naïve, because each LP at the end of a
simulation pass sends null messages to all LPs, even if it is
not necessary to do so. The amount of null messages
required in a simulation is extremely high even for relatively
small problem sizes.

The Wood-Turner carrier-null scheme [24] aims to
reduce the null message overhead caused by the existence of
cyclic topologies in parallel simulation. The flushing
mechanism reduces the growth of null messages by
preventing an LP from sending null messages with the same
timestamp value to other LPs. When an LP schedules a new
null message in its output channel, all null messages with a
timestamp value smaller than the new one are flushed
[18][20]. Fujimoto proposed an alternative approach to the
conventional deadlock avoidance mechanism, by sending
null messages on a demand-driven basis [3][9]. An LP

sends out a null message when it receives a null message
request from another LP. We combined these three
techniques, and implemented in SPaDES/Java an improved
demand-driven null messaging with flushing algorithm,
which we use for our performance study.

2.2 Inter-processor Communication

Inter-processor communication is required for LPs to pass

event and null messages. There are two main performance
issues in message communication among processors:
message size and frequency of transmission.

We reduce the message size before it is sent and
reconstruct the message at the receiving LP. In
SPaDES/Java, an event message is a user-defined class,
extended from the SProcess class. We observe that a large
part of the information is globally defined within the
simulation environment. Sending only the user-defined
portion of the message, which is not inherited from the
library, reduces the size of a message and thus reduces the
serialization delay caused by the transmission of each
message.

2.2.1 RMI and JavaSpaces

SPaDES/Java was originally implemented using Java's
Remote Method Invocation (RMI) to serialize and transmit
event and null messages across processors. RMI works on a
distributed memory architecture, allowing objects, including
full code, to be passed between different hosts in the
network. However, message serialization incurs a
considerable amount of overhead. In simulations (especially
those with larger granulariries), the serialization of large
messages will cause a bottleneck due to the accumulated
delays required for each message to be transmitted across the
network. Recently, Sun Microsystems introduces Java Jini,
a component-based technology for providing a higher level
of abstraction in distributed systems programming [14]. A
core Java Jini service, JavaSpaces adopts a distributed-
shared memory architecture, providing distributed data
persistence. Much of the simplicities of Jini systems are
enabled by this ability to move code, encapsulated as
objects, around the network.

Table 1 summarizes the key differences between RMI-
based and Jini-based systems.

JavaSpaces’s abstract space operations offer excellent
opportunities to reduce inter-processor communication
overheads. Instead of having many point-to-point
communications, messages are now sent to a centralized
memory pool, which coordinates their transfers to the
relevant processors. JavaSpaces acts like a medium that
reserves a certain abundant capacity of memory solely for

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

 3

inter-processor interactions by matching the attribute types
and corresponding values of entry pairs. Technically, each
LP is relieved of making remote calls to and interacting
directly with a remote LP at the other end of the network,
and this can potentially reduce the overall communication
latency. RMI, on the other hand, does not guarantee a fixed
memory space for remote interactions, and therefore its
performance is heavily dependent on the network traffic. To
investigate the latency of RMI and JavaSpaces
communications, we conducted a Ping Pong simulation
involving 1,000 messages being sent around four processors.
We observed that the average communication latency for
RMI is 10.5 seconds, while that for JavaSpaces is 9.1
seconds. The difference is due mainly to JavaSpaces'
dedicated memory for communications.

Jini-based systems RMI-based systems

Lookup directory service Registry directory service
Facilitates spontaneous
(voluntary) computing
environment.

Unable to support
spontaneous computing
environment.

Client interacts with
required service via a
service object.

Client interacts with
remote program by
invoking methods via stub.

Network protocol for
client interaction is kept
transparent from client.

RMI is the sole interaction
protocol to be used for
communications.

Table 1: Differences between Jini and RMI Systems

Though JavaSpaces can accelerate the pace at which the
LPs carry out their simulation over RMI, on the flip side, it
can pose a performance problem when the space becomes
over-utilized. JavaSpaces is merely a memory pool, which
can be exhausted if too many entries are being written to it at
any one time. In the extreme case of a fully connected [8]
simulation model, each LP is directly connected to every
other LP as shown in Figure 1.

Figure 1: A Fully-connected Simulation Model
Distributed on Two Processors

In this scenario all LPs write both events and null-
messages into space. The message population in space can
increase quickly if the rate at which messages are being
transmitted is greater than the rate at which used messages
are being removed from space. This results in disk thrashing
when the used memory limit of the JavaSpaces has
exhausted and the garbage collector does not sufficiently
clean up the JavaSpaces. The consequence is a performance
bottleneck. However, this is a not threatening problem,
because this is subjected to the speed and memory capacity
of the processor that maintains the JavaSpaces. RMI, on the
other hand, is bounded by the performance of the associated
local network.

Figure 2 shows SPaDES/Java distributed simulation
communicating through one JavaSpaces, with seven LPs
mapped onto four processors: ws00 to ws03.

Figure 2: Inter-processor Communication using
JavaSpaces

In the implementation, an LP sends a message to another
LP residing on a different processor by writing a copy of the
message (write operation) into the JavaSpaces.

2.2.2 Communicating Event Messages

During the initialization phase of the simulation, an LP
invokes the notify command on the JavaSpaces to indicate
that it is ready to accept event messages from remote LPs.
During the simulation, an LP sends an event message to an
LP on another processor by depositing the message, tagged
with the sender and receiver IDs, into the JavaSpaces. The
JavaSpaces will siphon the message to the correct processor
based on the value of the receiver ID. Once the message has
been delivered, the JavaSpaces will perform garbage
collection to remove it from memory, using the take

JavaSpaces
 LP

 LP

 LP

 LP

 LP

 LP

ws00 ws01

JavaSpaces
(ws04)

ws01

ws03

ws00

ws02

LP LP

LP
LP

LP LP

LP

null
null

null

event

event

event

null

event

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

 4

operation. Figure 3 shows an example of how transmission
of an event message is facilitated by a JavaSpaces.

Figure 3: Sending and Receiving Event Messages

through a JavaSpaces

2.2.3 Communicating Null Messages

Based on our combined null message algorithm, when an
LP demands a null message from a remote sender LP, it
places a request, tagged with the sender ID and its own ID,
into JavaSpaces via the notify operation. The JavaSpaces
then notifies the relevant processor containing the sender LP
that a null message request has been made to it.
Consequently, the sender LP deposits a null message into
JavaSpaces, tagged with the requester's ID, and whichever
LP that had requested for a null message from this sender
can then read off the deposited null message. As with the
event messages, all used null messages will be cleared from
space. If used null messages are not removed, it will lead to
memory leakage of the JavaSpaces, which can potentially
cause the simulation run to crash.

JavaSpaces fits the analogy of a mailbox that centrally
coordinates the distribution of letters, and LPs send letters
(messages) to remote LPs by depositing the letters in the
mailbox. Also, more than one processor may retrieve a null
message that has just being deposited into space with LPs
making null message demands from the same sender LP.
This attempts to avoid redundancy in transmitting null
messages between remote processors.

3. Performance Analysis

The objectives of our experiments are to study how our
implementation using the combined null-message algorithm
and distributed-shared memory affects overall performance,
in terms of null message overhead and simulation runtimes.
A cluster of PCs connected via a 100Mbps Ethernet switch
and running RedHat Linux 6.0 operating system were used
in the experiments. Each node in the cluster is a Pentium II

400 MHz processor with 256MB of memory. Each
experimental result is the average over three replications
using different random number seed values. The two
benchmarks used are a linear pipeline representing an open
system, and PHOLD [11], which is a closed system.

The linear pipeline consists of n service centers connected
sequentially as shown in Figure 4.

Figure 4: Linear Pipeline (4, ρ)

Job arrival rate is exponentially distributed with a mean

of 10 jobs per second. Each service center has a service rate
that is exponentially distributed with a mean of 50 jobs per
second. The traffic intensity is denoted by ρ. As illustrated
above, the linear pipeline comprises of LPs that are loosely
coupled. The interactions between LPs in the program are
minimal, since there are no feedback loops in the topology
and hence, message communications proceed in a forward,
one-directional manner. It can be used to model open
systems such as car wash and supermarket express queues.

PHOLD [11] consists of a network of N x N nodes and
each node is interconnected to four neighboring nodes.
Every node is initialized with m jobs at the start of
simulation. The service time at each node is exponential
(0.9) plus a lookahead of 0.1 [11]. Figure 5 shows a 3x3
PHOLD comprising of nine nodes.

Figure 5: PHOLD (3x3, m)

JavaSpaces

Node Node Node

Node Node Node

Node Node Node

 SProcess
• Sender=1
• Receiver=5
•

 SProcess
• Sender=1
• Receiver=5
•

write notify

read

match

ws00.comp.nus.edu.sg

ws02.comp.nus.
edu.sg

Sender Receiver

LP LP

Job
Pool

 Service
Center

Service
Center

Service
Center

Service
Center

ws01.comp.nus.edu.
sg

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

 5

In contrast to the linear pipeline, PHOLD has a strongly

connected, tightly coupled topology, with many feedback
paths. It is one of the most commonly used benchmark for
parallel simulation. Linear pipeline and PHOLD are general
application problems with two extreme characteristics, and
therefore, the simulation results can be applied to many real-
world problems.
We define null message ratio (NMR) as the ratio of the total
number of null messages to total messages (event plus null)
in the simulation. We designed our experiments to first
investigate the extent to which our combined null message
algorithm has improved simulation performance, by
executing the parallel simulation on one processor, and
comparing the accummulative effects of each optimization
step (i.e. carrier null, carrier-null + flushing, carrier-null +
flushing + demand-driven null messaging). Next, we vary
the number of processors to study the effects of using
JavaSpaces and RMI (see

Table 2). “All (4 procs/RMI)” denotes the cumulative
effect of the combined null message algorithms on four
processors using RMI for inter-processor communication.

In the case of the linear pipeline, cycles are absent in the
topology, so the carrier-null NMR overhead is similar to that
of the CMB protocol. When the LPs are mapped to one
processor and run in parallel, the results show that null
message flushing reduces the NMR from 0.94 to about 0.7
and the cumulative effect of flushing, demand-driven null
messaging and the use of reduces the NMR further to an
average of 0.6. The accumulative effect of the optimizations
reduces runtime by more than a half.

For PHOLD, we ran parallel simulations for different
problem sizes over simulation duration of 10,000 time units
over one, four and eight processors. The reduction in NMR
is significant. The combined effect of carrier null, flushing
and demand-driven null message further reduces NMR to
0.4 for the case with one processor. Again, the reduction in
runtime is more than half for a larger problem size. This
illustrates that even on one processor alone, where inter-
processor communications are not in play, there are
considerable reductions in NMR and achievements in
speedup due to the combined null message algorithm.
Flushing reduces null message growth from an exponential
rate to a linear rate, with the elimination of some proportion
of null messages at each LP each time the channels are
scanned. The demand-driven mechanism further reduces null
messages because now a condition is being laid to invoke
the sending of null messages, with the initiative being rested
on the destination LP instead of the sender LP. There is no
improvement in NMR when the simulation is distributed
over four and eight processors respectively using RMI.

Pipeline (16, 0.8) PHOLD (16x16, 16)
Algorithm NMR Runtime NMR Runtime

CMB 0.94 3770 0.99 13990
+ carrier null 0.94 3775 0.69 5651
+ flushing 0.70 2917 0.57 4580

1 proc

+ demand-driven 0.61 1989 0.44 1563
All (4 procs/RMI) 0.60 1715 0.44 1288
All (8 procs/RMI) 0.59 1578 0.44 1006

Table 2: Null Message Optimizations

Runtime NMR Event rate
#procs

RMI JavaSpaces RMI JavaSpaces RMI JavaSpaces
1 1563 1572 0.44 0.44 49127 48846
4 1288 899 0.44 0.34 59616 85412
8 1006 487 0.44 0.29 76327 157670

Table 3: PHOLD (16x16, 16) – RMI versus JavaSpaces

We observe reductions in NMR and greater speedup when
JavaSpaces is used to coordinate the transmission of null
messages over more than one processor. For
PHOLD(16x6,16) as shown in

Table 3, simulation runtime improves from 1006 seconds
(RMI) to 487 seconds (JavaSpaces), NMR reduces from
0.44 (RMI) to 0.29 (JavaSpaces), and event rate doubles.
Event rate is defined as the total number of event messages
(excluding null) over the simulation runtime.

Figure 6 summarizes the improvement in NMR using
JavaSpaces over RMI, for the PHOLD program. The
reduction in NMR from using JavaSpaces for inter-processor
communication is due to the greater amount of flushing and
more efficient null message coordination being done
centrally in space. The accompanying decrease in
simulation runtimes is caused by the reduction in NMR as
well as the lower communications latency involved in
JavaSpaces over RMI, as mentioned in Section 2.2.1. The
more processors involved in the simulation, the greater the
effect of the savings in communications latency.

Teo et. al has developed a methodology based on partial
order set theory to study the memory requirement of
computer simulation [22]. The methodology defines three

components of memory involved. probM is dependent on
the characteristic of the problem and is constant for the same

problem size. ordM is dependent on the conservative
protocol event ordering but independent of the null message
protocol implementation. Msync, on the other hand, is
dependent on the implementation of the null message
protocol.

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

 6

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

4 x 4 8 x 8 16 x 16

Problem Size (n x n)

N
M

R

RMI/JavaSpace (1 processor, m=1)

RMI/JavaSpace (1 processor, m=8)

RMI/JavaSpace (1 processor, m=16)

RMI (4 processors, m=1)

RMI (4 processors, m=8)

RMI (4 processors, m=16)

RMI (8 processors, m=1)

RMI (8 processors, m=8)

RMI (8 processors, m=16)

JavaSpace (4 processors, m=1)

JavaSpace (4 processors, m=8)

JavaSpace (4 processors, m=16)

JavaSpace (8 processors, m=1)

JavaSpace (8 processors, m=8)

JavaSpace (8 processors, m=16)

Figure 6: PHOLD (n× n, m) – Varying Number of Processors

For linear pipeline, the flushing algorithm reduces syncM
by 36%. Adding demand-driven, null message reduces

syncM by 50% with respect to CMB. In terms of the total
memory required in a simulation, null message
synchronization overhead accounts for 31%. For PHOLD,

carrier null message reduces syncM by 45%. Flushing with

demand-driven null-message reduces syncM by 65% as
compared with CMB, and null-message synchronization
overhead accounts for only 13% of the total memory
required.

Table 4 compares the memory cost of the demand-driven
null message with flushing algorithm for various problem
sizes, between using RMI and JavaSpaces as the inter-
processor communications protocol on 8 processors.

Pipeline(16, ρ) PHOLD (16x16, m)
ρ M

Space Usage

0.2 0.4 0.6 0.8 1 8 16
Mprob 98 192 320 740
Mord 50 52 54 56

256 2048 4096

Msync (RMI) 331 341 348 352 665 651 638
Msync (JavaSpaces) 305 308 311 312 347 332 317

M (RMI) 479 585 722 1148 921 2699 4734
M (JavaSpaces) 453 552 685 1108 603 2380 4413

Table 4: Profile of Memory Usage –

8 Processors

The values for Msync above demonstrate that JavaSpaces
requires a lesser amount of memory for event
synchronization, as compared to RMI, due to JavaSpaces'
ability to perform flushing and null message coordination
more efficiently. Notice that the values of Msync for
PHOLD(16x16, m) using JavaSpaces to communicate are
approximately half that for the case of RMI.

4. Conclusions and Future Works

The performance of parallel simulation is highly
dependent on two major issues, namely the event
synchronization overhead, and the cost of inter-processor
communications. Inter-processor communication is bound
by the network traffic, thereby limiting performance
improvements from optimizing the conservative
synchronization algorithm to a certain extent. We have
briefly discussed three cumulative optimization techniques
to reduce null message overhead. This paper focuses on
reducing inter-processor communication by comparing RMI
with Java-Jini/JavaSpaces. We conducted experiments on
two programs of opposite nature: linear pipeline (a loosely-
coupled, open system) and PHOLD (a tightly-coupled,
closed system), varying the problem sizes and number of

RMI/JavaSpaces (1 proc)

JavaSpaces (4 proc)

JavaSpaces (8 proc)

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

 7

processors used. For PHOLD(16x6,16), JavaSpaces reduces
the runtime by more than two-thirds, NMR reduces to 0.29,
and event rate is almost four times higher using eight
processors. We analyze the memory cost of the conservative
null message approach based on the memory usage
methodology we have developed [22]. We observe that for
our optimized null message algorithm using JavaSpaces, the
memory cost for supporting null message synchronization
(Msync) is less than 9% for PHOLD (16x16, 16) on eight
processors.

We are extending SPaDES/Java distributed simulation
library to operate on a grid computing environment, where
processors are geographically scattered and network latency
is significantly larger than on a cluster. To further study the
effects of inter-processor communication, we are developing
communication-intensive applications such as mobile
communication network simulation.

Acknowledgements
This research is supported by the Ministry of Education
(Singapore) and PSA Corporation under grants R-252-000-
020-112 and R-252-000-020-490.

References

[1] R. Ayani, and H. Rajael, "Parallel Simulation Using

Conservative Time Windows", Proceedings of the Winter
Simulation Conference, pp. 709-717, 1992.

[2] R. L. Bagrodia, "Perils and Pitfalls of Parallel Discrete-

Event Simulation", Proceedings of the Winter Simulation
Conference, pp. 136-143, 1996.

[3] W. L. Bain, and D. S. Scott, "An Algorithm for Time

Synchronization in Distributed Discrete Event Simulation",
Proceedings of the SCS Multiconference on Distributed
Simulation, 19, 3 (February), pp. 30-33, 1988.

[4] L. Bajaj, R.Bagrodia, and R. Meyer, "Case Study:

Parallelizing a Sequential Simulation Model", Proceedings of
the 13th Workshop on Parallel and Distributed Simulation, pp.
12-19, 1999.

[5] P. Bizarro, L. M. Silva and J. G. Silva, "JWarp: A Java

Library For Parallel Discrete-Event Simulations",
Proceedings of the ACM Workshop on Java for High-
Performance Network Computing, 1998.

[6] W.T. Cai, and S.J. Turner, "An Algorithm for Distributed

Discrete Event Simulation – The Carrier Null Message

Approach", Proceedings of the SCS Multiconference on
Distributed Simulation, pp. 3-8, 1990.

[7] K. M. Chandy and J. Misra, "Distributed Simulation: A case

study in design and verification of distributed programs",
IEEE Transactions on Software Engineering, SE-5:5, pp.
440-452, 1979.

[8] Cormen, Leiserson and Rivest, Introduction to Algorithms,

McGraw Hill, 1989.

[9] A. Ferscha, Parallel and distributed simulation of discrete

event systems, a chapter in the Handbook of Parallel and
Distributed Computing, McGraw-Hill, 1995.

[10] R. M. Fujimoto, "Parallel Discrete Event Simulation",

Communications of the ACM, vol. 33, pp. 31-52, 1990.

[11] R.M. Fujimoto, "Performance of Time Warp under Synthetic

Workload", Proceedings of the SCS Multiconference on
Distributed Simulation, 22, 1, 1990.

[12] R. M. Fujimoto, Parallel and Distributed Simulation

Systems, Wiley Series on Parallel and Distributed
Computing, Wiley-Interscience, pg. 51-95, 2000.

[13] F. W. Howell, P. E. Heywood, and R. N. Ibbett, "Hase: A

flexible toolset for computer architects", Computer Journal,
vol. 38, pp. 755-764, 1995.

[14] S. Hupfer, The Nuts and Bolts of Compiling and Running

JavaSpaces Programs, Java Developer Connection, Sun
Microsystems, Inc., 2000.

[15] D. R. Jefferson, "Virtual Time, ACM Transactions on

Programming Languages and Systems", vol. 7, pp. 404-425,
1985.

[16] D. R. Jefferson and H. Sowizral, "Fast concurrent simulation

using the Time Warp mechanism". Tech. Rep. N-1906-AF,
RAND Corporation, 1982.

[17] L. Lamport, "Time, Clocks, and the Ordering of Events in a

Distributed System", Communications of the ACM, 21, pp.
558-565, 1978.

[18] J. Misra, "Distributed Discrete Event Simulation",

Proceedings of the ACM Computing Survey, vol. 18, pp. 39-
65, 1986.

[19] D. M. Nicol, "Parallel discrete-event simulation of FCFS

stochastic queueing networks", SIGPLAN Notice, vol. 23,
pp. 124-137, 1988.

[20] S. C. Tay, Parallel Simulation Algorithm and Performance

Analysis, PhD Thesis, Department of Computer Science,
National University of Singapore, 1998.

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02)
1087-4097/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

