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Abstract 
 
This paper focuses on conservative simulation using 
distributed-shared memory for inter-processor communi-
cation.  JavaSpaces, a special service of Java Jini, provides 
a shared persistent memory for simulation message 
communication among processors.  Two benchmark 
programs written using our SPaDES/Java parallel 
simulation library are used.  The first program is a linear 
pipeline system representing a loosely-coupled open system. 
The PHOLD program represents a strongly-connected 
closed system.  Experiments are carried out using a cluster 
of Pentium II PCs. We used a combination of Wood Turner 
carrier null, flushing and demand-driven algorithms for null 
message synchronization.  To optimize message 
communication, we replace SPaDES/Java inter-processor 
communication implemented using Java’s Remote Method 
Invocation (RMI) with one JavaSpace.  For PHOLD (16x16, 
16) running on eight processors, this change reduces 
simulation runtime by more than half, null message 
overhead reduces by a further 15%, and event rate more 
than doubled. Based on our memory analysis methodology, 
the memory cost of null message synchronization for 
PHOLD is less than 9% of the total memory needed by the 
simulation.  
 
 
1. Introduction 
 

Computer simulation is a useful tool to study the behavior 
of many types of application problems, from military field 
stratagems in the olden days to commercial and industrial 
resources to the performance analysis of superscalar 
processor systems in modern days. Interest in the research 

domain of parallel discrete-event simulation (PDES) has 
been fuelled by the notion of exploiting execution 
parallelism in a number of domains including network 
design and configuration, personal communication systems, 
parallel programs, digital battlefields, and digital circuits [2].  
The increasing sophistication and scalability of newer 
systems has motivated researchers to investigate techniques 
in exploiting event parallelism so as to reduce simulation 
runtime. 

Event synchronization is an essential part of parallel 
simulation.  In general, synchronization protocols can be 
categorized into two different families: conservative and 
optimistic. Conservative protocols fundamentally maintain 
causality in event execution by strictly disallowing the 
processing of events out of timestamp order.  Examples of 
conservative mechanisms include Chandy, Misra and 
Byrant's null message (CMB) protocol [7] and the Moving 
Time Windows [1].   In the past decade, PDES research has 
developed variants of the null message protocol, with the 
objective of reducing the high null message overhead.  For 
example, PARSEC [3] attempts to simplify the 
communication topology in a given problem, and the Cai-
Turner carrier-null scheme [6] tries to resolve the problem of 
transmitting redundant null messages due to low lookahead 
cycles in digital circuit simulations on up to 24 processors. 

This paper discusses a dual approach in improving the 
performance of conservative simulation using null messages, 
and presents an alternative measure of the costs of parallel 
simulation, i.e., in terms of memory usage.  With respect to 
SPaDES/Java [23], we present various optimizations to 
enhance the efficiency of null message synchronization, 
emphasizing on the reduction of inter-processor 
communications overhead through a shared persistent 
memory architecture implemented using Java-Jini's 
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JavaSpaces [14] service.  Section 2 discusses these various 
optimizations that we have incorporated in SPaDES/Java.  
The two benchmarks used are linear pipeline and PHOLD.  
Section 3 summarizes our experimental results.  Section 4 
concludes this paper. 
 
 
2. Performance Issues 
  

SPaDES/Java (Structured Parallel Discrete-event 
Simulation in Java) is a parallel simulation library [21][23].  
It adopts a process-oriented world-view whereby entities in 
the real world are mapped into processes in the conceptual 
model, and these processes are represented as either logical 
processes (LPs) or dynamic processes that have a shorter life 
span than the simulation duration. SPaDES/Java supports 
both sequential and parallel simulation.  Parallel simulation 
is supported in SPaDES/Java using the null message 
protocol. Event lists and queues in SPaDES/Java are 
implemented as binary minheaps [8], which are more 
efficient than the vectors provided in Java. SPaDES/Java 
implements LPs as threads, while dynamic processes are 
modeled as normal Java objects. 

This paper addresses two main performance issues: 
reduce null message synchronization and reduce inter-
processor communication among remote LPs with the use of 
JavaSpaces, with greater focus on the latter. In addition, we 
analyze the memory cost of conservative simulation. 
   
2.1   Null Message Synchronization 

 
Many implementations of conservative simulation adopt 

the null message approach, originally developed by Chandy 
and Misra [7], for the synchronization of simulation events 
among LPs in parallel simulation.  However, the CMB 
protocol is rather naïve, because each LP at the end of a 
simulation pass sends null messages to all LPs, even if it is 
not necessary to do so.  The amount of null messages 
required in a simulation is extremely high even for relatively 
small problem sizes. 

The Wood-Turner carrier-null scheme [24] aims to 
reduce the null message overhead caused by the existence of 
cyclic topologies in parallel simulation. The flushing 
mechanism reduces the growth of null messages by 
preventing an LP from sending null messages with the same 
timestamp value to other LPs. When an LP schedules a new 
null message in its output channel, all null messages with a 
timestamp value smaller than the new one are flushed 
[18][20].  Fujimoto proposed an alternative approach to the 
conventional deadlock avoidance mechanism, by sending 
null messages on a demand-driven basis [3][9].  An LP 

sends out a null message when it receives a null message 
request from another LP.  We combined these three 
techniques, and implemented in SPaDES/Java an improved 
demand-driven null messaging with flushing algorithm, 
which we use for our performance study. 
 
2.2 Inter-processor Communication 

 
Inter-processor communication is required for LPs to pass 

event and null messages. There are two main performance 
issues in message communication among processors: 
message size and frequency of transmission.  

We reduce the message size before it is sent and 
reconstruct the message at the receiving LP. In 
SPaDES/Java, an event message is a user-defined class, 
extended from the SProcess class. We observe that a large 
part of the information is globally defined within the 
simulation environment. Sending only the user-defined 
portion of the message, which is not inherited from the 
library, reduces the size of a message and thus reduces the 
serialization delay caused by the transmission of each 
message.  

 
2.2.1 RMI and JavaSpaces 
 

SPaDES/Java was originally implemented using Java's 
Remote Method Invocation (RMI) to serialize and transmit 
event and null messages across processors.  RMI works on a 
distributed memory architecture, allowing objects, including 
full code, to be passed between different hosts in the 
network.  However, message serialization incurs a 
considerable amount of overhead.  In simulations (especially 
those with larger granulariries), the serialization of large 
messages will cause a bottleneck due to the accumulated 
delays required for each message to be transmitted across the 
network.  Recently, Sun Microsystems introduces Java Jini, 
a component-based technology for providing a higher level 
of abstraction in distributed systems programming [14].  A 
core Java Jini service, JavaSpaces adopts a distributed-
shared memory architecture, providing distributed data 
persistence.  Much of the simplicities of Jini systems are 
enabled by this ability to move code, encapsulated as 
objects, around the network.   

Table 1 summarizes the key differences between RMI-
based and Jini-based systems. 

JavaSpaces’s abstract space operations offer excellent 
opportunities to reduce inter-processor communication 
overheads.  Instead of having many point-to-point 
communications, messages are now sent to a centralized 
memory pool, which coordinates their transfers to the 
relevant processors.  JavaSpaces acts like a medium that 
reserves a certain abundant capacity of memory solely for 
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inter-processor interactions by matching the attribute types 
and corresponding values of entry pairs.  Technically, each 
LP is relieved of making remote calls to and interacting 
directly with a remote LP at the other end of the network, 
and this can potentially reduce the overall communication 
latency.  RMI, on the other hand, does not guarantee a fixed 
memory space for remote interactions, and therefore its 
performance is heavily dependent on the network traffic.  To 
investigate the latency of RMI and JavaSpaces 
communications, we conducted a Ping Pong simulation 
involving 1,000 messages being sent around four processors.  
We observed that the average communication latency for 
RMI is 10.5 seconds, while that for JavaSpaces is 9.1 
seconds.  The difference is due mainly to JavaSpaces' 
dedicated memory for communications.      

 
Jini-based systems RMI-based systems 

Lookup directory service Registry directory service 
Facilitates spontaneous 
(voluntary) computing 
environment. 

Unable to support 
spontaneous computing 
environment. 

Client interacts with 
required service via a 
service object. 

Client interacts with 
remote program by 
invoking methods via stub. 

Network protocol for 
client interaction is kept 
transparent from client. 

RMI is the sole interaction 
protocol to be used for 
communications. 
 

Table 1: Differences between Jini and RMI Systems 
 

Though JavaSpaces can accelerate the pace at which the 
LPs carry out their simulation over RMI, on the flip side, it 
can pose a performance problem when the space becomes 
over-utilized.  JavaSpaces is merely a memory pool, which 
can be exhausted if too many entries are being written to it at 
any one time.  In the extreme case of a fully connected [8] 
simulation model, each LP is directly connected to every 
other LP as shown in Figure 1.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  A Fully-connected Simulation Model 
Distributed on Two Processors 

In this scenario all LPs write both events and null-
messages into space.  The message population in space can 
increase quickly if the rate at which messages are being 
transmitted is greater than the rate at which used messages 
are being removed from space.  This results in disk thrashing 
when the used memory limit of the JavaSpaces has 
exhausted and the garbage collector does not sufficiently 
clean up the JavaSpaces. The consequence is a performance 
bottleneck.  However, this is a not threatening problem, 
because this is subjected to the speed and memory capacity 
of the processor that maintains the JavaSpaces.  RMI, on the 
other hand, is bounded by the performance of the associated 
local network. 

Figure 2 shows SPaDES/Java distributed simulation 
communicating through one JavaSpaces, with seven LPs 
mapped onto four processors: ws00 to ws03. 
 

 
 
 
 
 
 

 
 

 
 
 
 
 

Figure 2: Inter-processor Communication using 
JavaSpaces 

 
 

In the implementation, an LP sends a message to another 
LP residing on a different processor by writing a copy of the 
message (write operation) into the JavaSpaces. 

 
2.2.2 Communicating Event Messages 
 

During the initialization phase of the simulation, an LP 
invokes the notify command on the JavaSpaces to indicate 
that it is ready to accept event messages from remote LPs. 
During the simulation, an LP sends an event message to an 
LP on another processor by depositing the message, tagged 
with the sender and receiver IDs, into the JavaSpaces. The 
JavaSpaces will siphon the message to the correct processor 
based on the value of the receiver ID.  Once the message has 
been delivered, the JavaSpaces will perform garbage 
collection to remove it from memory, using the take 
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operation. Figure 3 shows an example of how transmission 
of an event message is facilitated by a JavaSpaces.  

 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Sending and Receiving Event Messages 

through a JavaSpaces 
 
 
2.2.3 Communicating Null Messages 
 

Based on our combined null message algorithm, when an 
LP demands a null message from a remote sender LP, it 
places a request, tagged with the sender ID and its own ID, 
into JavaSpaces via the notify operation. The JavaSpaces 
then notifies the relevant processor containing the sender LP 
that a null message request has been made to it. 
Consequently, the sender LP deposits a null message into 
JavaSpaces, tagged with the requester's ID, and whichever 
LP that had requested for a null message from this sender 
can then read off the deposited null message.  As with the 
event messages, all used null messages will be cleared from 
space. If used null messages are not removed, it will lead to 
memory leakage of the JavaSpaces, which can potentially 
cause the simulation run to crash.  

JavaSpaces fits the analogy of a mailbox that centrally 
coordinates the distribution of letters, and LPs send letters 
(messages) to remote LPs by depositing the letters in the 
mailbox.  Also, more than one processor may retrieve a null 
message that has just being deposited into space with LPs 
making null message demands from the same sender LP. 
This attempts to avoid redundancy in transmitting null 
messages between remote processors.  
 
3. Performance Analysis 
 

The objectives of our experiments are to study how our 
implementation using the combined null-message algorithm 
and distributed-shared memory affects overall performance, 
in terms of null message overhead and simulation runtimes. 
A cluster of PCs connected via a 100Mbps Ethernet switch 
and running RedHat Linux 6.0 operating system were used 
in the experiments.  Each node in the cluster is a Pentium II 

400 MHz processor with 256MB of memory. Each 
experimental result is the average over three replications 
using different random number seed values. The two 
benchmarks used are a linear pipeline representing an open 
system, and PHOLD [11], which is a closed system. 

The linear pipeline consists of n service centers connected 
sequentially as shown in Figure 4. 

 
 
 
 
 
 
 
 
 

Figure 4:  Linear Pipeline (4, ρ) 
 
Job arrival rate is exponentially distributed with a mean 

of 10 jobs per second.  Each service center has a service rate 
that is exponentially distributed with a mean of 50 jobs per 
second.  The traffic intensity is denoted by ρ. As illustrated 
above, the linear pipeline comprises of LPs that are loosely 
coupled. The interactions between LPs in the program are 
minimal, since there are no feedback loops in the topology 
and hence, message communications proceed in a forward, 
one-directional manner. It can be used to model open 
systems such as car wash and supermarket express queues. 

PHOLD [11] consists of a network of N x N nodes and 
each node is interconnected to four neighboring nodes.  
Every node is initialized with m jobs at the start of 
simulation.  The service time at each node is exponential 
(0.9) plus a lookahead of 0.1 [11]. Figure 5 shows a 3x3 
PHOLD comprising of nine nodes.  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 5: PHOLD (3x3, m) 
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In contrast to the linear pipeline, PHOLD has a strongly 

connected, tightly coupled topology, with many feedback 
paths. It is one of the most commonly used benchmark for 
parallel simulation. Linear pipeline and PHOLD are general 
application problems with two extreme characteristics, and 
therefore, the simulation results can be applied to many real-
world problems.  
We define null message ratio (NMR) as the ratio of the total 
number of null messages to total messages (event plus null) 
in the simulation. We designed our experiments to first 
investigate the extent to which our combined null message 
algorithm has improved simulation performance, by 
executing the parallel simulation on one processor, and 
comparing the accummulative effects of each optimization 
step (i.e. carrier null, carrier-null + flushing, carrier-null + 
flushing + demand-driven null messaging). Next, we vary 
the number of processors to study the effects of using 
JavaSpaces and RMI (see  

Table 2).  “All (4 procs/RMI)” denotes the cumulative 
effect of the combined null message algorithms on four 
processors using RMI for inter-processor communication. 

In the case of the linear pipeline, cycles are absent in the 
topology, so the carrier-null NMR overhead is similar to that 
of the CMB protocol. When the LPs are mapped to one 
processor and run in parallel, the results show that null 
message flushing reduces the NMR from 0.94 to about 0.7 
and the cumulative effect of flushing, demand-driven null 
messaging and the use of reduces the NMR further to an 
average of 0.6.  The accumulative effect of the optimizations 
reduces runtime by more than a half. 

For PHOLD, we ran parallel simulations for different 
problem sizes over simulation duration of 10,000 time units 
over one, four and eight processors.  The reduction in NMR 
is significant.  The combined effect of carrier null, flushing 
and demand-driven null message further reduces NMR to 
0.4 for the case with one processor.  Again, the reduction in 
runtime is more than half for a larger problem size.  This 
illustrates that even on one processor alone, where inter-
processor communications are not in play, there are 
considerable reductions in NMR and achievements in 
speedup due to the combined null message algorithm. 
Flushing reduces null message growth from an exponential 
rate to a linear rate, with the elimination of some proportion 
of null messages at each LP each time the channels are 
scanned. The demand-driven mechanism further reduces null 
messages because now a condition is being laid to invoke 
the sending of null messages, with the initiative being rested 
on the destination LP instead of the sender LP.  There is no 
improvement in NMR when the simulation is distributed 
over four and eight processors respectively using RMI. 

 
 

Pipeline (16, 0.8) PHOLD (16x16, 16)  
Algorithm NMR Runtime NMR Runtime 

CMB 0.94 3770 0.99 13990 
+ carrier null 0.94 3775 0.69 5651 
+ flushing 0.70 2917 0.57 4580 

 
1 proc 

+ demand-driven 0.61 1989 0.44 1563 
All (4 procs/RMI) 0.60 1715 0.44 1288 
All (8 procs/RMI) 0.59 1578 0.44 1006 

 
Table 2:  Null Message Optimizations 

 
 

Runtime NMR Event rate  
#procs 

RMI JavaSpaces RMI JavaSpaces RMI JavaSpaces 
1 1563 1572 0.44 0.44 49127 48846 
4 1288 899 0.44 0.34 59616 85412 
8 1006 487 0.44 0.29 76327 157670 

 
Table 3:  PHOLD (16x16, 16) – RMI versus JavaSpaces 

 
We observe reductions in NMR and greater speedup when 
JavaSpaces is used to coordinate the transmission of null 
messages over more than one processor.  For 
PHOLD(16x6,16) as shown in  

Table 3, simulation runtime improves from 1006 seconds 
(RMI) to 487 seconds (JavaSpaces), NMR reduces from 
0.44 (RMI) to 0.29 (JavaSpaces), and event rate doubles.  
Event rate is defined as the total number of event messages 
(excluding null) over the simulation runtime. 

Figure 6 summarizes the improvement in NMR using 
JavaSpaces over RMI, for the PHOLD program.  The 
reduction in NMR from using JavaSpaces for inter-processor 
communication is due to the greater amount of flushing and 
more efficient null message coordination being done 
centrally in space.  The accompanying decrease in 
simulation runtimes is caused by the reduction in NMR as 
well as the lower communications latency involved in 
JavaSpaces over RMI, as mentioned in Section 2.2.1.  The 
more processors involved in the simulation, the greater the 
effect of the savings in communications latency. 

Teo et. al has developed a methodology based on partial 
order set theory to study the memory requirement of 
computer simulation [22]. The methodology defines three 

components of memory involved. probM  is dependent on 
the characteristic of the problem and is constant for the same 

problem size.  ordM  is dependent on the conservative 
protocol event ordering but independent of the null message 
protocol implementation.  Msync, on the other hand, is 
dependent on the implementation of the null message 
protocol. 
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Figure 6:  PHOLD (n× n, m) – Varying Number of Processors 

 
 

For linear pipeline, the flushing algorithm reduces syncM  
by 36%.  Adding demand-driven, null message reduces 

syncM  by 50% with respect to CMB.  In terms of the total 
memory required in a simulation, null message 
synchronization overhead accounts for 31%. For PHOLD, 

carrier null message reduces syncM  by 45%.  Flushing with 

demand-driven null-message reduces syncM  by 65% as 
compared with CMB, and null-message synchronization 
overhead accounts for only 13% of the total memory 
required. 

Table 4 compares the memory cost of the demand-driven 
null message with flushing algorithm for various problem 
sizes, between using RMI and JavaSpaces as the inter-
processor communications protocol on 8 processors. 
 

Pipeline(16, ρ) PHOLD (16x16, m) 
ρ M 

 
Space Usage 

0.2 0.4 0.6 0.8 1 8 16 
Mprob 98 192 320 740 
Mord 50 52 54 56 

256 2048 4096 

Msync (RMI) 331 341 348 352 665 651 638 
Msync (JavaSpaces) 305 308 311 312 347 332 317 

M (RMI) 479 585 722 1148 921 2699 4734 
M (JavaSpaces) 453 552 685 1108 603 2380 4413 

 
Table 4:  Profile of Memory Usage – 

8 Processors 
 

The values for Msync above demonstrate that JavaSpaces 
requires a lesser amount of memory for event 
synchronization, as compared to RMI, due to JavaSpaces' 
ability to perform flushing and null message coordination 
more efficiently. Notice that the values of Msync for 
PHOLD(16x16, m) using JavaSpaces to communicate are 
approximately half that for the case of RMI. 

 
 

4. Conclusions and Future Works 
 

The performance of parallel simulation is highly 
dependent on two major issues, namely the event 
synchronization overhead, and the cost of inter-processor 
communications.  Inter-processor communication is bound 
by the network traffic, thereby limiting performance 
improvements from optimizing the conservative 
synchronization algorithm to a certain extent.  We have 
briefly discussed three cumulative optimization techniques 
to reduce null message overhead.  This paper focuses on 
reducing inter-processor communication by comparing RMI 
with Java-Jini/JavaSpaces.  We conducted experiments on 
two programs of opposite nature: linear pipeline (a loosely-
coupled, open system) and PHOLD (a tightly-coupled, 
closed system), varying the problem sizes and number of 

RMI/JavaSpaces (1 proc) 

JavaSpaces (4 proc) 

JavaSpaces (8 proc) 
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processors used.  For PHOLD(16x6,16), JavaSpaces reduces 
the runtime by more than two-thirds, NMR reduces to 0.29, 
and event rate is almost four times higher using eight 
processors. We analyze the memory cost of the conservative 
null message approach based on the memory usage 
methodology we have developed [22].  We observe that for 
our optimized null message algorithm using JavaSpaces, the 
memory cost for supporting null message synchronization 
(Msync) is less than 9% for PHOLD (16x16, 16) on eight 
processors. 

We are extending SPaDES/Java distributed simulation 
library to operate on a grid computing environment, where 
processors are geographically scattered and network latency 
is significantly larger than on a cluster.  To further study the 
effects of inter-processor communication, we are developing 
communication-intensive applications such as mobile 
communication network simulation. 
 
 
Acknowledgements 
This research is supported by the Ministry of Education 
(Singapore) and PSA Corporation under grants R-252-000-
020-112 and R-252-000-020-490. 
 
 
References 
 
[1] R. Ayani, and H. Rajael, "Parallel Simulation Using 

Conservative Time Windows", Proceedings of the Winter 
Simulation Conference, pp. 709-717, 1992. 

 
[2] R. L. Bagrodia, "Perils and Pitfalls of Parallel Discrete-

Event Simulation", Proceedings of the Winter Simulation 
Conference, pp. 136-143, 1996. 

 
[3] W. L. Bain, and D. S. Scott, "An Algorithm for Time 

Synchronization in Distributed Discrete Event Simulation", 
Proceedings of the SCS Multiconference on Distributed 
Simulation, 19, 3 (February), pp. 30-33, 1988. 

 
[4] L. Bajaj, R.Bagrodia, and R. Meyer, "Case Study: 

Parallelizing a Sequential Simulation Model", Proceedings of 
the 13th Workshop on Parallel and Distributed Simulation, pp. 
12-19, 1999. 

 
[5] P. Bizarro, L. M. Silva and J. G. Silva, "JWarp: A Java 

Library For Parallel Discrete-Event Simulations", 
Proceedings of the ACM Workshop on Java for High-
Performance Network Computing, 1998. 

 
[6] W.T. Cai, and S.J. Turner, "An Algorithm for Distributed 

Discrete Event Simulation – The Carrier Null Message 

Approach", Proceedings of the SCS Multiconference on 
Distributed Simulation, pp. 3-8, 1990. 

 
[7] K. M. Chandy and J. Misra, "Distributed Simulation: A case 

study in design and verification of distributed programs", 
IEEE Transactions on Software Engineering, SE-5:5, pp. 
440-452, 1979. 

 
[8] Cormen, Leiserson and Rivest, Introduction to Algorithms, 

McGraw Hill, 1989. 
 
[9] A. Ferscha, Parallel and distributed simulation of discrete 

event systems, a chapter in the Handbook of Parallel and 
Distributed Computing, McGraw-Hill, 1995. 

 
[10] R. M. Fujimoto, "Parallel Discrete Event Simulation", 

Communications of the ACM, vol. 33, pp. 31-52, 1990. 
 
[11] R.M. Fujimoto, "Performance of Time Warp under Synthetic 

Workload", Proceedings of the SCS Multiconference on 
Distributed Simulation, 22, 1, 1990. 

 
[12] R. M. Fujimoto, Parallel and Distributed Simulation 

Systems, Wiley Series on Parallel and Distributed 
Computing, Wiley-Interscience, pg. 51-95, 2000. 

 
[13] F. W. Howell, P. E. Heywood, and R. N. Ibbett, "Hase: A 

flexible toolset for computer architects", Computer Journal, 
vol. 38, pp. 755-764, 1995. 

 
[14] S. Hupfer, The Nuts and Bolts of Compiling and Running 

JavaSpaces Programs, Java Developer Connection, Sun 
Microsystems, Inc., 2000. 

 
[15] D. R. Jefferson, "Virtual Time, ACM Transactions on 

Programming Languages and Systems", vol. 7, pp. 404-425, 
1985. 

 
[16] D. R. Jefferson and H. Sowizral, "Fast concurrent simulation 

using the Time Warp mechanism". Tech. Rep. N-1906-AF, 
RAND Corporation, 1982. 

 
[17] L. Lamport, "Time, Clocks, and the Ordering of Events in a 

Distributed System", Communications of the ACM, 21, pp. 
558-565, 1978. 

 
[18] J. Misra, "Distributed Discrete Event Simulation", 

Proceedings of the ACM Computing Survey, vol. 18, pp. 39-
65, 1986. 

 
[19] D. M. Nicol, "Parallel discrete-event simulation of FCFS 

stochastic queueing networks", SIGPLAN Notice, vol. 23, 
pp. 124-137, 1988. 

 
[20] S. C. Tay, Parallel Simulation Algorithm and Performance 

Analysis, PhD Thesis, Department of Computer Science, 
National University of Singapore, 1998. 

 

Proceedings of the 16th Workshop on Parallel and Distributed Simulation (PADS�02) 
1087-4097/02 $17.00 © 2002 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


