SINGAPORE-MIT ALLIANCE (COMPUTER SCIENCE)

SMA5505 / 6.338J/ 18.337J – Applied Parallel Computing

Department of Computer Science, National University of Singapore (NUS) Spring 2005 updated: 25 April 2005)

Lecture Slides

L0 – Course Admin

L1 – Introduction

- What, Why, How
- Classical (Modern) Science
- Definitions
- Evolution of Supercomputing
- Limits of Serial Computing
- Programming Parallel Computers
- Computing in the Internet Age
- What will we be doing?

L2 – Parallel Architectures and Programming Models

- Architectures: von Neumann, Flynn's taxonomy, memory model, interconnect
- Parallel Programming Models Shared, Distributed and Hybrid
- Designing Parallel Programs
- Overheads of Parallelism
- Summary

<u>L3 – Message Passing Computing</u>

- Overview
- What is MPI?
 - Six Basic functions
 - Basic Program Structure

- Basic Send and Receive
- Types of Program
- Summary

<u>L4 – Shared- Memory Programming</u>

- OpenMP
- Data Parallelism
 - Shared memory Model
 - Parallel for Loops
 - Declaring Private Variables
 - Critical Sections
 - Reductions
 - Performance Improvements
 - More General Data Parallelism
- Functional Parallelism
- Summary

Tutorial on MPI, OpenMP and STARP Programming

L5–Grid Computing

- Internet 3 Generations
- The Grid Problem
- Why Grid and Why Now?
- What is Grid Computing?
- Types of Grid and Grid Computing Models
 - Main Grid Computing Problems
 - Systems Problem
 - Programming Problem
- Where are we today?
 - Grid and Web Services Convergence
 - Globus Toolkit, OGSA, OGSI/WSRF
 - Globus Project, GT2, GT3
 - GT3 Implementation & Terminology
- Summary

<u>L6– Parallel Algorithm Design</u>

- Motivation
- Task/Channel Model
- Algorithm Design Methodology
 - Partitioning
 - Communication
 - Agglomeration
 - Mapping
- Examples
 - Finding the Maximum
 - N-Body Problem
- Summary

Lx – Parallel Algorithms (see Edelman's slides)

L7– Principles of Scalable Performance

- Arguments against the Merit of Parallelism
- Performance Metrics
 - Average Program Parallelism
 - Execution Rates
 - Harmonic Mean Performance
 - Efficiency, Utilization and Quality of Computation
- Applications / Algorithms
 - Application Models
 - Scalability of Parallel Algorithms
- Speedup Performance Laws
 - Fixed Workload Amdahl's Law (1967)
 - Scaled Problems Gustafson's Law (1987)
 - Memory-bounded Speedup Model Sun and Ni (1993)
- Scalability Analysis and Approaches
- Summary

<u>L8 – Case Study of ALiCE Grid</u>

- Cost of Idle Computing Cycles
- ALiCE
 - Design
 - Implementation
 - Grid Programming
 - Some Applications
- Grid Computing Activities: Worldwide and in Singapore
- Some Ongoing Projects
- References

<u>L9 – Conclusions</u>

- Cost Comparison: Supercomputer, a Physical Cluster and a Virtual Grid of 100,000 PCs
- Distributed Computing Economics
- Petaflop Computing
 - Parallel Architectures
 - Application Requirements
- What have we covered?
- References

Reference Texts

- 1. Fundamentals of Parallel Processing, Harry Jordan, Gita Alaghband, Prentice-Hall, 2003.
- 2. Parallel Programming in C with MPI and OpenMP, Michael J. Quinn, Mc-Graw Hill, 2003.
- 3. <u>Parallel Scientific Computing, Alan Edelman, Spring 2002 (draft).</u>
- 4. Edelman's Notes