PACE: A Scalable and Energy Efficient CGRA in a RISC-V SoC for Edge Computing Applications

Vishnu P. Nambiar¹, Yi Sheng Chong¹, Thilini Kaushalya Bandara², Dhananjaya Wijerathne², Zhaoying Li², Rohan Juneja², Li-Shiuan Peh², Tulika Mitra², Anh Tuan Do¹

¹Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore ²School of Computing, National University of Singapore (NUS), Singapore

Introduction

- Coarse-grained reconfigurable arrays (CGRAs) deliver high energy efficiency while maintaining the programmability advantages.
- CGRA is the ideal candidate for efficiently handling loop kernels, which allows it to offload repetitive looping functions such as vector multiplication or hashing algorithms from CPUs.
- It relies on a compiler to convert a given workload into a data flow graph (DFG) which is then mapped onto the hardware in a

manner that achieves the highest possible energy efficiency.

Fig.1 PACE CGRA integrated in a RISC-V system-on-chip (SoC)

Bypass enabled router

The proposed CGRA enables bypass path in the PE router to enable single-cycle multi-hop capability.

Software toolchain

An end-to-end toolchain (written in Python and C++) is developed to map various applications onto our CGRA.

Dynamic clock gating in PE

The proposed CGRA has dynamic and static clock gating to suspend idle PEs for reducing power consumption.

Fig. 3 Dynamic clock gating for power savings

Demonstration: The microspeech application

The proposed CGRA executes the convolution and fully-connected layers for wake word detection.

Fig. 6 Microspeech neural network model and execution flow

Performance evaluation

The proposed CGRA delivers a peak efficiency of 360 GOPS/W, which is 1.2 to 4.6 times higher than the state-of-the-art.

2022 16 20.1 384 1.29	2020 28 3.9 120	2019 22 4.9	2018 55 5.19	2019 40	2020 28	2023 40
16 20.1 384 1.29	28 3.9 120	22 4.9	55 5.19	40	28	40
20.1 384 1.29	3.9 120	4.9	5,19			
384 1 29	120		0.10	2.87	4.80	3.02
1 29		15	30	16	64	64
1.20	0.9	0.8	N/A	1.1	0.9	1.0
955	89	36	450	853	800	100
367 (INT16)	14.1	145	77.4	6.48	0.88	64
N/A	45.9	N/A	1526	72	537	43@1V
538@ 1.29V (INT16)	307@ 0.9V	978@ 0.48V	50.8	90	196	154@1V 360@0.6V
1500KB	234KB	690KB	54KB	7KB	320KB	80KB
50	5.5	3.2	3.67	2.87	6.86	3.02
0.13	0.05	0.21	0.12	0.18	0.11	0.05
86	150	296	96	90	96	360
	955 367 NT16) N/A 538@ 1.29V NT16) 500KB 50 0.13 86 ency × (no	95589 367 NT16)14.1N/A45.9 $338@$ 1.29V NT16) $307@$ 0.9V $500KB$ $234KB$ 50 5.5 0.13 0.05 86 150 $ency \times \left(\frac{node}{2}\right)^2$ Notes	9558936 367 NT16)14.1145N/A45.9N/A $538@$ 1.29V NT16) $307@$ 0.9V $978@$ 0.48V $500KB$ 234KB690KB $500KB$ 234KB690KB 50 5.5 3.2 0.13 0.05 0.21 86 150296 $prov x \left(\frac{node}{2}\right)^2$ Norm. area = a	9558936450 367 NT16)14.114577.4N/A45.9N/A1526 $38@$ 1.29V NT16) $307@$ 0.9V978@ 0.48V50.8 $500KB$ 234KB690KB54KB 50 5.53.23.67 0.13 0.050.210.12 86 15029696 $prov \times \left(\frac{node}{2}\right)^2$ Norm area = area $\times \frac{40nm}{2}$	9558936450853 367 NT16)14.114577.46.48N/A45.9N/A152672 $38@$ 1.29V NT16) $307@$ 0.9V $978@$ 0.48V50.890 $500KB$ 234KB690KB54KB7KB 50 5.53.23.672.87 0.13 0.05 0.21 0.12 0.18 86 1502969690	9558936450853800 367 NT16)14.114577.46.480.88N/A45.9N/A152672537 $38@$ 1.29V NT16) $307@$ 0.9V978@ 0.48V50.890196 $500KB$ 234KB690KB54KB7KB320KB 50 5.53.23.672.876.86 0.13 0.050.210.120.180.11 86 150296969096

Fig. 7 CGRA efficiency across VDD, chip micrograph, area and power breakdown of the SoC and CGRA

Fig. 8 Performance comparison with state-of-the-art

Acknowledgements This research is supported by the National Research Foundation, Singapore (CRP23-2019-0003).