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Introduction
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= CGRA is the ideal candidate for efficiently handling loop kernels,
which allows it to offload repetitive looping functions such as

vector multiplication or hashing algorithms from CPUs.

= |t relies on a compiler to convert a given workload into a data flow
graph (DFG) which is then mapped onto the hardware in a
manner that achieves the highest possible energy efficiency.

Bypass enabled router

The proposed CGRA enables bypass path in the PE
router to enable single-cycle multi-hop capabillity.
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Fig. 2 PE router with bypath pass for single-cycle multi-hop data

Software toolchain

An end-to-end toolchain (written in Python and C++) is
developed to map various applications onto our CGRA.
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Fig.1 PACE CGRA integrated in a RISC-V system-on-chip (SoC)
Dynamic clock gating in PE

The proposed CGRA has dynamic and static clock gating to suspend idle PEs for
reducing power consumption.
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Fig. 3 Dynamic clock gating for power savings

Demonstration: The microspeech application

The proposed CGRA executes the convolution and fully-connected layers
for wake word detection.
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Fig. 5 End-to-end compiler toolchain

Performance evaluation
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Fig. 6 Microspeech neural network model and execution flow

The proposed CGRA delivers a peak efficiency of 360 GOPS/W, which is 1.2 to 4.6 times higher than the state-of-the-art.
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Fig. 7 CGRA efficiency across VDD, chip micrograph, area and power breakdown of the SoC and CGRA
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Fig. 8 Performance comparison with state-of-the-art
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