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Abstract—The wide adoption and substantial computational
resource requirements of attention-based Transformers have
spurred the demand for efficient hardware accelerators. Unlike
digital-based accelerators, there is growing interest in exploring
photonics due to its high energy efficiency and ultra-fast process-
ing speeds. However, the significant signal conversion overhead
limits the performance of photonic-based accelerators. In this
work, we propose HyAtten, a photonic-based attention accelerator
with minimize signal conversion overhead. HyAtten incorporates
a signal comparator to classify signals into two categories based
on whether they can be processed by low-resolution converters.
HyAtten integrates low-resolution converters to process all low-
resolution signals, thereby boosting the parallelism of photonic
computing. For signals requiring high-resolution conversion, Hy-
Atten uses digital circuits instead of signal converters to reduce
area and latency overhead. Compared to state-of-the-art photonic-
based Transformer accelerator, HyAtten achieves 9.8× perfor-
mance/area and 2.2× energy-efficiency/area improvement.

Index Terms—photonic computing, attention mechanism, do-
main specific accelerator

I. INTRODUCTION

Transformer-based neural networks have achieved remark-
able success in various domains, such as natural language
processing (NLP) [1] and computer vision (CV) [32]. The
core operation of Transformers is the self-attention mechanism,
which calculates pairwise correlations between input tokens to
enhance inference accuracy. Despite their superior accuracy,
the quadratic complexity of self-attention requires substan-
tial computational resources, posing a significant challenge
for deploying Transformers, especially in resource-constrained
systems. Consequently, there is a pressing need to develop
domain-specific hardware accelerators to enable the efficient
deployment of Transformers in real-world applications.

Several digital hardware accelerators have been proposed
to improve the inference performance of Transformers by
reducing redundant memory access and enhancing compu-
tational parallelism [1], [9], [11], [32]. While these digital
accelerators effectively reduce inference latency, traditional
electrical computing platforms face significant limitations as
transistor-based chips approach the boundaries of Moore’s Law.
This results in increased power dissipation, particularly in
computation-intensive self-attention processes. As Transformer
models continue to grow in size, the high latency and energy
consumption faced by digital accelerators will only become
more pronounced. In contrast, integrated photonic accelerators
present a promising alternative for accelerating deep neural
networks, offering ultra-high speeds, extensive parallelism, and
low energy consumption.

Various optical systems have been explored to accelerate con-
volutional neural networks (CNNs) [6] and Transformers [34].
However, existing photonic accelerators are highly dependent
on high-resolution signal converters to preserve the accuracy
of neural network inference, as shown in Figure 2 (a). These
high-resolution converters, however, have become a substantial
bottleneck, constraining the overall performance of photonic
accelerators. For instance, in the state-of-the-art photonic-based
Transformer accelerator, Lightening-Transformer [34], signal
conversion units, analog-to-digital converters (ADCs), digital-
to-analog converters (DACs), and optical/electrical converters,
consume more than 50% of the chip’s area. To mitigate the
area overhead, Lightening-Transformer shares one ADC among
multiple photonic arrays. However, one 32×32 photonic array
will generate 1024 signals in one cycle, which can not be
efficiently processed by only one ADC. Hence, there is a
pressing need to minimize the delay, energy, and area overhead
of signal conversion units without sacrificing model accuracy.

Given this context, we introduce HyAtten, a novel photonic-
based attention mechanism accelerator designed to minimize
signal conversion overhead while maintaining inference accu-
racy. Our experimental results reveal that over 85% of the ana-
log signals in existing photonic-based Transformer accelerators
can be effectively processed using low-resolution converters,
such as 4-bit ADCs. Leveraging this insight, HyAtten utilizes
low-resolution converters within its photonic circuits to handle
these signals, substantially reducing both the latency and area
overhead of the photonic components. For the remaining high-
resolution signals (exceed the full-scale measurement range
of low-resolution converters) that cannot be processed by the
low-resolution converters, HyAtten integrates digital circuits to
manage these part of attention computations. Importantly, the
digital circuits only need to process a small fraction of the
data (less than 15%), significantly lowering the overall demand
for digital computational resources. The key contributions of
HyAtten are as follows:

• We perform extensive experiments on a state-of-the-art
photonic Transformer accelerator and find that over 85%
of analog signals can be efficiently processed using low-
resolution signal converters.

• Based on this insight, we propose HyAtten, an innova-
tive photonic-based attention mechanism accelerator that
employs low-resolution converters to handle these signals.

• To further optimize performance, HyAtten incorporates
digital circuits to process the remaining high-resolution
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Fig. 1: (a) DPTC array proposed in [34], and (b) DDot unit
proposed in [34]

signals, minimizing signal conversion overhead.
• Our evaluations demonstrate that HyAtten outperforms

existing photonic Transformer accelerators, achieving a
9.8× improvement in performance-per-area and a 2.2×
increase in energy-efficiency-per-area.

II. BACKGROUND AND MOTIVATION

A. Transformer and self-attention

Transformer-based neural networks are generally composed
of multiple identical blocks, referred to as encoder and de-
coder blocks. Both types of blocks contain a multi-head self-
attention (MHA) module, a feed-forward network (FFN), short-
cut connections, and layer normalization (LN). Additionally,
the decoder block incorporates cross-attention and masked self-
attention modules. For illustration, the structure of a basic
encoder block is defined as follows:

{
X′

l+1 = MHA(LN(Xl))+Xl ;
Xl+1 = FFN(LN(X′

l+1))+X′
l+1,

(1)

where Xl is the input sequences of l-th layer.
Multi-head Self-Attention (MHA) mechanism consists of H

distinct self-attention heads. Within each head, the input vector
is linearly projected into three separate vectors: the query (Q),
key (K), and value (V) vectors. The attention function is then
computed between these input vectors as follows:

Attention(Q,K,V) = so f tmax(QKT/
√

dk)V, (2)

where dk is Q and K’s dimension. An intermediate score
matrix S is obtained with S = Q×KT. As the input sequence
grows, Q, K, and V will grow linearly while the attention
computation of matrix S will grow quadratically. The FFN
module usually contains two linear layers with an activation
function in between.

B. Optical computing basics

Recently, researchers propose a dynamically-operated dot-
product (DDot) unit to perform optical dot-products between
two vectors x⃗ and y⃗ [34]. As Figure 1 (b) shows, the DDot
units are designed based on coherent interference. First, the
wavelength-division multiplexing (WDM) technique encodes
each input pairs (xi, yi) in the same wavelength λi. The WDM
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Fig. 2: (a) The model accuracy when employing different ADC
resolutions, and (b) the proportion of signals that remain within
the resolution limits of various ADCs

light signals are then sent through the two arms of 50 : 50
directional coupler (DC) with a −90◦ phase shifter (PS).
Consequently, the two output signals become orthogonal in the
complex plane. This setup allows each input pair (xi, yi) with
the same wavelength λi to interfere in parallel, while different
wavelengths do not interfere. The photo-diode at the end of
each output port of DC converts the incident WDM signals into
photocurrent. The generated photocurrent is proportional to the
accumulated intensities of the WDM signals, representing the
square of the optical magnitudes and producing the final output
current as Io ∝ x⃗ · y⃗.

To enable general matrix multiplication (GEMM) operations
with optical dot-product engines, a dynamically-operated pho-
tonic tensor core (DPTC) has been proposed [34]. Researchers
designed a compact crossbar array of DDot units to maximize
operand sharing within the core, significantly reducing operand
modulation costs, as illustrated in Figure 1 (a). This archi-
tecture supports efficient sharing of photonic waveguide buses
among DDot units, enabling ultra-parallel GEMM operations.
A Nv×Nh DPTC comprises Nv×Nh DDot units, where Nv and
Nh denote the numbers of input waveguides in the vertical and
horizontal directions, respectively.

C. Motivations

Problem: Signal conversion costs remain the primary bottle-
neck for emerging photonic systems. In the state-of-the-art pho-
tonic Transformer accelerator, Lightening-Transformer [34],
signal conversion units, such as ADCs, DACs, and opti-
cal/electrical converters, consume over 50% of the chip area.
To reduce this overhead, Lightening-Transformer allocates a
single ADC to a 32×32 DPTC array. However, a 32×32
DPTC array generates 1024 analog signals, which cannot be
efficiently processed by just one ADC. As a result, photonic
devices experience significant delays, idling while awaiting
signal conversion.

Observation#1: Utilizing low-resolution signal converters
can significantly reduce latency and area overhead, but it may
also lead to substantial model accuracy loss. According to
the latest ADC performance survey [16], published in May
2023, ADC area increases exponentially with resolution. For
example, a 5-bit ADC requires twice the area of a 4-bit ADC
using the same technology. While a common approach to
reduce area overhead is to employ low-resolution ADCs, we
evaluated the impact of varying ADC resolutions (2-bit, 4-bit,
and 8-bit) on the Lightening-Transformer [34]. Our evaluation



Fig. 3: Architecture and dataflow of HyAtten

utilized five datasets, CoLA, MNLI, MRPC, RTE, and SQuAD,
from GLUE [25], running on a BERT-based model. For high-
resolution output signals that exceed the ADC’s full-scale
measurement range, the conversion output was capped at the
ADC’s maximum value. The accuracy results (ratio between the
number of correctly predicted samples by the total number of
samples), shown in Figure 2 (a), reveal that using 4-bit ADCs
leads to a more than 20% decrease in model accuracy compared
to the original 8-bit ADCs. These experiments demonstrate that
high-resolution signals are critical to preserving model accuracy
and must be appropriately handled.

Observation#2: Only a small fraction of analog signals re-
quire high-resolution ADCs. Analogous to the barrel principle,
ADC resolution must account for the “short end of the barrel”,
i.e., the high-resolution signals [34]. If we can effectively
address these high-resolution signals, the ADC resolution can
be lowered for the remaining signals. Figure 2 (b) illustrates the
proportion of signals exceeding the resolution of various ADCs
from the above experiments. While 8-bit ADCs process all
signals without exceeding their full-scale measurement range,
4-bit ADCs successfully process over 85% of signals, leaving
only 15% unprocessed. This indicates that the “barrel short”
for 4-bit ADCs accounts for 15% of the total signals.

Our goal: Building on Observation#2, analog signals in
photonic-based Transformer accelerators can be categorized
into two groups: low-resolution signals (≤4-bit) and high-
resolution signals (>4-bit). Low-resolution signals can be ef-
ficiently processed using 4-bit ADCs with lower latency and
area overhead. As noted in Observation#1, however, high-
resolution signals require careful handling to avoid accuracy
loss. Rather than introducing high-resolution ADCs, we employ
digital circuits to process these signals. Since high-resolution
signals constitute less than 15% of the total, the computational
overhead imposed on the digital circuits remains minimal.

III. HYATTEN

A. Architecture

As depicted in Figure 3 ( a ), HyAtten consists of multiple
Tiles, each of which includes a photonic die ( b ) and a digital
die ( c ). The photonic die performs highly parallel photonic
computing, while the digital die carries out digital computations
without the need for signal conversion. Together, the photonic

and digital dies collaborate to execute various components
of the attention mechanism, such as GEMM and softmax
operations. We assume that all data related to the attention
mechanism, including matrices Q, K, and V , are stored in
off-chip High-bandwidth Memory (HBM). The data will be
transferred between the HBM and HyAtten Tiles.

Details of Photonic Die. The photonic die includes a shared
static random access memory (SRAM), a shared photonic
digital-to-analog converter (PDAC) with modulation units, and
a photonic processing element (PE) ( d ). Both the shared
SRAM and PDAC are accessible by all Tiles. Input matrices
Q and K from Equation (2) are transferred from the HBM
to the shared SRAM. To reduce computational overhead, we
apply low-bit quantization (4-bit) to these input matrices, as
demonstrated in [34], where low-bit quantization significantly
decreases computational demands with minimal accuracy loss.
To ensure the input matrices fit within the shared SRAM,
HyAtten is designed to support batch-based processing, where
matrices are partitioned into smaller batches (either row or col-
umn vectors) that are processed sequentially [34]. The shared
PDAC receives one batch (e.g., one column vector) of the input
matrix Q, converts it to photonic signals, and broadcasts these
signals to all Tiles’ photonic PEs for processing.

The photonic PE handles the core computations in the
attention mechanism, specifically the GEMM operations for
Q×KT and S×V . As shown in Figure 3 ( d ), the photonic PE is
equipped with local SRAM, a coordinate register, and a DPTC
unit. The local SRAM receives data (e.g., matrix K) from the
shared SRAM and transfers it to the DPTC units for processing.
Unlike the shared SRAM, data in the local SRAM is routed to
a local PDAC for signal conversion. The DPTC unit processes
two sets of photonic inputs: one from the shared PDAC and
another from the local PDAC, as illustrated in Figure 1 (a).
The coordinate register stores the coordinates of some matrix
elements, which are used to facilitate data loading from both
the shared and local SRAM.

Figure 3 ( e ) illustrates the detailed architecture of a DPTC
unit. Unlike prior photonic accelerators that configure one high-
resolution ADC for each DPTC array [34], we configure each
64×64 DPTC array with 32 low-resolution ADCs to mitigate
signal conversion latency. The DPTC unit operates as follows:
two input photonic signals are received from the shared PDAC
and local PDAC. These signals are processed through the
DPTC array, resulting in photonic currents corresponding to
the GEMM operations. Given the use of low-resolution ADCs,
some photonic currents may exceed the ADCs’ resolution. To
handle this, an analog comparator is integrated to detect over-
resolution signals and log their coordinates in the coordinate
register. Under-resolution signals are processed by the ADCs
to obtain their digital results. The memory controller then loads
the over-resolution data based on the coordinates in the register
and sends these data to the digital die for further processing.

Details of Digital Die. The digital die consists of a shared
SRAM, a softmax unit, and a digital PE. The shared SRAM
receives two types of data from the photonic die: the GEMM
output results of low-resolution signals and the input digital



Fig. 4: GEMM operations on multiple photonic Tiles

values of high-resolution signals. It also buffers the computed
results before transferring them back to the HBM. The softmax
unit handles the softmax operation for the attention score matrix
S, which is collaboratively generated by the photonic and digital
dies. The digital PE is responsible for completing GEMM
operations that cannot be processed by the photonic die. The
area and latency overhead of the digital die is minimal, as it
processes only a small subset of signals.

Figure 3 ( f ) illustrates the architecture of the digital PE,
which includes an instruction queue, an instruction decoder,
an input buffer, a multiplication-accumulation unit (MAU),
and an output buffer. The instruction queue and decoder work
together to manage and schedule the digital PE’s execution.
Data is received from the shared SRAM by the input buffer,
which then forwards it to the MAU. The MAU carries out
vector-vector multiplications and accumulations to complete the
GEMM operations. The results are subsequently stored in the
output buffer for further processing or storage.

Figure 3 ( g ) presents the architecture of the softmax unit.
Following the approach in [10], we implement the exponent
function using a lookup table. To minimize the size of the
lookup table, we leverage the property that an exponentiation
can be decomposed into the product of two smaller exponen-
tiations. Thus, we employ two smaller lookup tables, an upper
half and a lower half, and a multiplier to achieve the desired
result. After computing the exponent of the dot-product, the
value is accumulated and later used as the denominator in the
softmax computation.

B. Dataflow

Details of Transmission. Figure 3 shows the data transmis-
sion process within HyAtten, using the Q×KT operation as an
example, with a similar procedure followed for S×V . In 1 , the
input matrices Q and K are loaded from the off-chip HBM into
the shared SRAM on HyAtten’s photonic die. In 2 , matrix K is
transferred to the local SRAM of the photonic PE, while matrix
Q is sent to the shared PDAC for conversion into photonic
signals. In 3 , the photonic signals corresponding to matrix
Q are broadcast to all Tiles’ photonic PEs. Simultaneously,

TABLE I: Hardware Configurations of HyAtten

Component Area (mm2) Power (mW) Params. Spec.
Components Shared by all Tiles

Shared PDAC 0.0016 8 Resolution 4 Bits
Numbers 1

Shared SRAM 3.68 1.23K Capacity 2MB
Photonic Die (PD) Properties

PDAC [21] 0.0748 520 Resolution 4 Bits
Numbers 64

ADC [14] 0.0057 29.6 Resolution 4 Bits
Numbers 32

DPTC Array 0.246 624 Size 64 × 64
Numbers 1

SRAMs [18] 0.06 19 Capacity 32KB
Registers 0.015 5.23 Capacity 8KB

Accumulator 0.0014 0.039 Numbers 32
Ana. Comp. 0.00031 0.019 Numbers 32

PD Total 0.405 1.2K Numbers 1
Digital Die (DD) Properties

MAU [3] 0.014 8.2 Numbers 1
Registers 0.002 0.63 Capacity 1KB

Softmax [10] 0.0072 1.134 LUT Size 512B
Numbers 1

DD Total 0.023 9.96 Numbers 1
HyAtten properties (32 Tiles in total)

HyAtten 17.38 39.9W Numbers 1

matrix K is converted into photonic signals, and both matrices
undergo GEMM operations to produce the result matrix S.
In 4 , the result matrix S, along with the digital values of
the high-resolution signals, are stored in the shared SRAM.
The digital values of the high-resolution signals are transferred
to the digital die in 5 . In 6 , the digital PE then processes
these high-resolution signals, performing the remaining GEMM
operations. In 7 , the matrix S is sent to the softmax unit. The
results will be stored back to the HBM in 8 .

Matrices partition and data mapping. To address the size
limitations of the DPTC array, the input matrices must be
divided into smaller sub-matrices that align with the dimensions
of the array. We adopt a Tile-based matrix partitioning and
data mapping strategy, as illustrated in Figure 4 (a). The input
matrices, A and B, are partitioned into shards, with each shard
matching the size of the DPTC array. Matrix A is stored in
the shared SRAM and accessed sequentially in a column-wise
manner, while matrix B is stored in the local SRAM of the
photonic PE, with different shards distributed across different
Tiles. For instance, as shown in Figure 4 (a), the first sub-matrix
of matrix B is stored in Tile0. Given the limited capacity of the
local SRAM, we process subsets of input matrices at a time.
For example, if the local SRAM can accommodate two sub-
matrices, GEMM operations will be executed in batches of two
sub-matrices at a time.

Details of Calculation. Figure 4 (b) illustrates the Tile-based
GEMM operations. We assume that matrix A has been parti-
tioned and stored in the shared SRAM, while matrix B has also
been partitioned and stored in the local SRAM across different
Tiles. During cycle0, the first sub-matrix of matrix A is sent to
the shared PDAC, where it is converted into photonic signals
and broadcast to all Tiles’ photonic PEs. Simultaneously, the
corresponding sub-matrix of matrix B is converted to photonic
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Fig. 5: (a) Performance per unit area, and (b) energy efficiency
per unit area

signals by the local PDAC. The resulting photonic currents
produced by the DPTC arrays are processed by the ADCs to
generate the outputs of the sub-matrix multiplication. In the
following two cycles, cycle1 and cycle2, the second and third
sub-matrices of matrix A are sequentially sent to the shared
PDAC, where they are converted into photonic signals and
broadcast to all Tiles. These signals multiply with the same
sub-matrix of matrix B as in cycle0. The results from cycle0
are accumulated to generate the first row vector of the output
matrix, and this process continues for subsequent sub-matrix
multiplications, following the same procedure.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

System Setup. We modified an existing Python-based sim-
ulator [34] to evaluate the latency, power, area, and energy
efficiency of HyAtten during Transformer inference. The area,
leakage power, and access energy of the memory system are
modeled using PCACTI [18] in 14 nm. We model HBM with
a bandwidth 1TB/s to supply data to the photonic system.
The area and energy consumption of the digital die, including
the softmax unit, MAU, and accumulator, are derived from
SPICE circuit simulations [3]. Similar to [7], [8], we scale the
power of the ADC [14] and PDAC [21] based on the bit-width
and frequency requirements of the photonic PE. To further
optimize, we replace one 8-bit ADC with 16 4-bit ADCs,
as high-resolution ADCs can be constructed from multiple
low-resolution units [16]. Unlike conventional accelerators that
share a single ADC across multiple arrays, HyAtten equips
each array with 32 ADCs to minimize signal conversion latency.
Table I provides a detailed breakdown of the device parameters
used.

Models, datasets, training, and inference settings. We
evaluate the efficiency and accuracy of HyAtten using two
widely recognized Transformer models: DeiT-T for vision
tasks [24] and BERT-base for NLP tasks [4]. The models
are tested on: ImageNet [17] for vision and GLUE [25] for
NLP. Both weight and activation quantization are applied
using low-bit precision [5]. Additionally, noise-aware training
is employed, with both encoding and systematic noise injected
during training to reflect real-world conditions [34].

B. Compare to State-of-the-art Photonic Accelerator

Baseline: We select the base version of the Lightening-
Transformer [34], which features a 4-bit DPTC core, as the
baseline system, denoted as LT-B. LT-B is a photonic-based
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Fig. 6: (a) HyAtten speedups compared to CPU and GPU, and
(b) HyAtten energy saving compared to CPU and GPU

TABLE II: Accuracy Comparison

Model BERT DeiT
Datasets GLUE (MRPC) SQuAD ImageNet-1K
Original 86.11 81.44 71.43

LT-B 85.77 81.16 71.19
HyAtten 85.89 81.22 71.27

Transformer accelerator that relies on high-resolution signal
converters (e.g., 4-bit DAC and 8-bit ADC) to process all
analog signals. To mitigate the area overhead associated with
signal converters, LT-B configures each DPTC array with a
single ADC. For a fair comparison, we use identical photonic
device parameters for both LT-B and HyAtten. To eliminate the
influence of chip area in our evaluation, we report performance
and energy consumption normalized to per unit area.

Performance per unit area: Figure 5 (a) dispalys the
speedups achieved by HyAtten relative to the photonic baseline.
Across all six datasets, HyAtten delivers a 9.8× speedups
per unit area. This improvement can be attributed to two
key factors. First, HyAtten replaces each high-resolution ADC
with multiple low-resolution ADCs, significantly reducing sig-
nal conversion latency without increasing chip area. Second,
HyAtten employs a digital die to handle the 15% of signals
that require high resolution ADCs, thereby avoiding excessive
signal conversion overhead while incurring only a small area
penalty. In contrast, the baseline LT-B system relies on high-
resolution ADCs for all signals, which inefficiently allocates
resources to process the 85% of signals that are low-resolution.

Energy efficiency per unit area: Figure 5 (b) illustrates the
energy savings achieved by HyAtten compared to the photonic
baseline. When processing all datasets using the DeiT-T and
BERT models, HyAtten demonstrates a 2.2× energy reduction
(normalized to the same chip area). These energy savings
primarily stem from HyAtten’s ability to eliminate the signif-
icant energy overhead associated with high-resolution signal
converters. While the baseline LT-B system uses high-resolution
ADCs to convert all signals, leading to substantial energy
consumption, HyAtten replaces these high-resolution ADCs
with low-resolution ADCs and digital dies, which perform
GEMM operations with considerably lower energy demands.

C. Compare to State-of-the-art Digital Accelerators

In Figure 6, we compare HyAtten against, a single Nvidia
A100 GPU and an Intel Core i7-9750H CPU, to highlight its
significant performance and energy efficiency improvements.
Figure 6 (a) demonstrates that HyAtten delivers the highest
performance, surpassing both CPU and GPU platforms. It
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Fig. 7: (a) Area breakdown, and (b) Power breakdown

achieves over 100× speedup per unit area relative to the
A100 GPU, largely due to the high processing speed enabled
by photonic computing. Figure 6 (b) illustrates that HyAtten
also exhibits superior energy efficiency, achieving over 50×
greater efficiency per unit area compared to the GPU. This
improvement is primarily attributed to the PDAC multiplexing
within the DPTC array.

D. Accuracy Comparison

Table II reports the accuracy comparison between GPU,
LT-B, and HyAtten, all running the same model, datasets,
and bit-widths. HyAtten maintains an accuracy loss of less
than 0.3% compared to Transformers with the same bit-widths
running on the GPU. Additionally, HyAtten demonstrates a
0.2% accuracy improvement over LT-B. This accuracy improve-
ment is primarily due to the integration of the digital die. As
discussed in Section II-C, high-resolution signals play a crucial
role in maintaining model accuracy. The noise introduced by
high-resolution ADCs in LT-B negatively affects these signals,
leading to accuracy degradation. In contrast, HyAtten processes
high-resolution signals using the noise-free digital die, thereby
preserving model accuracy.

E. System Efficiency Analysis

Area Breakdown. Figure 7 (a) presents the area breakdown
of HyAtten, which occupies a total area of 17.38mm2. The
DPTC array (including the Mach-Zehnder modulator (MZM),
phase shifter, and photonic detector) accounts for the largest
share at 45.1%, followed by the memory system at 34.7%,
and the PDAC at 14.2%. The remaining components, such as
the ADC and digital die, contribute less than 10% of the total
area. Notably, HyAtten is designed with multiple ADCs for
each DPTC array without increasing the overall area overhead.
Additionally, the inclusion of a digital die to process around
15% of the data introduces only a minimal increase in area.

Power Breakdown. Figure 7 (b) presents the power distribu-
tion for HyAtten, which consumes a total of 39.9W. The DPTC
array and PDAC dominate the power usage, contributing about
49.5% and 41.6%, respectively. The remaining components,
such as the memory system, ADC, and digital die, collectively
account for less than 10% of the total power consumption. Im-
portantly, despite configuring additional ADCs for each DPTC
array, the power overhead remains minimal. Additionally, the
digital die, which processes around 15% of the data, introduces
only a negligible increase in overall power consumption.
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Fig. 8: (a) Sequence length scalability, and (b) Tiles scalability

Scalability Discuss. Figure 8 (a) presents the performance of
HyAtten across various sequence lengths. As sequence length
increases, HyAtten will process more submatrices, but the
overhead associated with handling individual matrices remains
relatively stable. Figure 8 (b) illustrates the impact of config-
uring different numbers of Tiles in HyAtten. While each Tile
maintains a high internal throughput, increasing the number of
Tiles leads to a rise in data transfer between HyAtten and the
HBM, resulting in a reduction in overall throughput.

V. RELATED WORK

Current Accelerators for Transformer. Field Pro-
grammable Gate Arrays (FPGA) and Application-specific in-
tegrated circuit (ASIC) architectures are commonly used to
accelerate sparse matrix-vector multiplication, such as graph
processing [2], [26]–[30]. Recently, researchers aim at ac-
celerating attention mechanism with FPGA and ASIC archi-
tectures [1], [15], [32]. Many memory-centric architectures
are also proposed to accelerate attention mechanism, such as
processing in memory (PIM) [9]–[13], [31], [33]. While these
digital accelerators effectively reduce inference latency, tradi-
tional electrical computing platforms face significant limitations
as transistor-based chips approach the boundaries of Moore’s
Law.

Emerging Photonic Architectures. Integrated photonic ac-
celerators present a promising alternative for accelerating deep
neural networks, offering ultra-high speeds, extensive paral-
lelism, and low energy consumption. Various optical systems
have been explored to accelerate convolutional neural networks
(CNNs) [6], [19], [20], [22], [23] and Transformers [34].

VI. CONCLUSION

This paper presents HyAtten, a novel attention mechanism
accelerator that leverages hybrid photonic and digital comput-
ing. HyAtten incorporates a photonic die with low-resolution
ADCs to efficiently process low-resolution signals, while a
digital die handles high-resolution signals without the overhead
of signal conversion. Experimental results demonstrate that
HyAtten achieves superior performance and energy efficiency
with minimal accuracy loss.
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