
ICED: An Integrated CGRA Framework Enabling
DVFS-Aware Acceleration

Cheng Tan†§, Miaomiao Jiang¶§, Deepak Patil§, Yanghui Ou∥, Zhaoying Li‡, Lei Ju¶, Tulika Mitra‡,
Hyunchul Park†, Antonino Tumeo∗, Jeff Zhang§

†Google, §Arizona State University, ¶Shandong University, ∥Cornell University,
‡ National University of Singapore, ∗Pacific Northwest National Laboratory

†{chengtan, parkhc}@google.com, §{chengtan, mjiang58, dppatil3, jeffzhang}@asu.edu,
¶{miaomiaojiang, julei}@sdu.edu.cn, ∥yo96@cornell.edu, ‡{zhaoying, tulika}@comp.nus.edu.sg,

∗antonino.tumeo@pnnl.gov

Abstract—Coarse-grained reconfigurable arrays (CGRAs) are
a promising solution to enable energy-efficient acceleration of
applications from different domains. By leveraging reconfigu-
ration at the functional level, they can adapt to significantly
different computational patterns. However, the relationships of
voltage and frequency with the utilization of CGRA resources
and the dynamic management of them are not well explored,
leading to inefficient designs.

CGRAs have also been successful in accelerating data-
dependent streaming applications. However, in these applications,
the execution time of each kernel in the pipeline might dynam-
ically vary depending on the characteristics of the input. This
also leads to under-utilization of resources for the dynamically
changing kernels that do not limit the application throughput.
DVFS can also improve energy efficiency for these applications
by dynamically changing the voltage and frequency levels of tiles
that host non-performance-constraining kernels.

This paper proposes ICED – an integrated DVFS-aware frame-
work to map applications on CGRAs that support power islands.
ICED proposes a CGRA architecture supporting DVFS islands
at varying granularity (from a single tile to a group of tiles)
and the related DVFS-aware compilation and mapping toolchain.
ICED is the first work that introduces DVFS support for
spatio-temporal CGRAs at power-island levels. The experimental
evaluation shows that ICED improves average utilization by 2.3×
and energy-efficiency by 1.32× over a conventional CGRA. With
streaming applications, ICED can achieve up to 1.26× energy-
efficiency compared with a state-of-the-art CGRA that introduces
partial dynamic reconfiguration to adapt to variations in kernels’
throughput.

I. INTRODUCTION

Coarse-grained reconfigurable arrays (CGRAs) are acceler-
ators composed of tiles, containing one or more functional
units (FU), interconnected through an on-chip network. They
usually are loosely coupled to a general-purpose central pro-
cessing unit and enable the acceleration of a variety of com-
putational patterns through their reconfigurability [21]. They
have been shown to provide energy-efficient acceleration of
applications from different domains, including machine learn-
ing (ML) [17], [38], high-performance computing (HPC) [9],
and embedded systems [15].

With all reconfigurable devices and, in particular, with
CGRAs, the compiler infrastructures play a critical role in

achieving the theoretical peak performance provided by the
hardware resources. A widely used approach maps the data-
flow graph (DFG) of a kernel (typically a performance critical
loop nest of the application) on the time-extended Modulo
Routing Resource Graph (MRRG) [15], [16], [22] of the
spatial-temporal CGRA, trying to minimize the initiation inter-
val (II), i.e., the delay in clock cycles needed to launch a new
loop iteration. However, mismatches between the size of the
kernels and available computing and communication resources
could lead to under-utilization of the reconfigurable substrate.
For example, in the simple case of a small kernel with only
a few DFG nodes (e.g, tens) and a large CGRA with many
homogeneous tiles (e.g., hundreds), only the tiles allocated to
the kernel are utilized, while the others remain idle [35]. In a
more complex case, loop-carried dependencies can complicate
the mapping and lead to imbalanced tile utilization. In fact,
even if all tiles are mapped to a DFG node, the resources
can still be under-utilized due to a high II. This can happen
if the DFG has a long recurrence cycle due to loop-carried
dependencies, thus requiring a large MRRG for the mapping,
which can be viewed as replicating resources of the CGRA for
II times. In both cases, the end result is that energy is wasted
on tiles with low or no utilization. One possible solution to
improve energy efficiency and utilization is to apply dynamic
voltage and frequency scaling (DVFS) to each tile, or subsets
of tiles (islands).

Previous works [19], [25], [29] also show that data-
dependent streaming applications composed of multiple ker-
nels can lead to under-utilization of resources. In fact, in these
applications, the execution time of a kernel can vary with the
input data set, leading to an imbalanced pipeline of kernels
where the bottleneck can dynamically change. If the resource
allocation for each kernel is fixed, the kernels that currently
are not a bottleneck (meaning that they could execute faster
if not limited by other ones) will under-utilize their resources
and have tiles with long idle times.

In this paper, we take the first steps towards solving all
these challenges by introducing ICED — an Integrated CGRA
framework Enabling DVFS-aware acceleration. The main con-

tributions of this work are:
• a DVFS-aware CGRA design to enable the configuration

of voltage and frequency in CGRA tiles. To the best of
our knowledge, ICED is the first work that introduces
DVFS into a spatio-temporal CGRA by supporting is-
lands of arbitrary size;

• a corresponding DVFS-aware compilation toolchain to
map application kernels and full applications on the ICED
CGRA architecture;

• the impact of the ICED approach on data streaming appli-
cations, where dynamic frequency and voltage scaling can
be applied to (changing) kernels that are not throughput-
limiting;

• the experimental evaluation of ICED with kernels from
very different domains (embedded, machine learning, and
high-performance computing) and full streaming applica-
tions.

II. BACKGROUND AND MOTIVATION

This section provides background on how CGRAs are
typically used to accelerate applications and illustrates the
motivations behind ICED.

A. Background

Figure 1 shows how a synthetic kernel is mapped onto a
4×4 CGRA. We simplify the DFG by flattening the nested-
loop and removing the address calculation node before the
ld operation. Control flow is converted into data-flow using
partial predication [12]. The loop has an II of 4, meaning that
it takes 4 cycles to start a new loop iteration. This provides
a speedup of 2.75× (i.e., #nodes ÷ II = 11 ÷ 4) in terms of
execution cycles over a single-issue in-order CPU. However,
the utilization of the tiles is not balanced. For example, tile9
(highlighted with a red circle) is only active at cycle1 and
tile15 is always idle. This provides opportunities to lower
voltage and/or frequency of tile9 to improve utilization
and reduce energy consumption. Note that the execution of
the data-flow is predicate-based, for example, the first n8 is
executed at cycle1 but its output is invalid (as there are no
n5 and n6 executed yet so its inputs are invalid). The first
valid execution of n8 is actually at cycle5.

Imbalanced Utilization across Tiles – Figure 2 shows
the average utilization of the tiles of CGRAs in various
sizes, across a set of representative kernels from different
domains (see Table I). Note that the utilization of a tile
considers both the FUs (for computation) and the crossbar (for
communication) as detailed in the architecture section. We can
see that the average utilization across tiles usually decreases
when running on larger CGRAs. However, this is not always
the case when the DFG size increases (i.e., by unrolling). For
example, the spmv kernel is composed of more DFG nodes
than conv and relu (as shown in Table I), but it results in a
lower utilization than them (the blue bar) when running on a
6×6 CGRA. This happens because the II of spmv increases
after unrolling due to its loop-carried dependency. The same
thing happens to gemm. Therefore, there is an opportunity to

// A synthetic kernel
// N = rows * cols
for (int i = 0; i < N; ++i) {
int r = i // rows;
int c = i % cols;
out += mat0[r][c] * mat1[c][r];

}

br

mat1

// %

i

rows cols

mat0
ld

*

+

ld

phi

+

cmp

1

N

n1

n2 n3 n4

n5 n6 n7

n8 n9

n10

phin11

II
=

4

SP
Mcycle 0

n11 is invalid at cycle0, but will be valid
at cycle4

…

n1

n11

SP
Mcycle 1

n3 n4

n2

SP
Mcycle 2

n10

SP
Mcycle 3

n5

n7

n6 n9

n10 is invalid at cycle2, but will be valid
at cycle6

tile9’s FU is only active at cycle1
n8

tile0 tile3…

tile15

…

tile indexing

Fig. 1: A synthetic kernel, DFG, and the conventional mapping
on a 4×4 CGRA – The DFG nodes n1, n4, n7, and n9
determine the II, which are on the critical path and colored
in green. The DFG nodes n10 and n11 forming another
recurrence cycle are colored in blue. The left DFG nodes that
are not on any critical path are colored in grey. The scheduling
will repeat every II (i.e., 4) cycles. n5 has to be mapped on a
leftmost tile as it is a load operation and only the leftmost
tiles are connected to the scratchpad memory. In addition,
tile0 has n8 on it at cycle1. However, tile0 is also
used for receiving/routing the data at cycle0 and cycle3.
Note that we use the 4×4 CGRA as a motivating example
for simplification, the proposed ICED prototype is based on a
6×6 CGRA.

improve the overall energy efficiency by slowing down some
of the tiles (i.e., by decreasing their voltage and frequency).

One simple approach to maximize utilization is to increase
the size of the DFG with loop unrolling. However, this is
not always practical, because performance does not linearly
increase with the unrolling factor due to loop-carried data
dependencies. In fact, in our example, the II of spmv and
gemm changes from 4 to 7 after unrolling by a factor of 2.
Additionally, larger DFGs make the mapping process more
complicated, potentially leading to sub-optimal IIs [16], [20].
The ICED approach to improving the utilization and energy
efficiency is orthogonal to DFG transformations (such as un-
rolling) and the use of different mapping strategies. Actually,
ICED could be used in combination with any of them.

B. Benefits of DVFS

Figure 3 shows how CGRA utilization and energy efficiency
can benefit from the reduced voltage and frequency. Note that
the conventional mapping strategy aims to minimize the II for

2

44%
33%

61%
98%

0%
20%
40%
60%
80%

100%

fir latnrm fft dtw spmv conv relu histogram mvt gemm Avg.

A
ve

ra
ge

U

til
iz

at
io

n
2x2 CGRA 4x4 CGRA 6x6 CGRA 6x6 CGRA, kernel applying unrolling with factor of 2

Fig. 2: Under-utilization across all kernels – the II of spmv and gemm changes from 4 to 7 after unrolling by a factor of 2.
II

=
4

SP
M

II
=

4

SP
M

SP
M

SP
M

n1

n11

n2

n4n3

n10

n5

n7

n6

n9

n8

n11

n10n8

n8

n8

tile6 is active across all 4 cycles

n8 is valid after cycle 3

SP
M

SP
Mcycle 0

n11 is invalid at cycle0, but will be valid
at cycle4

…

n1

n11

SP
Mcycle 1

n3 n4

n2

SP
Mcycle 2

n10

SP
Mcycle 3

n5

n7

n6 n9

n10 is invalid at cycle2, but will be valid
at cycle6

tile9’s FU is only active at cycle1
n8

II
=

4

SP
M

SP
M

0 3

1512

II
=

4

SP
M

9

SP
M

II
=

4

SP
M

SP
M

SP
M

n10 is invalid at cycle2, but will be valid
at cycle6

tile6 is only active at cycle0&2

n1

n11

n2

n4n3

n10

n5

n7

n6

n9

n8

SP
M

Average utilization
across tiles:

(a) Conventional mapping.

Average power (w/o
DVFS overhead):

40.6% 86.1% 72.2% 40.6% 83.3%

106.1mW 83.3mW 87.1mW 106.1mW 83.0mW

cycle 0

…

cycle 1

cycle 2

cycle 3

cycle 0

cycle 1

cycle 2

cycle 3

cycle 0

…

cycle 1

cycle 2

cycle 3

…

cycle 0

…

cycle 1

cycle 2

cycle 3

n6 are invalid at cycle0, but will be valid at
cycle4

SP
M

n1

n11

SP
M

n3 n4

n2

SP
M

n10

SP
M

n5

n7

n6 n9

n8

n10

n11

n2

n2

n2

SP
M

n1

n11

SP
M

n4

n2

SP
M

n10

SP
M

n7

n9

n3

n5

n6

n8

434MHz, 0.7V 217MHz, 0.5V 0MHz, 0 V108.5MHz, 0.42Vnormal relax rest power-gating

tile0 is active across all 4 cycles

voltage level high -> low:

Average power (w/
DVFS overhead): 106.1mW 105.4mW 96.9mW 106.1mW 92.8mW

Per-tile DVFS on
conventional mapping.

Per-island DVFS on
conventional mapping.

(d) DVFS-aware mapping.(b) (c) (e)

n2 is invalid from cycle0-3

V/F level
assignment

V/F level
assignment

V/F level
assignment

V/F level
assignment

V/F level
assignment

Per-island DVFS on
DVFS-aware mapping.

Fig. 3: Motivating example for DVFS-aware co-design – A synthetic kernel mapped onto different CGRAs with different
mapping strategies. (a) shows how the kernel is mapped on a conventional CGRA without DVFS support. (b) illustrates how
the kernel is mapped on a CGRA with per-tile DVFS support, which introduces additional overhead due to the DVFS but
benefits from the saved power thanks to the lowered V/F and power-gating. (c) has lower DVFS overhead as its support is on
per-island basis instead of per-tile. However, it misses the opportunities to lower the frequency to relax (half of normal)
and rest (a quarter of normal) for some tiles as all the tiles in one island are controlled together. (d) shows how the kernel
is mapped onto the CGRA using our proposed DVFS-awared mapping. (e) illustrates the benefits when the per-island DVFS
is enabled based on the mapping of (d). Its utilization is almost same as the per-tile DVFS and has the lowest overall power
consumption.

higher performance but might sacrifice the tile utilization. The
last row of the figure shows the DVFS modes for each tile of
the CGRA.

As shown in Figure 3(a), without DVFS, the n2 operation

only occupies tile9 at cycle1, indicating only 20% uti-
lization of its functional units. If, as shown in Figure 3(b),
we reduce the frequency of tile9 to 1/4 of the original
frequency leveraging per-tile DVFS, it will complete its com-

3

0%

25%

50%

75%

100%

fir dtw conv mvt gemm Avg.

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

No DVFS 1x1 island (per-tile DVFS) 2x2 island 3x3 island 4x4 island

Fig. 4: Motivating example for island size – Normalized
performance w.r.t. conventional CGRA (no DVFS) on an 8×8
CGRA with different DVFS island sizes. 2×2 DVFS island
has no performance degradation compared with the CGRA
without DVFS and the CGRA with per-tile DVFS support.
Note that there would be irregular island shape for the 3×3
case on the 8×8 CGRA. We use the 8×8 CGRA to evaluate
the performance across different island sizes, the proposed
ICED prototype is based on a 6×6 CGRA.

putation and communication in 4 clock cycles with respect to
the base clock, increasing utilization (from 40.6% to 86.1%)
and reducing energy consumption (of 56%). ICED provides 3
different DVFS levels (in addition to the power-gated state):
normal, relax, and rest. The frequency of relax level
is half of normal level while the frequency of rest level is
half of relax level and, thus, a quarter of normal level.

freqnormal = 2× freqrelax = 4× freqrest (1)

Our energy estimates are based on equation 4. All the
detailed power statistics about tile, DVFS, scratchpad mem-
ory, and the correlation between voltage and frequency are
discussed in Section V-A.

P (tile) = C × V (tile)2 × freq(tile) + Pstatic(tile) (2)

Pnon tile = PSRAM +
∑

PDV FS overhead (3)

Energy = (
∑
tile

P (tile) + Pnon tile)× ExecT ime (4)

It is important to highlight that tiles whose frequency can be
lowered need to be identified considering the data dependency
of the operations they are executing to guarantee correctness
of the results. For example, while Figure 3(b) shows that
n5 starts at cycle3 before n2 completes, n5 is actually
considered invalid due to the predication-based data-flow. n5
is first considered valid at cycle7, guaranteeing that the
data dependency from n2 to n5 is respected. In addition,
the routing signals in the tile’s crossbar should not conflict in
the enlarged period. Figure 3(a) shows that data movements
required by n2 (mapped to tile9), from tile5 (south) to
tile9 (north) and from tile9 (east) to tile8 (west) hap-
pen only once in the 4-cycle II, making it possible to reduce
the frequency of tile9 to a quarter of the base frequency
(i.e., the rest DVFS level). At the opposite, although tile0

executes only one operation (multiplication n8) during the
4 cycles of the II, it requires two data movements for the
two inputs, happening at cycle0 and cycle3 respectively.
This prevents the reduction of the frequency (and voltage) of
tile0, as shown in the map in the last row of Figure 3(b).
Moreover, it is best to not reduce the frequency of the tiles that
execute nodes in the critical path of the DFG (i.e., the nodes
of the DFG that determine the II) to not decrease performance.
For example, the tiles executing DFG nodes n1, n4, n7, and
n9 are always at the normal DVFS level and labeled with
the green color across all the mappings in Figure 3.

Per-island DVFS – In the ICED framework, we propose
to support DVFS on CGRAs leveraging power islands. While
with a per-tile approach, each tile needs a DVFS Controller,
with a per-island approach we only need one DVFS Controller
for a group of contiguous (an island) tiles, leading to lower
DVFS-related overhead (see Figure 8). Figure 3(c) shows what
happens if a per-island DVFS approach, where each island is
a 2×2 group of tiles, is applied to the conventional mapping
from Figure 3(a) and used for the per-tile DVFS approach
of Figure 3(b). Unfortunately, it is not possible to reduce the
frequency of any island, since the DFG nodes on the critical
path (i.e., n1, n4, n7, and n9) are all onto the 4 different
islands. Therefore, to efficiently implement a DVFS approach
based on power islands for CGRAs, it is necessary to support a
DVFS-aware mapping process. Figure 3(d) shows the mapping
when the different power islands are taken into consideration.
We can see that the nodes on the DFG critical path are
mapped in the same island. After independently managing
the frequency of each island, the final mapping with DVFS
enabled can be seen in Figure 3(e), which achieves 1.14×
improvement in terms of power consumption over the baseline.

Size of the DVFS islands – Supporting DVFS on a per-tile
basis, as proposed in UE-CGRA [35]), introduces overheads
for both power and area (more than 30% of a tile) of the
controller. With ICED, instead, we propose a framework able
to generate CGRAs and map applications considering a per-
island DVFS approach. To make such an approach effective,
the framework itself should allow for careful determination of
the size of the DVFS islands. Figure 4 shows the normalized
performance of a set of kernels running on 8×8 CGRA with
DVFS islands of varying sizes with respect to a per-tile DVFS
approach. We can see that for this set of applications, there
is no performance degradation only for the 2×2 DVFS island
configuration, while the other configurations all are slower.
This means that as the size of the islands increases, the II of
the mapped kernels becomes longer. There are two reasons for
this behavior. First, the II of the selected kernels (see Table I)
usually is longer than 3 cycles. This allows us to easily map
the kernels temporally in one or more 2×2 islands. Second,
larger DVFS islands significantly limit mapping opportunities.
For example, if a 4×4 island executes at the rest DVFS
level, then the mapper will not assign nodes and edges in the
DFG critical path to any tile of the island (16 tiles). This
will in turn reduce resources available to the mapper and
lead to sub-optimal results with low performance. For best

4

Control
Signals

Accelerator
Respond

CPU
D
at
a

Memory

DMA Unit

DMA Ctrl Data

C
G

R
A

 A
cc

el
er

at
or

Accelerator
Cmd

DMA Unit

D
at

a
M

em
or

y
(8

 b
an

ks
)

(a) CGRA SoC (b) Architecture of ICED CGRA (c) ICED one tile within a voltage island

T T

T T T

T T T

T T T T

T

T

T

T T

T

T

T T

T

T

T

T T T

T T T

T

T

T

T

T

T

Tile Tile Tile Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

VDD_CORE

6 x 7

Functional Unit

Control
Memory
Unit

N

E

S

W

R
eg

s

R
eg

s

R
eg

s

VDD_ISLAND

LDO
Power Headers

CLK_ISLAND

DCO ADPLL

Async Bypass FIFOs

Voltage Islands

DVFS Controller

C
ro

ss
ba

r (
6x

8)

Kernel Cycles
0 10428
1 4396
2 65536
... …

Kernel Islands (9)
0 000110000
1 111000000
2 000000111
… …

exeTable

mapTable

Fig. 5: ICED architecture – DVFS islands are highlighted in different colors. Each voltage island can be set to a voltage level
at runtime. Red indicates normal level, yellow indicates relax level, and grey indicates rest level.

energy-efficiency without reducing performance, ICED selects
a 2×2 DVFS island size. Note that, in practice, DVFS island
size is a design parameter that can be optimized specifically.
In addition, ICED compiler can take in any island size for
compilation and DVFS co-design.

Use Case for Streaming Applications – Besides improving
the energy efficiency of a CGRA when executing single
application kernels, DVFS can also be successfully applied to a
CGRA when executing multi-kernel data-dependent streaming
applications. For example, in an application like classifying
a stream of data with a graph convolutional neural network
(GCN), the execution time of the sparse matrix-vector multi-
plication (SpMV) kernel varies with the number of non-zeros
in the input graphs (typically represented using sparse data
formats, such as the compressed sparse row - CSR -, or the
coordinate list - COO - format) [29], while the other stages
(such as the weights combine kernel of Table I), always have a
fixed execution delay independent from variations of the input
data. Therefore, the kernel that limits the performance of the
application (bottleneck) shifts during execution, depending on
the characteristics of each input instance. The consequence is
a significant load imbalance of the tiles allocated to different
kernels as the application executes. Providing a large amount
of resources to allow the SpMV kernel to complete quickly
does not increase the overall throughput when the input
graph is sparse and the weights combined kernel becomes the
bottleneck. At the opposite, with a denser graph, the SpMV
might become the bottleneck, with the weights combined
kernel having to idle waiting for the data. Thus, lowering
the voltage and frequency level of the tiles that are allocated
to the non-bottleneck kernels through DVFS might allow to
achieve higher energy efficiency for this class of applications
(the architecture support is detailed in Section III-B while the
compiler support is in Section IV-B).

III. ICED ARCHITECTURE

This section introduces the ICED architecture and explains
how it supports DVFS for kernels and streaming applications.

Figure 5 provides a high-level overview of the ICED ar-
chitecture. ICED’s CGRA is loosely coupled with a central
processing unit (CPU) and is invoked through the accelerator
command interface. A direct memory access (DMA) unit loads
data and control signals into the CGRA’s data scratchpad mem-
ory (SPM) and into the CGRA’s control memory, respectively.
Figure 5 (a) shows an example of such SoC with a 6×6 tile
ICED CGRA. A typical CGRA tile contains a set of registers,
a configuration memory containing the control signals, a set of
functional units (FUs), and a 6×7 crossbar and bypass buffers
that routes data internally or from/to other tiles. Our prototype
has a 32KB SPM with eight banks. Each bank has a pair
of read and write ports. The CGRA accesses the SPM via a
6×8 crossbar. The compiler needs to guarantee that the data
required by the target kernel and application can fit (e.g., using
tiling) into the 32KB SPM. There are 9 DVFS islands and each
of them covers 4 tiles via a DVFS control unit (Figure 5(c)).
A DVFS Controller (right side of Figure 5(b)) can control all
the DVFS islands through the control units.

A. ICED DVFS Support
The ICED CGRA design clusters tiles into different volt-

age islands to enable per-island DVFS (Figure 5 (b)). Each
voltage island is integrated with an on-chip standard power
header cells based linear voltage regulator (LDO) [2], an all-
digital PLL (ADPLL) [1], [28], and a DVFS control unit.
The frequency/voltage sweep coordinates for ADPLL are
stored in the look-up table, and the optimal voltage level
(V DDISLAND) for each island will be determined according
to the tile utilization during the application kernel mapping.
Due to the clock domain crossing between different voltage
islands, asynchronous buffers are required at ICED tile’s data
interfaces. Note that, CGRA tiles typically implement bypass
buffers for data routing and can be re-designed for clock

5

domain crossing, which requires another clock port. In our
prototype, we support 3 different DVFS levels and power-
gating. The details about the correlation between voltage and
frequency for those 3 levels and the corresponding power and
area overheads are discussed in Section V.

B. ICED Streaming Applications Support

When executing a single kernel using the entire CGRA,
voltage/frequency (V/F) levels are determined at the compi-
lation time. While when a streaming application containing
multiple kernels is accelerated, the voltage/frequency levels of
each kernel is dynamically configured based on the execution
status to achieve greater energy efficiency.

ICED’s integrated voltage regulator and all-digital phase-
locked loop (ADPLL) dynamically switches per-island volt-
age and frequency after collecting the execution information
during a time window. Similar to DRIPS [29], ICED uses
an input interval of 10 executions (10-round time window,
i.e., once the 10th input is consumed) to trigger the dynamic
switch of voltage and frequency via the DVFS Controller. The
DVFS Controller maintains a exeTable and a mapTable.
Once a kernel completes its execution, the termination signal
will be sent to the DVFS Controller, and the exeTable
is updated. After 10 updates, the bottleneck/non-bottleneck
kernels are identified and the DVFS changes are triggered
on the corresponding islands (based on the mapTable). The
overhead of the DVFS Controller is trivial compared with
the entire CGRA fabric. When a very large-scale CGRA is
modeled and there are many kernels, distributing the DVFS
Controller can facilitate the routing of the termination signal.

For instance, the GCN streaming application changes its
DVFS level after every 10 graphs. The execution time of
each kernel is collected by the DVFS Controller, and used
to identify bottleneck and non-bottleneck kernels. After each
time window, the voltage/frequency level of islands allocated
to the bottleneck kernels is increased by one level while
the voltage/frequency level of islands allocated to the non-
bottleneck kernels are decreased by one level, if possible. We
adopt ns-scale voltage regulator (as shown in Section V-A
for the integrated voltage regulator) while the time needed to
capture the execution status of a 10-round time window is in
ms. How to allocate islands to each pipeline stage is detailed
in Section IV-B.

IV. ICED COMPILER TOOLCHAIN

ICED proposes an integrated compiler toolchain to fa-
cilitate the application and kernel mapping on the DVFS-
enabled CGRA for energy-efficient acceleration. The toolchain
is roughly divided in two parts: one responsible for the
application mapping, the second for the kernel mapping. In
this section, we first present how a kernel is mapped on
CGRA resources (Figure 6) considering the available DVFS
functionalities, and then show how an entire given application
composed of multiple kernels is mapped on the entire CGRA
fabric (Figure 7).

DFG
Generation

DVFS-Aware
DFG Mapping

Loop
Unrolling

DVFS
Labeling

Kernel MappingCGRA
specs

unrolled
loop DFG

labeled
DFG

control
signals

application
kernel

Fig. 6: ICED kernel mapping – The kernel mapping is a part
of the integrated toolchain as shown in Figure 7.

The ICED compiler represents the application kernel as a
DFG, where nodes are operations and edges indicate data
dependencies between operations. However, to also consider
DVFS requirements, each node of the DFG is initially labeled
with a preferred DVFS level (i.e., i.e., normal, relax, or
rest) before the mapping process onto the ICED CGRA
starts. Equation 1 shows the relationship between different
DVFS levels.

Loop Unrolling – A loop body that only has a few oper-
ations (i.e., with a small DFG) might lead to a mapping that
under-utilizes the CGRA’s computing resources, reaching sub-
optimal performance. Unrolling the loop increases the number
of operations but also leads to a longer II and complicates the
mapping. We consider the effects of different unrolling factors
on CGRAs of different sizes in our evaluation.

DFG Generation – Each DFG node represents an LLVM
instruction, executed by a specific FU of our CGRA architec-
ture. Control dependencies are converted to data dependencies
using partial predication [12]. Data dependencies are repre-
sented by the edges of the DFG.

A. Kernel Mapping

DVFS Labeling – The conventional DFG mapping for
CGRA treats every DFG node in the same way to obtain
a performance-optimal solution. However, this is not enough
for a CGRA that supports DVFS. As shown in Figure 1, the
performance of a kernel mapped on a CGRA with enough
resources is usually constrained by the maximum recurrence
data dependency (i.e., RecMII). As previously discussed, this
implies that running nodes of the DFG on the critical path
at higher DVFS levels than other nodes provides better per-
formance. To address this requirement, we propose a DVFS
labeling algorithm that assigns to each DFG node a preferred
DVFS level before mapping it to the ICED CGRA. Note that
we also use the recurrence cycle to represent the recurrence
data-dependency.

As shown in Algorithm 1, our approach labels the nodes
on the longest recurrence cycles with the highest DVFS level,
normal (line 17). If the length of a recurrence cycle is no
more than half of the longest one, the nodes on it are labeled
with the DVFS level of relax (i.e., 50% of normal, as
shown in line 11). The algorithm labels the DVFS level of all
the other DFG nodes as rest (line 25) or relax (line 28)
considering the number of available CGRA tiles across the
time domain (i.e., II cycles). For example, in the synthetic
kernel shown in Figure 1, after labeling the 4 green DFG

6

Algorithm 1: LabelDVFSLevel
1 Input: DFG, targetCGRA, II
2 Result: DFG with DVFS level labeled

3 unlabeledNodes = CollectNodesAsSet(DFG);
4 recurrenceCycles = GetRecurrenceCycles(DFG);
5 longestCycle = GetLongestCycle(recurrenceCycles);
6 normalNodes = 0, relaxNodes = 0, restNodes = 0;

7 foreach cycle of recurrenceCycles do
8 if cycle.size() ≤ longestCycle.size() / 2 then
9 foreach dfgNode of cycle do

10 if dfgNode is in unlabeledNodes then
11 LabelDVFS(dfgNode, relax);
12 relaxNodes += 1;
13 unlabeledNodes.Remove(dfgNode);

14 else
15 foreach dfgNode of cycle do
16 if dfgNode is in unlabeledNodes then
17 LabelDVFS(dfgNode, normal);
18 normalNodes += 1;
19 unlabeledNodes.Remove(dfgNode);

20 foreach dfgNode of unlabeledNodes do
21 normalTiles = GetAvaiableTilesXII(normalNodes,

normal, II);
22 relaxTiles = GetAvaiableTilesXII(relaxNodes, relax, II);
23 restTiles = GetAvaiableTilesXII(restNodes, rest, II);

24 if restTiles > 0 then
25 LabelDVFS(dfgNode, rest);
26 restNodes += 1;
27 else if relaxTiles > 0 then
28 LabelDVFS(dfgNode, relax);
29 relaxNodes += 1;
30 else
31 LabelDVFS(dfgNode, normal);
32 normalNodes += 1;

nodes on the longest recurrence cycle with normal and the
2 blue nodes with relax, there are 5 DFG nodes (in grey
color) left. Meanwhile, there are 8 CGRA tiles (i.e., two 2×2
DVFS-islands) that can execute at rest DVFS level assuming
a 4×4 CGRA with a DVFS island of 2×2 tiles targeting an
II of 4 cycles, which allows the left 5 grey DFG nodes to be
labeled with rest DVFS level.

If there still are DFG nodes not yet labeled with a DVFS
level before allocating all the CGRA tiles across the time
domain, the algorithm labels the remaining DFG nodes with
the highest DVFS level (normal, (line 31)) to not risk to
reduce performance. In fact, DFG nodes that can execute at
lower DVFS levels (i.e., relax or rest) could occupy a
CGRA tile longer (i.e., 2× or 4×) than DFG nodes at the
normal DVFS level. This would, in turn, limit placing and
routing options during the DFG mapping and lead to a sub-
optimal mapping with lower performance (i.e., lower II). It
is important to note that the DVFS levels are not actually
assigned at this stage of the mapping process. The DVFS
labeling guides the DFG mapping, but the final DVFS level of
each DFG node can still be adjusted by the heuristic mapping

Algorithm 2: DVFS-Aware Mapping
1 Input: DFG, targetCGRA
2 Result: Mapping of DFG on MRRG of targetCGRA

3 orderedNodes = TopologicalOrder(DFG);
4 RecMII = AnalyzeRecurrenceEdges(DFG);
5 ResMII = (#Nodes in DFG)÷(#Tiles in targetCGRA);
6 II = Max(RecMII, ResMII);

7 DFG = LabelDVFSLevel(DFG, targetCGRA, II);

8 while Mapping is not available do
9 MRRG = CreateMRRG(targetCGRA, II);

10 foreach node of orderedNodes do
11 foreach Unmapped tile of MRRG do
12 labeledDVFS = GetLabeledDVFS(node);
13 island = GetDVFSIsland(tile);
14 assignedDVFS = GetAssignedDVFS(island);
15 if assignedDVFS == NULL then
16 assignedDVFS = labeledDVFS;

17 if labeledDVFS ≤ assignedDVFS then
18 tileCost = CalculateCost(node, tile,

assignedDVFS);
19 tilesWithCostAndDVFS[tileCost] =

assignedDVFS;

20 optimalTileCost = Min(tilesWithCostAndDVFS);
21 dvfsLevel = tilesWithCost[optimalTileCost];
22 island = GetDVFSIsland(optimalTileCost.tile);
23 foreach tile in island do
24 AssignDVFS(tile, dvfsLevel);

25 ScheduleAndRoute(node, optimalTileCost,
dvfsLevel);

26 II = II + 1;

algorithm, as detailed in the following subsection.
DVFS-Aware DFG Mapping – We implement a heuristic

DVFS-aware algorithm (Algorithm 2) that maps the DFG
onto the CGRA’s Modulo Routing Resource Graph (MRRG,
line 9) [22] with the objective of minimizing the II. The
MRRG is a time-space representation of the CGRA architec-
ture. The algorithm iteratively increases the II (line 26) until
it finds a valid mapping between the DFG and the available
hardware resources. The mapping process applies Dijkstra’s
algorithm to find the shortest path between tiles and route
data communication between operations (line 18).

The algorithm computes a cost whenever a DFG node
labeled with a DVFS level is mapped onto a tile (line 18).
The DVFS level labeled on a DFG node is determined by
Algorithm 2. For example, a DFG node labeled with a DVFS
level of relax has higher mapping priority (lower cost) onto
a tile in a relax island over the other tiles (e.g., tiles in an
island with a normal DVFS level). Our heuristic algorithm
cannot map a DFG node labeled at a given DVFS level onto a
tile with a lower DVFS level ((line 17) to reduce its complexity
and the size of the search space.

When the algorithm maps a DFG node onto a specific
CGRA tile, it takes into consideration the tile’s routing ca-
pability to guarantee the feasibility of the communication and

7

A
B

C
D

E

D

A’ B’

C’
D’

Pipeline
Adjustment

streaming
application

A
B
C
D

E

D CGRA
Partitioning

Kernel
Mapping

CGRA
specs

T T

T T T

T T T

T T T

T T T T

T

T

T

T

T
T

T

T

T

T

T

T

T

T

T

T T T T T T

T T

T T T

T T T

T T T

T T T T

T

T

T

T

T T

T

T

T

T

T

T

T

T

T

T T T T
T T

Fig. 7: ICED integrated compiler framework – The framework
is implemented on top of the LLVM infrastructure [18].
Different colors in the bottom-right CGRA demonstrate that
the islands allocated to each kernel are dynamically adjusted
to different DVFS levels.

the assigned DVFS level (line 25). For example, considering
the base clock, a DFG node executes only for 1 cycle on a
tile set to normal, and for 4 cycles on a tile set at rest. In
other words, the period of 1 rest cycle equals the period of
4 normal cycles from the point of view of the base clock.
ICED currently targets a CGRA with single-cycle FU. The
support for multi-cycle pipelined FUs (e.g., APEX [23]) can
be easily integrated in ICED compiler and will provide even
greater opportunities for ICED DVFS (e.g., an island with a
mix of multi-cycle FUs and single cycle FUs).

The proposed ICED compiler toolchain uses a two-step
approach to yield optimal solutions within tens of seconds
on our evaluated kernels, which is similar to [16], [20] and
much faster than the ILP-based mapping proposed in [4].

B. Application Mapping

By considering DVFS as one of the optimization parame-
ters, ICED can also improve energy efficiency when the CGRA
executes a pipeline of streaming data-dependent kernels. To
enable energy-efficient acceleration of streaming applications,
we extend the ICED compiler to enable the mapping of
multiple interconnected kernels onto a single CGRA fabric,
as shown in Figure 7.

Pipeline Adjustment – Similar to the approach presented in
DRIPS [29], the ICED compiler can combine kernels together
to meet constraints in terms of data memory size. In ICED,
however, the kernels are mapped at the granularity of a DVFS
island (e.g., a set of 2×2 tiles). Hence, the maximum number
of kernels is limited to the number of islands supported by the
specific ICED CGRA design. Sub-kernels merged in a single
kernel are time-multiplexed at runtime on the tiles allocated
for such a combined kernel.

CGRA Partitioning – Our approach partitions the CGRA
across multiple kernels, but each kernel occupies at least one
island. The actual number of tiles allocated to each kernel
is determined by considering its average execution time in
the context of the entire streaming application. To obtain the
average execution time for each kernel, we randomly pick
50 input instances from the actual application datasets and
execute the application in its entirety. Mapping a kernel onto
a different number of islands leads to different speedups. We
employ the kernel mapping algorithm detailed in Section IV-A
but add an additional constraint (i.e., limited DVFS levels, as
detailed in the next paragraphs). At this stage, we exhaustively
evaluate the mapping for each kernel on a varying number
of islands (each candidate indicates a specific partition). For
each streaming application, the algorithm selects the CGRA
partitioning that minimizes the overall application throughput.
Such exhaustive exploration is performed offline, at compi-
lation time, thus it does not affect the runtime performance.
At runtime, the configuration of each kernel does not change,
but the DVFS level of each island is dynamically adjusted to
improve the energy-efficiency.

Kernel Mapping – Section IV-A details the kernel mapping
algorithm. However, to support DVFS in streaming appli-
cations, we consider an additional constraint when mapping
kernels. DFG nodes and tiles of a partition are allocated with
either normal or relax DVFS level by the compiler. This is
necessary because the DVFS levels of all the islands allocated
to one kernel need to be adjusted in a synchronized manner,
and rest is the lowest DVFS level in the current ICED pro-
totype. During runtime, the non-bottleneck kernels are able to
lower their DVFS levels, which might be increased back later
if the kernels become bottlenecks again (the execution status
is monitored by the DVFS Controller showing in Figure 5).

Note that ICED’s approach can easily support more DVFS
levels, adapting both the mapping algorithms and the CGRA
design. We present our approach by considering three DVFS
levels, plus the additional power-gated level, but it is easily
parameterizable/customizable in our toolchain without any
constraint on the number of DVFS levels.

V. EXPERIMENTAL EVALUATION

This section details the experimental setup and results.
We evaluate ICED’s performance, utilization, scalability, and
energy-efficiency, with kernels and streaming applications
from different domains.

ICED modeling and Compiler – We model our ICED
in RTL using PyMTL3 [13], [31], [33] and generate the
synthesizable Verilog. We use Synopsys to perform logic
synthesis and obtain the power, area, and timing of the design.
We use CACTI 6.5 [34] to evaluate the power and area of the
SRAM. Section V-A provides details of the synthesis statistics.
ICED’s compiler framework is built on top of the LLVM [18]
infrastructures.

Benchmark Kernels – We evaluate ICED with kernels
from three domains: embedded, ML, and HPC. Table I shows
the characteristics of each kernel. For the embedded domain,

8

Domain/
Application Kernel Data Unrolling Factor = 1 Unrolling Factor = 2 Target CGRA

with IslandsNodes Edges RecMII Nodes Edges RecMII

Embedded
domain

fir 64 12 16 4 20 26 4 n × n (2 × 2)
latnrm 32 12 16 4 19 25 4 n × n (2 × 2)

fft 1024 42 60 4 71 100 4 n × n (2 × 2)
dtw 1282 32 49 4 51 84 4 n × n (2 × 2)

Machine
learning

spmv 512 19 24 4 37 50 7 n × n (2 × 2)
conv 322 17 23 4 24 34 4 n × n (2 × 2)
relu 1024 14 19 4 23 32 4 n × n (2 × 2)

High
performance
computing

histogram 2048 15 17 4 23 26 4 n × n (2 × 2)
mvt 1282 20 29 4 37 54 4 n × n (2 × 2)

gemm 1282 17 24 4 23 37 7 n × n (2 × 2)

2-layer Graph
Convolutional

Network
(GCN)

Compress ENZYME
600 graphs

450 for training
150 for inference

24 32 4 46 65 7 1 (2 × 2)
Aggregate (x2) 27 34 4 53 69 7 4 (2 × 2)

Combine 26 35 4 51 71 7 1 (2 × 2)
CombRelu 30 42 4 59 85 7 2 (2 × 2)

Pooling 16 21 4 31 43 7 1 (2 × 2)

Synthesized
Lower–Upper

(LU)
Decomposition

kernels

Init 150 matrices
(within the size of
100×100) selected

from the University
of Florida sparse
matrix collection

11 15 4 21 32 7 1 (2 × 2)
Decompose 15 25 4 27 50 7 1 (2 × 2)

Solver0 33 49 8 65 98 15 2 (2 × 2)
Solver1 35 54 12 69 108 23 2 (2 × 2)
Invert 14 22 4 24 37 4 1 (2 × 2)

Determinant 20 36 7 38 71 13 2 (2 × 2)

TABLE I: Target workloads and streaming applications from different domains – The RecMII indicates the maximum recurrence
cycle length derived from the inter-iteration data-dependency of each kernel. The kernels are mapped on and accelerated by
the entire CGRA fabric. In contrast, each kernel of the streaming application only leverages one or multiple islands. There are
9 islands in total in a 6×6 ICED CGRA.

we use digital signal processing (DSP) kernels: finite impulse
response filter (fir), normalized lattice filter (latnrm), fast-
fourier transform (fft), and dynamic time warping (dtw). For
the ML domain, we use: sparse matrix-vector multiplication
(spmv), convolution (conv), and rectified linear unit (relu).
Note that relu is usually fused with gemm or conv kernel
for ML acceleration in practical. We use standalone relu
kernel here to show that our approach is able to handle control
flows. To represent the HPC domain, we chose: Histogram
(histogram), matrix-vector product and transpose (mvt),
and generalized matrix multiplication (gemm). The C/C++
implementations of the kernels are collected from the Poly-
Bench [40], UTDSP, and Parboil [27] benchmarks.

Benchmark Streaming Applications – To demonstrate the
advantages of DVFS, we evaluate ICED with two representa-
tive data-dependent streaming applications (comprising a total
of 11 unique kernels) on ICED. The first application is a
2-layer GCN model derived from Pytorch-Geometric [8] and
used to classify enzymes. The model is pre-trained and we
only accelerate inference on the CGRA. The different sizes
and structures of the enzymes, represented as graphs (edge
degree from 2 to 126 with an average of 32.6 [3]), lead to
an imbalanced pipeline. The GCN inference application is
composed of 5 unique kernels, with one kernel (aggregate)
repeated twice. The second application is a pipelined lower-
upper decomposition (LU). It contains a total of 6 kernels
organized in 4 pipeline stages because some of the kernels
execute in parallel.

The kernels/applications we evaluated for ICED are from
different application domains and have been previously used
to evaluate state-of-the-art CGRA designs [10], [29], [37]. We

6.63Total ICED Area
(mm2)

113.95Total ICED Power
(mW)

0.18ICED Tile Area
(mm2)

2.53ICED Tile Power
(mW)

0.02LDO+ADPLL Area
(mm2)

2.46LDO+ADPLL Power
(mW)

2.574 mm

2.574 m
m

Sc
ra

tc
hp

ad
 M

em
or

y

2.791 mm

Fig. 8: ASAP 7nm physical layout, and area and power (@
0.7V/434MHz) breakdown of an ICED 6×6 CGRA.

aim to validate the generality and scalability of the proposed
ICED hardware/software co-design approach.

Evaluation on Kernels and Streaming Applications – In
the single kernel evaluation, the ICED compiler determines the
voltage and frequency level before launching the kernel itself
and maintains them throughout the entire kernel execution.
This allows evaluating the benefits of embedding knowledge
of DVFS features across the whole ICED compiler and ar-
chitecture stack. When executing the streaming applications,
instead, we allow the ICED stack to dynamically adjust voltage
and frequency at runtime.

Evaluated CGRA Designs – The baselines for our com-
parison are a conventional CGRA without DVFS support
(Baseline), and a CGRA that supports DVFS on a per-tile basis
with power-gating enabled (Per-tile DVFS + Power-gating).

9

33%

76%

44%

71%

0%
20%
40%
60%
80%

100%

fir latnrm fft dtw spmv conv relu histogram mvt gemm Avg.Av
er

ag
e

U
til

iz
at

io
n

ac
ro

ss
 T

ile
s

Baseline Per-tile DVFS + Power-gating ICED Baseline Per-tile DVFS + Power-gating ICED
Unrolling factor = 1 Unrolling factor = 2

Fig. 9: Average utilization of tiles across different kernels – When the kernels are small, ICED can achieve even better utilization
than per-tile DVFS (e.g., fir, latnrm, mvt) as the ICED mapping is more utilization-friendly thanks to the islandization.

35%
26%

100%
53%
37%

0%
25%
50%
75%

100%

fir latnrm fft dtw spmv conv relu histogram mvt gemm Avg.

Av
er

ag
e

D
V

FS

Le
ve

l

Baseline Per-tile DVFS + Power-gating ICED Baseline Per-tile DVFS + Power-gating ICED
Unrolling factor = 1 Unrolling factor = 2

Fig. 10: Average DVFS level across different kernels – We treat normal as 100%, relax as 50%, rest as 25%, and
power-gated as 0%, to calculate the average value.

ICED embeds per-island DVFS support in both compiler
and architecture. The Per-tile DVFS + Power-gating is an
improved version of UE-CGRA with spatio-temporal support,
which can also be considered as a simplified ICED CGRA
solution where each DVFS island is composed of only one
tile. While, as discussed, the ICED framework allows to set
of any size for the DVFS islands, considering the selected
kernels, applications, and CGRA size, we adopt an island size
of 2×2 tiles in this evaluation. In addition, we compare ICED
to DRIPS [29], demonstrating how it can improve energy
efficiency when accelerating streaming applications.

A. ICED Timing, Power, and Area

Figure 8 shows a placed-and-routed 6x6 ICED CGRA
design from a bottom-up ASIC flow using the predictive ASAP
7nm FinFET cell library [5]. Without SRAM macros, this
ICED design occupies 6.63 mm2 while consuming an average
power of 113.95 mW at its nominal VDD (0.7V) and clock
frequency (434MHz).

ICED Voltage Island and DVFS Overheads – Our 6x6
ICED CGRA is partitioned into 9 voltage islands. To support
DVFS, each ICED voltage island equips the all-synthesizable
LDO and ADPLL from the FASoC open-source SoC design
framework [1], [2]. Figure 8 includes the area and power
breakdown for ICED tiles and the DVFS support.

ICED DVFS Mode – The impact of voltage scaling on
the circuit propagation delay can be found via SPICE simula-
tions [24]. When the supply voltage is reduced, the circuit
propagation delay will increase, so clock frequency has to
decrease to ensure no timing violations. Thus, V/F are often
scaled as a pair for the best energy efficiency. For ICED, we

explore the benefits of scaling the voltage of each island to
the following levels: (1) normal mode (@ nominal 0.7V and
434MHz), (2) relax mode (@ 0.5V and 217MHz), (3) rest
mode (@ 0.42V and 108MHz), and (4) power_gating
mode gates the whole voltage island.

The choice of the above V/F levels is co-designed with
ICED compiler, although the LDO and ADPLL we adopted
are capable of ns-scale fine-grained on-chip DVFS if needed.

SRAMs for ICED – We employ CACTI 6.5 to obtain power
and area of ICED’s SRAM, considering a 22nm technology
node. Our design uses a 32KB memory with eight banks. Each
bank has a dedicated port. The entire SRAM occupies 0.559
mm2 and consumes up to 62.653 mW of power. We highlight
that CACTI 6.5 does not support the 7nm technology node.
Thus our evaluation is conservative and we believe that our
proposed solution would provide even better results in terms
of power efficiency if the SRAM could be evaluated at 7nm
(in 7nm, the baseline SRAM power and area will be largely
reduced, hence our DVFS-enabled CGRA will achieve even
greater total chip power savings).

B. Experimental Results

The evaluation is based on a cycle-accurate simulation
according to the kernel mapping. The power and area for
the CGRA is obtained from the post-layout implementation
(Figure 8).

Performance and Utilization – Thanks to the proposed
DVFS-aware DFG mapping, ICED achieves higher resource
utilization without losing performance. The utilization is com-
puted at each island according to its frequency. There are many
idle tiles along the non-critical paths. Lowering the frequency

10

160.4 193.9

121.3
143.8

0
50

100
150
200
250

fir latnrm fft dtw spmv conv relu histogram mvt gemm Avg.A
ve

ra
ge

 P
ow

er
 (

m
W

) Baseline Baseline+Power-gating Per-tile DVFS+Power-gating ICED Baseline Baseline+Power-gating Per-tile DVFS+Power-gating ICED

Unrolling factor = 1 Unrolling factor = 2

Fig. 11: Evaluation of energy-efficiency – As the performance (total execution time) stays the same for baseline, per-tile DVFS
with power-gating, and ICED, the power consumption can be used to evaluate the energy-efficiency.

35% 26%

0%

50%

100%

fir latnrm fft dtw spmv conv relu histogram mvt gemm Avg.

Av
er

ag
e

D
V

FS
 L

ev
el

ac
ro

ss
 T

ile
s

2x2, unroll 1 4x4, unroll 1 6x6, unroll 1 6x6, unroll 2 8x8, unroll 1 8x8, unroll 2
2x2, unroll 1 4x4, unroll 1 6x6, unroll 1 6x6, unroll 2 8x8, unroll 1 8x8, unroll 2

Per-tile DVFS + power-gating
ICED (per-island + power-gating)

Per-tile
ICED

Fig. 12: Evaluation of scalability – ICED can achieve a similar average DVFS level value compared with the per-tile solution,
especially when the relatively smaller kernel runs on larger CGRA.

of idle tiles (e.g., 434MHz to 108.5Mhz) is equivalent to higher
utilization (4×) and lower power/energy without losing overall
performance. ICED does not rely on the average utilization
to perform optimization, instead, we look at opportunities that
can improve the energy efficiency without hurting performance
via DVFS. When doing so, the average utilization of tiles also
improves. Figure 4 in Section II shows that for our set of ker-
nels using a 2×2 island does not reduce the performance with
respect to the no-DVFS baseline and the per-tile DVFS-aware
CGRA design. Figure 9, shows that the average utilization
across tiles increases from 33% to 76% (2.3×) and from 44%
to 71% (1.6×) without and with unrolling, respectively. When
the kernels are small, ICED can achieve even better utilization
than per-tile DVFS (e.g., fir, latnrm, mvt). This happens
because ICED prefers to map the dependent DFG nodes within
an island, leading to higher utilization for certain tiles and
more tiles in power-gating mode. We can also see that the
utilization drops after applying unrolling. This happens for
two reasons: the unrolled DFG becomes larger, complicating
the mapping process (i.e., fft), and the II increases because
of the unrolling itself (i.e., spmv and gemm).

Energy-Efficiency – Figure 10 and Figure 11 show the
average DVFS level across tiles and power consumption of
ICED, respectively. We consider normal as 100%, relax
as 50%, rest as 25%, and power-gating as 0%, to calculate
the average values. We can see that ICED is better than
the per-tile DVFS solution, i.e., 35% vs. 26% and 53% vs.
37% without and with unrolling, respectively. The reason is
that the naive per-tile mapping does not consider utilization.
This means that the mapper might assign two dependent

DFG nodes onto two tiles that are far away from each
other as long as the II is not violated due to data routing.
Instead, ICED tries to map the dependent DFG nodes close
to each other considering the separate islands. Since the
performance (total execution time) stays the same for the no-
DVFS baseline, the per-tile DVFS with power-gating, and the
ICED solution, we can just consider power consumption to
evaluate improvements in energy-efficiency. With an unrolling
factor of 1, the per-tile DVFS with power-gating consumes
similar average power as the no-DVFS baseline. This happens
because there actually is a power overhead for supporting
DVFS on each tile. ICED, instead, experiences less overhead
by supporting islandization. As shown in Figure 11, ICED
consumes 121.3 mW average power while the baseline and the
per-tile DVFS with power-gating CGRA consume 160.4mW
and 193.9mW average power, leading to 1.32× and 1.6×
energy-efficiency, repectively, when the unrolling factor is 2.
Power-gating is also enabled in baseline for this evaluation,
which shows average 1.12× energy-efficiency improvement
(i.e., 160.4mW vs. 143.8mW). Note that power-gating benefits
more on smaller DFGs regardless of II as there would be more
tiles in idle.

Scalability – To demonstrate the scalability of our approach,
we compare the average DVFS levels obtained while enabling
per-tile DVFS and 2×@ DVFS island using the ICED frame-
work to generate CGRAs of different sizes ((i.e., 2×2, 4×4,
6×6, and 8×8). Figure 12 shows that the ICED solution with
islandization can achieve a similar average DVFS level value
in comparison to the per-tile solution, especially when the
relatively small kernel executes on large CGRA. For example,

11

1.26

1.12
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

51
~60

61
~70

71
~80

81
~90

91
~10

0

10
1~

11
0

11
1~

12
0

12
1~

13
0

13
1~

14
0

14
1~

15
0

Avg
.

N
or

m
al

iz
ed

 E
ne

rg
y

Ef
fic

ie
nc

y

Input Interval

GCN LU

Fig. 13: Normalized energy efficiency (performance-per-watt,
ICED over DRIPS) on GCN and LU Applications – The first
50 input instances are used to profile the initial mapping for
DRIPS and ICED.

Spatio-only CGRAs

Spatio-temporal CGRAs

UE-CGRASNAFU
RipTide

HyCUBE

ICED

ARM Cortex-A7

Xilinx Zynq FPGA

0

1500

3000

4500

6000

7500

9000

400 2000 10000 50000 250000 1250000

Pe
rf

or
m

an
ce

 (
M

O
PS

)

Power (mW)
0.4 2 10 50 250 1250

Fig. 14: Comparing ICED with other architectures – The data
except ICED is derived from HyCUBE [37] and RipTide [10].

we see average DVFS levels of 35% vs. 26% on a 6×6 CGRA
without unrolling.

Streaming Applications – We illustrate how ICED im-
proves energy efficiency when accelerating data-dependent
streaming applications with DVFS. Figure 13 shows the nor-
malized energy-efficiency of ICED with respect to DRIPS
CGRA design on two exemplar streaming applications (GCN
and LU) across the applicaiton input intervals. We observe that
compared with DRIPS, ICED improves energy-efficiency by
an average of 1.12× for the GCN application and by 1.26×
for the LU application, respectively. In this evaluation, we
allow DVFS on ICED for every 10 input intervals (i.e., in
ms), to ensure a fair comparison with DRIPS. However, ICED
equipped with ns-scale voltage regulator allows finer-grain
DVFS to achieve greater energy efficiency. DRIPS is a CGRA
that specifically optimizes performance, while ICED optimizes
power consumption without sacrificing performance. In fact,
ICED can be applied together with DRIPS to enable greater
energy efficiency.

Comparison with Other Architectures – Figure 14 shows
the power and performance (derived from HyCUBE [37] and
RipTide [10]) for running FFT kernels on various architec-
tures. Note that it is hard to provide a fair comparison due to
different technologies, number of tiles, specialized hardware
features (e.g., single-cycle-multi-hop in HyCUBE, stream
in RipTide), software optimizations (e.g., vectorization in
SNAFU), and memory sizes/hierarchies, across platforms.

Nevertheless, ICED’s hardware/software co-design approach
can be applied to any baseline CGRA to improve the power-
efficiency.

VI. RELATED WORK

Kernel Mapping – CGRAs accelerate standalone kernels
by spatially and temporally mapping the operations of its data-
flow graphs (DFGs) onto intercommunicating tiles composed
of one or more FUs with respect to the data dependencies be-
tween the DFG nodes. [4] applies Integer Linear Programming
(ILP) into mapping and yet suffers from long compilation time
due to enormous search space. Several recent approaches [16],
[20] use Machine Learning (ML) to optimize the mapping.
LISA [20] uses Graph Neural Network to generate labels to
guide the mapping and MapZero [16] leverages Reinforcement
Learning to decide placement and routing. However, both
methods are more suitable for homogeneous CGRAs and need
significant effort to support tile-level DVFS. In contrast, cost-
function-based heuristic [6], [15] makes it easy to apply new
features by customizing the cost function. However, none
of the existing approaches takes voltage and frequency as
reconfigurable parameters during mapping.

DFG nodes can be fused leveraging specialized hardware
support to shorten the DFG paths. For example, SPU [7] sup-
ports single-cycle join and RipTide [10] provides stream
instructions to avoid explicitly iterating the index of the
streamed data array with a control-flow in the DFG. However,
even with a shorter recurrence cycle in the DFG (e.g., 1 as
RecMII), if the DFG size is larger than the tile count (e.g.,
37 DFG nodes mapped onto 6x6 tiles, ⌈37 ÷ 36⌉ as ResII),
the achievable II will be at least 2 in the context of spatio-
temporal CGRA, leading to low utilization. Similarly, HLS
expects the II to be 1 for statically bounded loops but the
achievable II is constrained due to limited hardware resources
(e.g., BRAM ports). Also, ICED is not limited to statically
bounded loops or any specific DFG transformation. In many
cases (e.g., nested-loop, complex control-flow, inter-iteration
data dependency, hardware resource limitation) the achievable
II cannot be shortened. In those cases, ICED can be applied to
improve the overall system utilization, achieving higher power-
efficiency.

Application Mapping – CGRAs are also leveraged to
accelerate multi-kernel streaming applications. Chordmap [19]
leverages a static spatial-temporal kernel mapping strategy
to improve the overall throughput. Similarly, [14], [26], [39]
propose statically partitioning their CGRA tiles to a limited
group of kernels. However, they assume the fixed execution
time of each kernel without considering the impact of the input
data. PPA [25] and ARENA [32] propose hardware monitors
to check resource availability and trigger dynamic partitioning
of the reconfigurable substrate, aiming at higher utilization.
DRIPS [29] considers the execution time of the bottleneck
kernel to determine the resources that need to be allocated
to each kernel at runtime, improving the overall throughput.
DRIPS outperforms DynPaC [30] through dynamic reshape

12

mechanism. However, none of these works takes into account
DVFS for energy-efficient acceleration.

DVFS-Aware CGRA – UE-CGRA [35] applies per-tile
fine-grained DVFS to enable energy-efficient execution for
irregular loops and achieves 1.24-2.32× energy-efficiency
across five kernels. However, UE-CGRA targets only the
spatial CGRAs, a subset of spatial-temporal CGRA without
extending the resource along the temporal domain. This lowers
the mapping complexity but requires more computing and
routing resources for big kernels (i.e., an 8×8 UE-CGRA
accelerates kernels with only 10-20 DFG nodes and more
than half of the tiles are always in idle). Also, its per-tile
fine-grained DVFS does not require a sophisticated compiler
(as each tile only supports one operation during the entire
execution, which can be viewed as a straightforward per-
operation DVFS) but significantly increases the area and power
overhead (i.e., more than 30%) of the entire chip. In addition,
UE-CGRA has no support for streaming applications.

In contrast, ICED targets spatio-temporal CGRAs, allowing
time-multiplexing of different operations on the same tile on
a per-cycle basis. This requires a sophisticated DVFS-aware
compiler to coordinate different operations across multiple
cycles within one DVFS-island without lowering the perfor-
mance for both standalone kernels and streaming applications.
To the best of our knowledge, ICED is the first approach
that addresses this problem. To make a fair comparison
between UE-CGRA and ICED in the context of spatial-
temporal CGRAs, we model a per-tile DVFS + power-gating
architecture in our evaluation as an improved version of UE-
CGRA with spatio-temporal support. The experimental results
show that ICED outperforms it by 1.6× in terms of energy-
efficiency.

Other Ways to Improve CGRA Utilization – DySER [11]
allows speculative execution and squash to achieve higher
utilization. SGMF [36] increases the buffer size for better
utilization in the presence of long latency operations. Both
require additional hardware resources with higher power con-
sumption. In contrast, ICED opportunistically throttles down
tiles running non-critical operations to improve the power-
efficiency with minimal hardware overhead.

VII. CONCLUSION

This paper proposes ICED, an integrated framework to
generate and map kernels on CGRAs supporting DVFS. ICED
supports power island of configurable size, and is able to
accordingly map applications. ICED is the first solution that
supports island based DVFS on spatio-temporal CGRAs. We
evaluate ICED on a set of representative kernels from the
embedded, ML, and HPC domains with islands of 2×2 tiles,
and show that it improves utilization 2.3× and energy effi-
ciency 1.32× over a baseline solution without DVFS. We also
evaluate the ICED approach on two streaming applications,
demonstrating how it significantly improves energy efficiency
(up to 1.26×) by dynamically switching frequency and voltage
at runtime over a state-of-the-art partially and dynamically
reconfigurable solution.

ACKNOWLEDGMENTS

This research is partially supported by the National Science
Foundation under Grant 2403409, by the Adaptive Tunability
for Synthesis and Control via Autonomous Learning on Edge
(AT SCALE) Laboratory Directed Research and Development
(LDRD) Initiative and the ASCR Project Compilers Frame-
works and Hardware Generators to Support Innovative US
Government Designs at Pacific Northwest National Laboratory
(PNNL), and by the National Research Foundation, Singapore
under its Competitive Research Programme Award NRF-
CRP23-2019-0003.

APPENDIX

A. Abstract
This section summarizes the artifact evaluation for this

work. First, we provide the check-list for this artifact. Next,
we describe the directory structure for the code. Finally, the
installation, experiment workflow, and evaluation illustrate
how to use the artifact to reproduce results and extend the
implementation.

B. Artifact check-list (meta-information)
• Compilation: LLVM 12.0.
• Data set: https://github.com/tancheng/CGRA-Bench.
• Run-time environment: At least Ubuntu 16.04 and Python 3.7,

if not using docker.
• Hardware: Any machine that can run a docker environment.
• Metrics: Kernels mapping statistics, ICED CGRA utilization,

DVFS level, energy-efficiency, and scalability.
• Output: Script would directly generate figures.
• How much disk space required (approximately)?: 16GB.
• How much time is needed to prepare workflow (approxi-

mately)?: 10 minutes.
• How much time is needed to complete experiments (approx-

imately)?: 3 hours.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: Open Source Initiative

BSD 3-Clause License.
• Archived (provide DOI)?: Will be added.

C. Description
1) How to access: Code for ICED compiler can be accessed

at https://github.com/tancheng/CGRA-Mapper/tree/utilization.
RTL code for ICED CGRA can be accessed at https://github.
com/tancheng/VectorCGRA. We will also publish the initial
artifact on Zenodo.

2) Hardware dependencies: Any machine that can run
docker.

3) Software dependencies: If not using docker, ICED re-
quires Ubuntu 16.04↑, Python 3.7↑, PyMTL3, Synopsys De-
sign Compiler, Cadence Innovus, and CACTI6.5.

4) Data sets: Benchmark can be accessed at https://github.
com/tancheng/CGRA-Bench.

D. Installation
To facilitate the evaluation of ICED, we strongly recom-

mend using the provided docker environment (https://hub.
docker.com/r/cgra/iced). Alternatively, users can follow the in-
structions in https://github.com/tancheng/CGRA-Mapper/tree/
utilization to setup and perform their own experiments.

13

https://github.com/tancheng/CGRA-Bench
https://github.com/tancheng/CGRA-Mapper/tree/utilization
https://github.com/tancheng/VectorCGRA
https://github.com/tancheng/VectorCGRA
https://github.com/tancheng/CGRA-Bench
https://github.com/tancheng/CGRA-Bench
https://hub.docker.com/r/cgra/iced
https://hub.docker.com/r/cgra/iced
https://github.com/tancheng/CGRA-Mapper/tree/utilization
https://github.com/tancheng/CGRA-Mapper/tree/utilization

E. Suggested Experiment workflow

For the ease of artifact evaluation, we provide a sample bash
script that automates launching and analyzing experiments of
Table I, Figure 9, Figure 10, Figure 11, and Figure 12, which
represent the main contributions of ICED.

For the CGRA physical design (Figure 8), we provide
the Verilog RTLs for ICED 6x6 CGRA. The RTLs are syn-
thesized with Synopsys Design Compiler and placed&routed
in Cadence Innovus, using ASAP7 PDKs. Due to the EDA
license, we are not able to provide access to commercial EDA
tools. As a solution, we provide the original power, area, and
timing reports (with timestamps) and the final layout for the
evaluation. Alternatively, the provided RTLs can be physically
designed with other open-source tools (e.g., OpenRoad) at the
evaluators’ choice, but the exact numbers might change.

Figure 13 and Figure 14 are mainly derived from
DRIPS [29], HyCUBE [37], and RipTide [10], which are out
of the scope in this evaluation.

Below are the key steps:
• Pull docker:
docker pull cgra/iced:demo

• Launch docker:
docker run -it cgra/iced:demo bash

• Check RTLs and physical design logs:
vi Fig_8_CGRA_Physical_Design/README.md

• Setup simulation environment:
source /WORK_REPO/venv/bin/activate

• Locate the script:
cd /WORK_REPO/CGRA-Flow/CGRA-Mapper/test

• Run the script:
./demo.sh

• Figure out the CONTAINER_ID:
docker ps

• Copy figures out of the docker to verify:
docker cp CONTAINER_ID:/WORK_REPO/CGRA-
Flow/CGRA-Mapper/test/example ./.

• Visualize the results: The figures corresponding to Fig-
ure 9, 10, 11, and 12 are located inside the target folder.
Table I is saved in cvs format that can be viewed by any
text editor or imported to any online latex table generator
to view.

F. Evaluation and expected results

The bash script in Section E produces the figures illustrating
the main contributions of ICED. We set a 3-minute thresh-
old for the evaluation of each kernel under a given CGRA
configuration to avoid hanging (due to the heuristic mapping
algorithm).

G. Experiment customization

Check out https://github.com/tancheng/CGRA-Flow to cus-
tomize a CGRA design in both RTL and compiler.

H. Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-
review-and-badging-current

• https://cTuning.org/ae

REFERENCES

[1] Tutu Ajayi, Sumanth Kamineni, Yaswanth K Cherivirala, Morteza
Fayazi, Kyumin Kwon, Mehdi Saligane, Shourya Gupta, Chien-Hen
Chen, Dennis Sylvester, David Blaauw, Ronald Dreslinski, Benton
Calhoun, and David D. Wentzloff. An open-source framework for au-
tonomous soc design with analog block generation. In 2020 IFIP/IEEE
28th International Conference on Very Large Scale Integration (VLSI-
SOC), pages 141–146, 2020.

[2] Suyoung Bang, Wootaek Lim, Charles Augustine, Andres Malavasi,
Muhammad Khellah, James Tschanz, and Vivek De. 25.1 a fully
synthesizable distributed and scalable all-digital ldo in 10nm cmos.
In 2020 IEEE International Solid-State Circuits Conference - (ISSCC),
pages 380–382, 2020.

[3] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN
Vishwanathan, Alex J Smola, and Hans-Peter Kriegel. Protein function
prediction via graph kernels. Bioinformatics, 21(suppl 1):i47–i56, 2005.

[4] S Alexander Chin, Noriaki Sakamoto, Allan Rui, Jim Zhao, Jin Hee Kim,
Yuko Hara-Azumi, and Jason Anderson. Cgra-me: A unified framework
for cgra modelling and exploration. In 2017 IEEE 28th international
conference on application-specific systems, architectures and processors
(ASAP), pages 184–189. IEEE, 2017.

[5] Lawrence T Clark, Vinay Vashishtha, Lucian Shifren, Aditya Gujja,
Saurabh Sinha, Brian Cline, Chandarasekaran Ramamurthy, and Greg
Yeric. Asap7: A 7-nm finfet predictive process design kit. Microelec-
tronics Journal, 53:105–115, 2016.

[6] Nathan Clark, Manjunath Kudlur, Hyunchul Park, Scott Mahlke, and
Krisztian Flautner. Application-specific processing on a general-purpose
core via transparent instruction set customization. In 37th international
symposium on microarchitecture (MICRO-37’04), pages 30–40. IEEE,
2004.

[7] Vidushi Dadu, Jian Weng, Sihao Liu, and Tony Nowatzki. Towards
general purpose acceleration by exploiting common data-dependence
forms. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 924–939, 2019.

[8] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning
with pytorch geometric. arXiv preprint arXiv:1903.02428, 2019.

[9] Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar, and Trevor Bauer.
Xilinx adaptive compute acceleration platform: Versaltm architecture.
In Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 84–93, 2019.

[10] Graham Gobieski, Souradip Ghosh, Marijn Heule, Todd Mowry, Tony
Nowatzki, Nathan Beckmann, and Brandon Lucia. Riptide: A pro-
grammable, energy-minimal dataflow compiler and architecture. In
2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 546–564. IEEE, 2022.

[11] V. Govindaraju et al. Dyser: Unifying functionality and parallelism
specialization for energy-efficient computing. IEEE Micro’12.

[12] Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. Branch-aware
loop mapping on cgras. In Proceedings of the 51st Annual Design
Automation Conference, pages 1–6, 2014.

[13] Shunning Jiang, Peitian Pan, Yanghui Ou, and Christopher Batten.
Pymtl3: a python framework for open-source hardware modeling, gen-
eration, simulation, and verification. IEEE Micro, 40(4):58–66, 2020.

[14] Andreas Kanstein, Sebastian López Suárez, and Bjorn De Sutter.
Optimizing coarse-grain reconfigurable hardware utilization through
multiprocessing: An h. 264/avc decoder example. In VLSI Circuits and
Systems III, volume 6590, page 65900C. International Society for Optics
and Photonics, 2007.

[15] Manupa Karunaratne, Aditi Kulkarni Mohite, Tulika Mitra, and Li-
Shiuan Peh. Hycube: A cgra with reconfigurable single-cycle multi-hop
interconnect. In Proceedings of the 54th Annual Design Automation
Conference 2017, pages 1–6, 2017.

[16] Xiangyu Kong, Yi Huang, Jianfeng Zhu, Xingchen Man, Yang Liu,
Chunyang Feng, Pengfei Gou, Minggui Tang, Shaojun Wei, and Leibo
Liu. Mapzero: Mapping for coarse-grained reconfigurable architectures
with reinforcement learning and monte-carlo tree search. In Proceedings
of the 50th Annual International Symposium on Computer Architecture,
pages 1–14, 2023.

14

https://github.com/tancheng/CGRA-Flow
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae

[17] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. Maeri:
Enabling flexible dataflow mapping over dnn accelerators via recon-
figurable interconnects. ACM SIGPLAN Notices, 53(2):461–475, 2018.

[18] Chris Lattner and Vikram Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In International Symposium
on Code Generation and Optimization, 2004. CGO 2004., pages 75–86.
IEEE, 2004.

[19] Zhaoying Li, Dhananjaya Wijerathne, Xianzhang Chen, Anuj Pathania,
and Tulika Mitra. Chordmap: Automated mapping of streaming appli-
cations onto cgra. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2021.

[20] Zhaoying Li, Dan Wu, Dhananjaya Wijerathne, and Tulika Mitra. Lisa:
Graph neural network based portable mapping on spatial accelerators.
In 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 444–459. IEEE, 2022.

[21] Leibo Liu, Jianfeng Zhu, Zhaoshi Li, Yanan Lu, Yangdong Deng, Jie
Han, Shouyi Yin, and Shaojun Wei. A survey of coarse-grained reconfig-
urable architecture and design: Taxonomy, challenges, and applications.
ACM Computing Surveys (CSUR), 52(6):1–39, 2019.

[22] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and
Rudy Lauwereins. Exploiting loop-level parallelism on coarse-grained
reconfigurable architectures using modulo scheduling. IEE Proceedings-
Computers and Digital Techniques, 150(5):255, 2003.

[23] Jackson Melchert, Kathleen Feng, Caleb Donovick, Ross Daly, Ritvik
Sharma, Clark Barrett, Mark A Horowitz, Pat Hanrahan, and Priyanka
Raina. Apex: A framework for automated processing element design
space exploration using frequent subgraph analysis. In Proceedings of
the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, pages 33–
45, 2023.

[24] Katayoun Neshatpour, Wayne Burleson, Amin Khajeh, and Houman
Homayoun. Enhancing power, performance, and energy effi-
ciency in chip multiprocessors exploiting inverse thermal dependence.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
26(4):778–791, 2018.

[25] Hyunchul Park, Yongjun Park, and Scott Mahlke. Polymorphic pipeline
array: a flexible multicore accelerator with virtualized execution for
mobile multimedia applications. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 370–
380, 2009.

[26] Aviral Shrivastava, Jared Pager, Reiley Jeyapaul, Mahdi Hamzeh, and
Sarma Vrudhula. Enabling multithreading on cgras. In 2011 Interna-
tional Conference on Parallel Processing, pages 255–264. IEEE, 2011.

[27] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid,
Li-Wen Chang, Nasser Anssari, Geng Daniel Liu, and Wen-mei W
Hwu. Parboil: A revised benchmark suite for scientific and commercial
throughput computing. Center for Reliable and High-Performance
Computing, 127(7.2), 2012.

[28] Thierry Tambe, Coleman Hooper, Lillian Pentecost, Tianyu Jia, En-Yu
Yang, Marco Donato, Victor Sanh, Paul Whatmough, Alexander M.
Rush, David Brooks, and Gu-Yeon Wei. Edgebert: Sentence-level energy

optimizations for latency-aware multi-task nlp inference. In MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO ’21, page 830–844, New York, NY, USA, 2021. Association for
Computing Machinery.

[29] Cheng Tan, Nicolas Bohm Agostini, Tong Geng, Chenhao Xie, Jiajia
Li, Ang Li, Kevin Barker, and Antonino Tumeo. Drips: Dynamic
rebalancing of pipelined streaming applications on cgras. In 2022 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2022.

[30] Cheng Tan, Tong Geng, Chenhao Xie, Nicolas Bohm Agostini, Jiajia Li,
Ang Li, Kevin Barker, and Antonino Tumeo. Dynpac: Coarse-grained,
dynamic, and partially reconfigurable array for streaming applications. In
2021 IEEE 39th International Conference on Computer Design (ICCD),
pages 33–40. IEEE, 2021.

[31] Cheng Tan, Deepak Patil, Antonino Tumeo, Gabriel Weisz, Steve
Reinhardt, and Jeff Zhang. Vecpac: A vectorizable and precision-aware
cgra. In 2023 IEEE/ACM International Conference on Computer Aided
Design (ICCAD), pages 1–9. IEEE, 2023.

[32] Cheng Tan, Chenhao Xie, Tong Geng, Andres Marquez, Antonino
Tumeo, Kevin Barker, and Ang Li. Arena: Asynchronous reconfigurable
accelerator ring to enable data-centric parallel computing. IEEE Trans-
actions on Parallel and Distributed Systems, 32(12):2880–2892, 2021.

[33] Cheng Tan, Chenhao Xie, Ang Li, Kevin J Barker, and Antonino Tumeo.
Opencgra: An open-source unified framework for modeling, testing,
and evaluating cgras. In 2020 IEEE 38th International Conference on
Computer Design (ICCD), pages 381–388. IEEE, 2020.

[34] Shyamkumar Thoziyoor, N Muralimanohar, J Ahn, and N Jouppi. Cacti
6.5. hpl. hp. com, 2009.

[35] Christopher Torng, Peitian Pan, Yanghui Ou, Cheng Tan, and Christo-
pher Batten. Ultra-elastic cgras for irregular loop specialization. In
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 412–425. IEEE, 2021.

[36] Dani Voitsechov and Yoav Etsion. Single-graph multiple flows: Energy
efficient design alternative for gpgpus. ACM SIGARCH computer
architecture news, 42(3):205–216, 2014.

[37] Bo Wang, Manupa Karunarathne, Aditi Kulkarni, Tulika Mitra, and Li-
Shiuan Peh. Hycube: A 0.9 v 26.4 mops/mw, 290 pj/op, power efficient
accelerator for iot applications. In 2019 IEEE Asian Solid-State Circuits
Conference (A-SSCC), pages 133–136. IEEE, 2019.

[38] Jian Weng, Sihao Liu, Vidushi Dadu, Zhengrong Wang, Preyas Shah,
and Tony Nowatzki. Dsagen: Synthesizing programmable spatial accel-
erators. In 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), pages 268–281. IEEE, 2020.

[39] Kehuai Wu, Andreas Kanstein, Jan Madsen, and Mladen Berekovic. Mt-
adres: Multithreading on coarse-grained reconfigurable architecture. In
International Workshop on Applied Reconfigurable Computing, pages
26–38. Springer, 2007.

[40] Tomofumi Yuki. Understanding polybench/c 3.2 kernels. In Interna-
tional workshop on polyhedral compilation techniques (IMPACT), pages
1–5, 2014.

15

	Introduction
	Background and Motivation
	Background
	Benefits of DVFS

	ICED Architecture
	ICED DVFS Support
	ICED Streaming Applications Support

	ICED Compiler Toolchain
	Kernel Mapping
	Application Mapping

	Experimental Evaluation
	ICED Timing, Power, and Area
	Experimental Results

	Related Work
	Conclusion
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets

	Installation
	Suggested Experiment workflow
	Evaluation and expected results
	Experiment customization
	Methodology

	References

