
1

SPLIM: Bridging the Gap Between Unstructured
SpGEMM and Structured In-situ Computing

Huize Li, Member, IEEE, Dan Chen, Member, IEEE, Tulika Mitra, Member, IEEE

Abstract—Sparse matrix-matrix multiplication (SpGEMM) is
a critical kernel widely employed in machine learning and
graph algorithms. However, high sparsity of real-world matrices
makes SpGEMM memory-intensive. In-situ computing offers the
potential to accelerate memory-intensive applications through
high bandwidth and parallelism. Nevertheless, the irregular
distribution of non-zeros renders software SpGEMM compu-
tation unstructured. In contrast, in-situ hardware platforms
follow a fixed computation pattern, making them structured.
The mismatch between unstructured software and structured
hardware leads to sub-optimal performance of current solutions.

In this paper, we propose SPLIM, a novel in-situ computing
SpGEMM accelerator. SPLIM involves two innovations. First, we
present a novel computation paradigm that converts SpGEMM
into structured in-situ multiplication and unstructured accumula-
tion. Second, we develop a unique coordinates alignment method
utilizing in-situ search operations, effectively transforming un-
structured accumulation into highly parallel search operations.
Our experimental results demonstrate that SPLIM achieves 276×
performance improvement and 687× energy saving compared to
NVIDIA RTX A6000 GPU.

I. INTRODUCTION

Sparse matrix-matrix multiplication (SpGEMM) is an es-
sential operation for diverse applications, such as graph al-
gorithms [14], [38] and machine learning [23], [27]. Real-
world sparse matrices are often large scale, lack structure, and
exhibit high sparsity. The significant sparsity entails numerous
“zeros”, substantially increasing SpGEMM’s computational
complexity. To mitigate computing complexity, researchers
propose diverse compression methods to identify and skip un-
necessary computation with zeros. Moreover, the unstructured
nature of sparse matrices leads to irregular distributions of
non-zeros, resulting in substantial random memory access. In
response to this issue, various software-oriented optimizations
are proposed, such as compression formats [33].

There is growing interest in hardware-oriented solutions,
driven by the potential to improve execution efficiency through
architecture-based algorithm optimization. Prominent architec-
tures for accelerating SpGEMM include GPU [31], [32], Field
Programmable Gate Array (FPGA) [1], [11], Application Spe-
cific Integrated Circuit (ASIC) [42], [43], and Processing In
Memory (PIM) [5], [7]. These solutions outperform software-
oriented approaches by designing dedicated architectures and
dataflows that efficiently support SpGEMM. Nonetheless,
SpGEMM involves numerous random access in the whole

The authors are with the School of Computing, National University of
Singapore, Singapore (e-mail: huizeli@nus.edu.sg, danchen@nus.edu.sg, tu-
lika@comp.nus.edu.sg).

This research is partially supported by the National Research Foundation,
Singapore under its Competitive Research Program Award NRF-CRP23-2019-
0003. The correspondence of this paper should be addressed to Dan Chen.

memory space (as Figure 3 shows). Conventional hardwares
suffer from substantial access overhead when searching the
memory space [39]. PIM-based solutions reduce the off-chip
access overhead by integrating processing elements (PEs) near
the memory banks. However, on-chip PEs can efficiently
access only their local banks, leading to longer access times
for searching data stored in other banks, known as cross-bank
transfers [44]. Additionally, the use of on-chip PEs may reduce
memory density and increase thermal concerns.

Processing-using-memory (PUM) [15] performs in-situ
computation, processing tasks directly in memory cells where
the data is stored. PUM-based solutions [15], [21] demonstrate
exceptional performance and energy efficiency, particularly
in processing general matrix multiplication (GEMM), a typ-
ical structured kernel. However, using structured PUM plat-
forms to accelerate unstructured SpGEMM may lead to sub-
optimal performance. The Sparse Matrix-vector Multiplication
(SpMV) computation paradigm employed by GraphR [38]
serves as an example. GraphR involves three steps: sparse
matrices → compression for storage → decompression for
computing. Nevertheless, this paradigm does not fully exploit
the potential of in-situ computing, as the decompression phase
introduces matrix remapping with significant transmission
overhead. Moreover, the decompressed matrix reintroduces
zeros, reducing the utilization of in-situ computing hardware
(as shown in Figure 5).

In response to the current landscape, we present SPLIM, a
novel PUM-based SpGEMM accelerator. SPLIM introduces
two innovations. First, we introduce a new computation
paradigm for SpGEMM, namely ELLPACK-based Compu-
tation Paradigm (ECP). ECP can perform in-situ structured
vector multiplication with fewer zeros and higher hardware uti-
lization, while the accumulation phase remains unstructured.
Second, we adopt in-situ search operations for coordinates
alignment, converting unstructured accumulation to highly par-
allel search operations. We compare SPLIM with state-of-the-
art GPU, ASIC, PIM, and PUM-based SpGEMM accelerators.
The experimental results show that SPLIM achieves 276×
(GPU A6000), 11.2× (SAM [13]), 19.7× (SpaceA [39]), and
3.9× (ReFlip [14]) performance improvement.

Figure 1 offers a comprehensive overview of the insights
behind SPLIM, depicting the transformation of unstructured
SpGEMM into structured PUM-friendly kernels. In Figure 1
(a), the commonly used computation paradigm [38] used in
current PUM platforms is depicted, revealing an abundance of
zeros that diminish hardware utilization. Figure 1 (b) entails
the adoption of structured vector multiplication utilizing the
ECP method, showing huge hardware utilization gains. Fig-
ure 1 (c) showcases the accumulation of intermediate results

2

Fig. 1. (a) PUM-based SpGEMM with commonly used compression formats, (b) Structured vector multiplication based on ECP method, (c) Unstructured
accumulation based on decompression, (d) Structured in-situ computing hardware

Fig. 2. (a) An example of sparse matrix, (b) The COO and CSR formats
of the example, (c) The row-wise ELLPACK format, (d) The column-wise
ELLPACK format

through decompression, which introduces a multitude of on-
chip scheduling and random access overhead. To address this,
we introduce a search-based method for merging intermediate
results, capitalizing on the in-situ computing capability of the
PUM platform, as depicted in Figure 1 (d).

II. BACKGROUND AND MOTIVATION

A. Sparse Matrix-matrix Multiplication

Figure 2 (a) illustrates an example of sparse matrix where
white cells represent zeros, and blue cells represent non-zeros.
To efficiently process sparse matrices, compression formats are
employed for storage and processing, allowing the skipping
of zeros and reducing computation complexity. Some widely-
used compression formats include coordinates format (COO),
compressed sparse row (CSR), compressed sparse column
(CSC), diagonal format (DIA), and ELLPACK [8].

Figure 2 (b) illustrates the COO format (blue dashed rect-
angle), consisting of three vectors: the row index (RI), column
index (CI), and the values (Val). RI and CI store the row
and column coordinates of Val. The CSR and CSC formats
are modifications of the COO format, organized row-wise and
column-wise, respectively. We present the CSR format in the
red dashed rectangle, replacing the RI of COO format with a
row pointer (RP) while CI and Val vectors remain unchanged.
RP stores the number of non-zeros before each row, thus
saving more storage than RI. The DIA format compresses
non-zeros in each diagonal, performing well for good diagonal
locality sparse matrices [23]. The ELLPACK format comprises
two vectors: the Val vector stores non-zeros, and the index
vector records the index of Val. As shown in Figure 2 (c),
the row-wise ELLPACK format condenses non-zeros to the
topmost rows, while the index vector retains the original
row index. Figure 2 (d) presents the column-wise ELLPACK
format, compressing non-zeros to the leftmost columns.

Figure 3 (a) depicts the SpGEMM operation C = A×B. The
calculation of three non-zeros in the first row of matrix C is
highlighted using red, green, and blue dashed rectangles. In

Fig. 3. (a) Matrix multiplication between sparse matrices A and B, (b) Random
access of CSR#A and CSC#B

Figure 3 (b), we present the CSR format of matrices A and
CSC format of matrix B, with the dashed rectangles represent-
ing the same meaning as in Figure 3 (a). As the Val vectors of
the CSR and CSC formats do not contain index information
for SpGEMM, we must realign their coordinates using the
index vectors. Taking the example of red dashed rectangles
in Figure 3 (b), only one multiplication will occur, as the
coordinates alignment skips zeros. The results of coordinates
alignment are shown by the three dashed rectangles in CSC#B
of Figure 3 (b), irregularly distributed in the entire Val vector.
This irregular memory access of Val vectors renders SpGEMM
a typical unstructured kernel.

B. In-situ Computing

There are two types of in-situ computing: analog [37] and
digital in-situ computing [15]. Analog in-situ computing is less
robust to noise due to the accumulation of analog signals. As
SpGEMM is commonly used in neural networks and graph
processing, requiring high precision, this paper focuses on the
more noise-robust digital in-situ computing, which employs
memristor switching to implement logic [10]. In digital in-
situ computing, a memristor cell has two states: high resistance
(logic ‘0’) and low resistance (logic ‘1’). By applying a proper
voltage V0, the memristor cell can switch from low resistance
state ‘1’ to high resistance state ‘0’. Researchers design digital
in-situ computing with NOR logical gates [15].

Fig. 4 (a) shows NOR operation Out = NOR(In0, In1, In2).
The output memristor cell is initialized to ‘1’, while the word-
line (WL) is initialized to V0

2 . The bit-lines (BLs) of all input
cells are activated with voltage V0, while the bit-line of the
output cell is linked to the ground (GND). When all the input
cells (In0, In1, In2) are in the high resistance state (‘0’), no
current flows from the BLs to the WL. Consequently, the
voltage difference of the output cell remains at V0

2 , which is
insufficient for state switching. On the other hand, if at least
one input cell is in the low resistance state (blue cell), the
bit-line current flows from this cell to the word-line. As a

3

Fig. 4. (a) NOR operation of memristor switching, (b) Structured digital in-
situ computing array

result, the voltage difference of the output cell changes to 3V0
4 ,

providing enough voltage for state switching from ‘1’ to ‘0’.
Figure 4 (b) presents the array-level digital in-situ com-

puting. Initially, the output vector C is initialized to ‘1’. The
bit-lines of input vectors A and B are set to V0, while the word-
lines are set to V0

2 . By following the same procedure as shown
in Figure 4 (a), we can efficiently obtain C = NOR(A,B) in a
highly parallel manner. Due to the Turing completeness of
NOR operation, we can perform numerous arithmetic/logic
operations through a series of NOR operations [15]. The
logical cells of a memristor array are coupled in a row and
column manner, creating a structured architecture.

C. Motivation

PIM vs. PUM. PIM platforms [44] integrate PEs into
memory, enabling in-memory computing that reduces off-
chip transfers. However, due to area and thermal constraints,
PIM platforms usually integrate light-weight processors near
memory [44], restricting computing resources. Integrating
powerful processing units can significantly reduce memory
density, such as Samsung HBM-based NMP systems [17].
Moreover, significant data transfers occur between the on-
chip logic units and memory banks, leading to conflicts in the
control and address (C/A) buses shared by all memory banks.
These conflicts arise when PIM platforms process large scale
sparse matrix multiplication [39]. On the other hand, PUM
platforms [15] show promise in reducing integration and trans-
mission overhead. As depicted in Figure 4 (b), each memristor
cell in PUM platforms can function as a logic cell without
integrating on-chip PEs, exposing parallelism of million rows.
Furthermore, PUM platforms perform calculations directly in
where the data is stored, thus reducing data transmissions.

PUM + SpGEMM. Figure 4 (b) illustrates that all mem-
ristor cells are arranged in a regular row/column manner,
providing abundant row parallelism, i.e., the latency of pro-
cessing one row is the same as processing millions of rows,
which efficiently handles structured GEMM. To utilize the
high parallelism of PUM platforms, GraphR [38] proposes in-
situ sparse matrix-vector multiplication (SpMV) with COOs
format, which is widely used in PUM platforms [3], [14],
[28]. Performing SpGEMM in Figure 5 (a) involves multiple
iterations of GraphR’s SpMV kernel. As Figure 5 (b) shows,
the compressed Val vector of the COOs format cannot be
directly used for SpGEMM due to unmatched coordinates.
Therefore, GraphR decompresses the Val vector back to the

Fig. 5. (a) SpGEMM between matrices A and B, (b) The Val of CSR#A and
CSC#B, (c) In-situ SpMV in GraphR [38]

structured dense matrix, reintroducing many zeros. Although
PUM platform has abundant row parallelism, if too many zeros
are involved, the number of valid computations decreases (as
shown in Figure 5 (c)). In Figure 5 (c), the white cells (zeros)
waste compute resources, referred to as invalid rows.

Our goal: PUM platforms offer excellent hardware perfor-
mance, holding promise for high parallelism in accelerating
SpGEMM. Nevertheless, current PUM-based SpGEMM accel-
erators rely on decompression to process unstructured COOs
format. The decompression approach reintroduces zeros, sub-
stantially reducing PUM utilization. To this end, we aim to
design a more efficient method to bridge the gap between
unstructured SpGEMM and structured PUM platforms.

III. STRUCTURED IN-SITU SPGEMM

A. ELLPACK-based Computation Paradigm (ECP)

High-level motivation. To perform SpGEMM with PUM
platforms, the Val vector of COO/CSR/CSC format must be
realigned with index vectors. Decompression is the commonly
used method to align Val vectors in PUM platforms, as
depicted in Figure 5. However, the decompression phase rein-
troduces zeros and hampers the utilization of PUM platforms.
In Figure 5 (c), the white cells (zeros) waste computation
resources, referred to as invalid rows, i.e., more zeros in PUM
→ less valid computing → lower utilization of PUM. We
seek a potential solution to tackle the above issues by adopt-
ing a novel method, which can perform SpGEMM without
decompressing the Val vector, i.e., computing directly using
the compressed Val vector without decompression to introduce
zeros. To this end, the number of valid calculations in PUM
can be greatly increased without introducing extra zeros.

Opportunities from ELLPACK format. As depicted in
Figure 5, the primary objective of the decompression operation
is to align the coordinates of the two input Val vectors. If the
coordinates of two input Val vectors are naturally aligned, then
we can eliminate the decompression for coordinates alignment.
We identify that the SpGEMM coordinates alignment can be
effectively divided into two distinct parts. First, the vector mul-
tiplication only requires aligning the column coordinates of the
left matrix with the row coordinates of the right matrix. Sec-
ond, the accumulation phase merges the intermediate results
generated by the vector multiplication, necessitating alignment
of the row coordinates of the left matrix with the column
coordinates of the right matrix. This observation presents
an opportunity for computing vector multiplication directly
using the compressed Val vectors. Specifically, the row-wise
ELLPACK format retains the column coordinates of left Val,
while the column-wise ELLPACK format preserves the row

4

Fig. 6. (a) ELLPACK format of matrix A, (b) ELLPACK format of matrix
B, (c) Matrices mapping of A and B

Fig. 7. (a) An example of SpGEMM A×B, (b) ELLPACK format of matrix
A, (c) ELLPACK format of matrix B

coordinates of right Val. Consequently, the ELLPACK’s Val
vector of input matrices can be directly used to perform in-
situ vector multiplication without the need for decompression.

Matrices mapping strategy. In SpGEMM, processing ma-
trices with millions of rows/columns needs to store the sparse
matrices into multiple memristor arrays due to limited capacity
of one array. Figure 6 (a) presents the n×n sparse matrix A,
where all non-zeros are condensed to the top, resulting in an
ELLPACK format with ka row vectors. Similarly, Figure 6 (b)
shows the n×n sparse matrix B, with non-zeros condensed to
the left, yielding an ELLPACK format with kb column vectors.
To map the ELLPACK format of matrices A and B, we utilize
multiple m×m memristor arrays, as presented in Figure 6 (c).
Specifically, each memristor array stores a row vector of A
and a column vector of B. Since n ≫ m, we use n

m memristor
arrays to store the same vector (red dotted rectangle).

To accommodate ka row vectors of matrix A and kb column
vectors of matrix B, we employ T memristor arrays. Each
memristor array is responsible for storing ka

T row vectors
of matrix A and kb

T column vectors of matrix B. When
ka = kb = T , the storage configuration of matrices A and B
is depicted in Figure 6 (c). To manage large input matrices
and accommodate intermediate results, SPLIM processes input
matrices in batches. Assuming that SPLIM has K× ReRAM
rows and the input matrices have NK× rows. We will partition
input matrices into N× batches as shown in Figure 6 (a)
(parallel execution within batch and serial execution between
batches). Accordingly, the NK× rows can be processed with
N× iterations of batches.

ELLPACK-based in-situ vector multiplication. We em-
ploy matrices A and B shown in Figure 7 (a) as an example.
Figure 7 (b) presents the row-wise ELLPACK format of matrix
A with ka = 2 row vectors, namely V0 and V1. Similarly,
Figure 7 (c) shows the column-wise ELLPACK format of
matrix B comprising kb = 2 column vectors, denoted as V2
and V3. Each row/column vector is composed of two parts:
the index vector (numbers) and the Val vector (alphabets).

To map the ELLPACK format of matrices A and B, we

Fig. 8. (a) Data mapping and vector multiplication of matrices A and B, (b)
Vector multiplication after ring-wise transfer

follow the matrix mapping approach depicted in Figure 6 (c).
In our example, we use two memristor arrays, namely Arr0 and
Arr1, to store the row vectors of A and the column vectors of
B. Specifically, Arr0 stores V0 and V2, while Arr1 stores V1
and V3. Arr0 and Arr1 will conduct the in-situ vector-vector
multiplication directly using the Val vector of ELLPACK
formats (no decompression for coordinates alignment), leading
to the generation of intermediate results (indicated by grey
columns) shown in Figure 8 (a).

The SpGEMM kernel involves iterative vector multiplica-
tion among different vectors. However, storing sparse matrices
in separate memristor arrays necessitates cross-array data
transfers, leading to increased random access. To mitigate this
issue, we employ the ring-wise transfer method, illustrated by
the red arrows in Figure 6 (c). Specifically, each column vector
of matrix B is transferred to the next memristor array, i.e.,
Arri → Arri+1. In our example, we transfer V1 to Arr1 and V3
to Arr0. Arr0 and Arr1 then perform the in-situ vector-vector
multiplication again, generating the next intermediate results
indicated by the grey columns in Figure 8 (b). To optimize
memory usage, we overwrite the previous Val vector with the
newly received one. Because all the index vectors are essential
for coordinate alignment, we retain the previous index vector
instead of rewriting it.

Latency analysis. Figure 5 shows the in-situ SpMV using
the decompressed COOs format, which requires 4× SpMV
iterations for SpGEMM. Figure 8 depicts our ELLPACK-based
computation paradigm, achieving the same vector multiplica-
tion in only 2× iterations. Compared to the COOs computation
paradigm, our ELLPACK computation paradigm shows 2×
iterations saving due to 50% reduction of zeros. In realistic
sparse matrices with < 1% non-zeros (over 99% are zeros), our
ELLPACK-based computation paradigm can save over 99×
iterations (latency) by eliminating the zeros.

Transmission analysis. We adopt ring-wise transfer to
perform the vector multiplication among Val vectors stored in
different arrays, totalling T× ring-wise transfer for T× arrays.
Fortunately, the cross-array transmission is more efficient than
cross-bank transmission. Pinatubo [24] shows that we can
perform high performance RowClone [36] between different
memristor arrays using the column buffer. Specifically, we
numbered the memristor arrays as odd (2i−1) and even (2i),
i = 1,2, ..., T

2 . We can finish one ring-wise transfer with two
steps RowClone. In the first RowClone, we read arrays 2i−1
to their column buffer. Then, we transfer the data from column
buffer 2i−1 to 2i. Finally, we write data from column buffer
to array 2i. In the second RowClone, we perform the above
operation from 2i to 2i+1. We need 2T× RowClone to finish

5

Fig. 9. (a) Intermediate results generated by Arr0, (b) The decompressed
intermediate results and accumulation operation, (c) Intermediate results
generated by Arr1

all ring-wise transfers without C/A bus conflicts.
Memory analysis. ELLPACK-based computation paradigm

performs T× iterations of vector multiplication to generate an
intermediate vector in each iteration, totalling T× intermediate
vectors for each memristor array. Thus, one memristor array
is unable to store all intermediate results. To scale memristor
array, we adopt the Block Size Scalability (BSS) in Float-
PIM [15], forming a bigger array by transferring data between
neighbor memory sub-blocks. For example, 32 1k×1k arrays
can be treated as a 1k×32k array with < 4% extra overhead.

B. In-situ Search for Accumulation

High-level motivation. The proposed ELLPACK-based
computation paradigm exhibits high PUM utilization when
processing in-situ vector multiplication. However, accumu-
lating the intermediate results generated by this paradigm
requires huge scheduling overhead, because the Val of ELL-
PACK format does not hold the row (column) index of left
(right) matrix. Therefore, we still need to restore the coordi-
nates using the index vectors before performing accumulation.
Decompression is commonly employed to restore coordinates
and accumulate intermediate results. Figure 9 (a) and (c)
depicts the intermediate results from Section III-A, where the
row index (RI) and column index (CI) are marked with red
and green dashed rectangles, respectively. Figure 9 (b) shows
the SpGEMM output matrix obtained through accumulating
the decompressed intermediate results with RI and CI.

However, decompression-based methods introduce two
challenges: substantial scheduling overhead and storage over-
head. First, the decompression operation typically relies on the
on-chip scheduler, which utilizes RI and CI of the intermediate
results to generate control signals for decompression. Given
the large number of randomly distributed intermediate re-
sults, the on-chip scheduling overhead can become substantial.
Second, the decompression operation converts the ELLPACK
format of intermediate results to a decompressed dense ma-
trix, imposing considerable storage overhead for zeros. These
challenges underscore the need for more efficient methods that
can mitigate the scheduling and storage overheads.

Opportunities from in-situ search. We find that the pri-
mary objective of decompression is to extract intermediate
results with identical row and column coordinates, as depicted
in Figure 9. A novel approach that extracts all intermediate re-
sults with matched coordinates, without relying on a scheduler
or data remapping, could significantly reduce the scheduling
and storage overhead. In this context, the in-situ search oper-

Fig. 10. (a) Int3 unsigned vector for in-situ search operation, (b) DRVs status
of bit-2, (c) Drivers (DRVs) status of bit-1, (d) DRVs status of bit-0

ation of the memristor array emerges as a promising solution
for highly parallel in-situ coordinates alignment.

Algorithm 1 In-situ Minima Search
Require: Unsigned 32-bit integer vector V ∈ Rn.
Ensure: Minimum value of V .

1: Mapping vector V to n-rows ReRAM (Figure 10 (a)).
2: Initializing i to highest bit with i = 32.
3: Activating all row DRVs with V =V0 (Figure 10 (b)).
4: while i > 0 do
5: Initializing column buffer to ‘0’.
6: Activating i-th column DRV with V = 0 (Fig. 10(b)).
7: Column buffer (CB) stores ‘1’ signals (Figure 10 (b)).
8: Activating DRVs of row’s CB stores ‘1’ (Fig. 10 (c)).

▷ If no row’s CB stores ‘1’, row DRVs’ activation remains
the same as previous iteration (Figure 10 (d))

9: i = i−1.
10: end while
11: Return all rows’ CB stores ‘1’ (Figure 10 (d)).

Introduction of in-situ search. The in-situ search operation
of memristor arrays is illustrated in Figure 10. For visualiza-
tion, we use six 3-bit unsigned integers (RI and CI in Figure 11
are also unsigned integers) as an example, shown in Figure 10
(a) (Alg. 1 line 1). Three distinct colors are used to indicate the
voltage driver (DRV) status: white for V = 0, red for V =V0,
and green for deactivated status. During each iteration, the
column buffer is set to all zeros (Alg. 1 line 5). The in-situ
search starts by setting all row DRVs to V0 (Alg. 1 line 3),
resulting in high voltage word-lines, as depicted in Figure 10
(b). Next, we deactivate all column DRVs except the highest
bit (bit-2) while setting its DRV to zero (Alg. 1 line 6). The
voltage difference enables the word-lines’ current flowing from
the low resistance (‘1’) cells to the bit-line, represented by
the red cells in Figure 10 (b). Meanwhile, the high resistance
(‘0’) cells prevent current flow, maintaining high voltage on
the word-lines, which is recorded by the column buffer (yellow
cells in Figure 10 (b) and Alg. 1 line 7).

The above process is iterated for the next bit. As shown in
Figure 10 (c), the row DRVs are set based on the ‘1’ signals
stored in the column buffer (Alg. 1 line 8). We deactivate
all column drivers except for bit-1 while setting its DRV to
zero. All memristor cells are in low resistance (‘1’) states, so
all word-lines’ current flow to the bit-line. Consequently, the
column buffer records no high voltage (‘1’), and the same row

6

Fig. 11. (a) In-situ search operation for RI, (b) In-situ search operation for
CI, (c) Sorted list of output matrix

DRVs are activated in the subsequent iteration (bit-0). Fig-
ure 10 (d) provides details of the lowest bit (bit-0) processing.
Following the same principle of leakage current, the column
buffer records word-lines with high voltage, representing the
storage of minimal value.

To find the next minimal value, we need to deactivate
the rows storing the current minimal value. Repeating the
above iterations allows us to identify those rows holding the
subsequent minimal values. ReSQM [22] introduces an in-situ
sorting algorithm for structured database queries. Their method
draws inspiration from the bit-wise minimal algorithm for
Resistive Content Addressable Memory (ReCAM). However,
it is worth noting that ReSQM’s method requires double
hardware resources compared to our approach due to the fact
that one ReCAM cell is composed of two memristor cells.

Detailed designs. In Figure 11 (a), we present the inter-
mediate results obtained from Section III-A. The row index
(RI) of matrix A is indicated by the red dotted rectangle.
First, we perform an in-situ search operation on the RI to
locate all rows with the smallest row index (RI#0 marked
in red cells). Subsequently, we activate only these rows with
RI#0 (red DRVs in Figure 11 (b)) and conduct another in-situ
search operation on the column index (CI). In our example, the
smallest CI is CI#0. Consequently, we retrieve the intermediate
results of RI#0 and CI#0, i.e., ‘ah’ in Figure 11 (c). We then
store RI#0, CI#0, and ‘ah’ to the off-chip memory. We modify
the sign bit of CI#0 to ‘1’, rendering this CI as invalid. Next,
we iterate to search for the next minimal CI of RI#0, which in
our example is CI#2. Then, we add the intermediate results of
RI#0 and CI#2, i.e., ‘ak’ and ‘bl’ using an on-chip accumulator
to obtain the Val of RI#0 and CI#2.

Once we complete the CI iterations of RI#0, we set the sign
bit of RI#0 to ‘1’, making RI#0 invalid. We proceed to search
for the next minimal RI, which is RI#1 in our example (green
cells in Figure 11 (a)). We then activate rows of RI#1 (green
DRVs in Figure 11 (b)) and conduct an in-situ search on the
CI of RI#1. Following the same procedure to all RI, we can
obtain a sorted list as Figure 11 (c) shows. After each row’s
iteration, we add all grey cells using an on-chip accumulator to
obtain the COO format of the output matrix. To maintain the
continuity of ELLPACK format, we recommend converting the
COO format of output matrix to ELLPACK format for further
matrix multiplication using SPLIM, which will introduce an
extra format converting overhead. Compared to O(n2) time
complexity matrix multiplication, format converting of linear

Fig. 12. (a) ELLPACK format with zeros, (b) Hybrid ELLPCAK and COO
formats [2], (c) Normal distribution of NNZ-r

complexity is negligible when the input matrices are large.
Memory/Transmission/Latency analysis. Memory: Apart

from storing the output COO format in off-chip memory, we
do not need additional memory, thanks to the use of in-situ
search rather than decompression. Transmission: After the in-
situ search, we can read data with exact access. Therefore,
only one iteration of full memory space exact access can
obtain the final results. Latency: For two n × k ELLPACK
matrix, we can obtain all rows of the output matrix with
only n× RI iterations. In each RI iteration, we need k×
CI iterations, resulting in an O(nk) complexity. For highly
sparse matrices, n ≫ k, and we have O(n) time complexity. In
comparison to the decompression-based method, our approach
eliminates the need for an on-chip scheduler. Additionally, our
method allows us to generate the COO format of the output
matrix without requiring decompression, thereby reducing the
significant random access and on-chip storage overhead.

C. Hybrid ELLPACK and COO Format

Real-world matrices often do not exhibit complete random-
ness and may contain rows or columns with good locality. In
Figure 12 (a), the column-wise ELLPACK format of a sparse
matrix comprises four column vectors labeled from V0 to V3.
We use two colors to illustrate the impact of non-zero values’
distributions. The green color vectors, like V0 and V1, demon-
strate a high compression ratio with only a few zeros. On the
other hand, the red color vectors, like V2 and V3, exhibit a low
compression ratio with many zeros. There are two methods
to increase the compression rate of ELLPACK format, i.e.,
hybrid ELLPCAK&COO and reordering. However, utilizing
the reordering method for SPLIM’s in-situ computing can not
generate the correct result. The reasons is as follows:

Using reordering on CPU, GPU, FPGA, and ASIC platforms
to accelerate SpGEMM can get good performance. We do
not claim that reordering produces wrong results on the
above platforms. In the above von-Neuman architectures, the
storage of data is separate from the computation. The common
computation procedure for SpGEMM is: (1) sparse matrix →
(2) reordering for storage → (3) load data and realignment
coordinates → (4) computing for results. The coordinates are
realigned to get the correct results in the (3) phase.

In-situ computing platforms calculate SpGEMM directly in
where the data are stored. If we utilize reordering for SPLIM,
the computation procedure for SpGEMM in SPLIM is: (1)
sparse matrix → (2) reordering for storage → (4) computing
without data load and realignment. The above procedure will
get wrong results because the coordinates are not aligned.

7

SPLIM can also add the (3) phase to get the correct results.
However, SPLIM is designed to full utilize the advantages of
in-situ computing. If we introduce the (3) phase to SPLIM
for reordering method, SPLIM will re-introduce off-chip data
loading and are not in-situ computing anymore. As shown
in Figure 12 (b), we utilize the COO format to store the
red vectors, providing a hybrid approach [2] that improves
overall compression efficiency. We employ three metrics,
NNZ-r, NNZ-a, and σ , to establish the boundary between the
ELLPACK format and the COO format. NNZ-r represents the
number of non-zeros in each row, NNZ-a denotes the average
non-zeros across all rows, and σ represents the standard
deviation of NNZ-r. In Figure 12 (c), we illustrate the normal
distribution of NNZ-r. Rows with NNZ-r ≤ NNZ-a + σ are
stored using the ELLPACK format, while rows with NNZ-r
> NNZ-a + σ are stored using a hybrid combination of the
ELLPACK and COO formats.

IV. SPLIM

A. Overview Architecture

Figure 13 illustrates the architecture of SPLIM, comprising
a group of processing elements (PEs), a controller (CTRL),
and input and output (I/O) interfaces. Each PE houses Row-
Clone interfaces (RC), Accumulators (ACC), and multiple
memristor arrays. The functions of RC (for ring-wise transfer),
and ACC are same as described in Section III. The memristor
arrays consist of numerous row DRVs and column DRVs. The
CTRL sends identical control signals to the row/column DRVs
of all PEs, enabling parallel processing across the memristor
arrays. Each memristor array operates in two states: memory
status and computation status. In memory status, the data for
read/write operations are stored in the column buffer (CB).
In computation status, PEs will perform in-situ calculations
introduced in Section III by applying appropriate voltages.

B. SPLIM Dataflow

To present the ELLPACK-based SpGEMM dataflow, we
assume that the two input matrices are pre-stored in the PEs
of SPLIM. We use the hybrid ELLPACK and COO formats in
Section III-C to store input matrices. We segregate the storage
of ELLPACK format and COO format in different PEs. Those
storing ELLPACK format are referred to as ELL-PEs, while
those storing COO format are called COO-PEs.

Initially, all ELL-PEs perform the in-situ vector multiplica-
tion, generating and storing intermediate results. Subsequently,
each ELL-PE transmits the vector of the right matrix to
its neighboring ELL-PE, following the two steps RowClone
illustrated in Figure 6 (c). The process is then repeated, with
all ELL-PEs performing the in-situ vector multiplication again
to generate further intermediate results. The above RowClone
operation and in-situ vector multiplication iterate until all
intermediate results are obtained. Finally, all PEs execute the
in-situ search operation to serially send the COO format of
the output matrix to the accumulator for merging, the result
of which is stored to the off-chip memory using I/O interface.

On the other hand, the COO-PEs will process these good
locality rows stored with the COO format. All ELL-PEs are

Fig. 13. SPLIM architecture

working in memory status, and the COO-PEs can access data
from the ELL-PEs. This type of random memory access does
not increase on-chip bandwidth pressure, because the involved
rows have good row locality. The calculation of the COO
format part follows the procedure introduced in Figure 5.

C. Comparison of Memory and Time Complexity

To quantitatively analyze the superiority of the proposed
computation paradigm, we configure COO/CSR/CSC-SPLIM
(short for COO-SPLIM), implementing the COOs computation
paradigm shown in Figure 5 on SPLIM. For the sake of brevity,
we assume that both the left and right matrices are randomly
distributed N ×N sparse matrices, with a standard deviation
of σ = 0. Additionally, for both the left and right matrices,
we assume that their NNZ-a = NNZ-r = K, indicating that the
ELLPACK format comprises K vectors. In real-world matrics,
N is usually million-level while K is hundred-level.

Memory complexity comparison. The memory complexity
can be divided into two parts: the storage of input matrices and
intermediate results. The output matrix, stored in the off-chip
memory with COO format, is not considered in the memory
complexity analysis. Both COO-SPLIM and SPLIM require
2NK memory space to store the compression formats of their
Val vectors, resulting in an O(N) memory complexity. Dur-
ing calculations, COO-SPLIM decompresses COO formats to
dense matrices, performing the vector multiplication between
two N ×N dense matrices and generating N ×N intermediate
results, i.e., O(N2) for intermediate results. SPLIM adopts
the ELLPACK-based computation paradigm, enabling direct
SpGEMM using the compressed ELLPACK format. In each
iteration of ELLPACK-based vector multiplication, K× PEs
generate N ×K intermediate elements, resulting in a total of
N×K2 intermediate elements for K× iterations. Thus, SPLIM
requires NK2 memory space to store the intermediate matrices,
resulting in an O(NK2) memory complexity, where N ≫ K.

Time complexity comparison. COO-SPLIM and SPLIM
differ in their computation paradigm, with COO-SPLIM
following alignment → calculation and SPLIM following
calculation → alignment, as shown in Figure 5 and Figure 8.
Let’s first consider the coordinates alignment phase. In COO-
SPLIM, the coordinates alignment requires NK ×NK search
operations, where each COO format of two input matrices
contains N×K non-zero values. Hence, the coordinates align-
ment has a time complexity of O(N2K2). Similarly, in SPLIM,
the vector multiplication generates NK2 intermediate results,
and it takes N× in-situ search iterations on these intermediate
results to generate all rows of the output matrix, resulting in
the same coordinates alignment time complexity of O(N2K2).

8

TABLE I
MATRICES FROM SUITESPARSE MATRIX COLLECTION [4], Dim. IS THE NUMBER OF ROWS/COLUMNS AND nnzav IS THE AVERAGE NUMBER OF

NON-ZERO VALUES PER ROW, σ IS THE STARDARD DEVIATION OF nnzav .

ID Matrix Plot Dim.
nnz

nnzav
σ

ID Matrix Plot Dim.
nnz

nnzav
σ

ID Matrix Plot Dim.
nnz

nnzav
σ

ID Matrix Plot Dim.
nnz

nnzav
σ

#1 pdb1
HYS

36K
4.3M

119.3
31.86 #2 rma10 47K

2.3M
49.7
27.78 #3 bcss

tk32
45K
2M

45.2
15.48 #4 ct20

stif
52K
2.6M

49.7
16.98

#5 cant 62K
4M

64.2
14.06 #6 crank

seg 2
64K
14M

222
95.88 #7 lhr71 70K

1.5M
21.3
26.32 #8 consph 83K

6M
72.1
19.08

#9 soc-sign-
epinions

132K
841K

6.4
32.95 #10 ship

sec1
141K
3.6M

25.3
11.07 #11 xenon2 157K

3.9M
24.6
4.07 #12 ohne2 181K

6.9M
37.9
21.09

#13 pwtk 218K
11.5M

52.9
4.74 #14 stan

ford
282K
2.3M

8.2
166.33 #15 cage14 1.5M

27.1M
18.0
5.37 #16 webba

se-1M
1M

3.1M
3.1

25.35

Let’s examine the vector multiplication phase. In COO-
SPLIM, one SpMV iteration in Figure 5 (c) requires N ×
N scalar multiplications. With N× SpMV iterations for
SpGEMM, the overall time complexity is O(N3). In contrast,
SPLIM’s vector multiplication in one ELLPACK iteration only
involves N ×K scalar multiplications. With K× ELLPACK
iterations to generate all intermediate matrices, the time com-
plexity in SPLIM is O(NK2). Comparing to O(N3) complexity
of COO-SPLIM, SPLIM has a lower complexity of O(NK2).

V. EVALUATION METHODOLOGY

Datasets. We assess SPLIM’s performance by conducting
A × AT computations on 16 real-world sparse matrices ob-
tained from the SuiteSparse Matrix Collection [4]. These ma-
trices represent diverse application domains, including graph
processing, scientific computing, and circuit simulation. A
comprehensive overview of these matrices is provided in
Table I, where we list their names, along with corresponding
plots, and designate them with unique matrix IDs ranging from
#1 to #16. Additionally, we furnish the number of rows (Dim.),
the count of non-zero values (nnz), the average number of nnz
per row (nnzav), and the standard deviation of nnzav (σ).

Baseline and comparison platforms. We compare SPLIM
to the NVIDIA RTX A6000 GPU, equipped with 46GB mem-
ory, 300W TDP, and running on CUDA v11.6. For the GPU
baseline, we utilize the cuSPARSE [30] library to conduct
SpGEMM computations. We also compare SPLIM with state-
of-the-art ASIC-based sparse matrix accelerator SAM [13],
using the SpGEMM kernel of their open source project.
Furthermore, we benchmark SPLIM against two contemporary
PIM and PUM-based sparse matrix multiplication accelerators:
SpaceA (PIM) [39] and ReFlip (PUM) [14]. We extract
the SpMV kernel of SpaceA and ReFlip as descripted in
their paper. Then, we extend their methodologies to support
SpGEMM through multiple SpMV iterations. The results of
SpaceA is obtained with the Ramulator-PIM [18]. ReFlip is
state-of-the-art PUM-based SpMV accelerator using the same
compression format to GraphR, so as to the same advantages
and disadvantages shown in Figure 5.

SPLIM configurations. SPLIM is configured with 32
Processing Elements (PEs) to store the column vectors of
input matrices. In cases where the number of column vectors
exceeds 32, multiple vectors are stored in a single PE. Each
PE consists of 1000 1024×1024 memristor arrays. Utilizing

TABLE II
SPLIM CONFIGURATIONS

Component Area (mm2) Power (W) Params. Spec
ELL-PE properties

ReRAM
Arrays 3.45 6.14

Bit per Cell 1
Size 1024×1024

Numbers 1000
Buffers 0.16 0.079 Size 128KB

Accumu. 0.00024 0.02 Numbers 1
PE total 3.62 6.22 Size 128.2MB

PEs 115.85 199.12 Numbers 32
Size 4.1GB

Controller 0.013 0.21 Numbers 1
SPLIM 115.85 199.34 Size 4.1GB

32 memristor cells to store one float32 number, a 1024 ×
1024 memristor array can hold 32 32-bit column vectors
(32 columns per vector). Cross-array transfers of RowClone
(Figure 6 red arrows) use the H-tree architecture [26].

Table II presents the details of one memristor array. We uti-
lize 1GHz one transistor and one memristor (1T1M) ReRAM
arrays for digital in-situ computing. For the accelerator design,
we use HSPICE for circuit-level simulations to measure the
energy consumption and performance of all the SPLIM op-
erations in 28nm technology. The area and power of on-chip
buffers and I/O interfaces are obtained using CACTI 6.5 [29].
The DRVs of memristor array is implemented using 1-bit DAC
from [34]. To evaluate SPLIM’s latency and energy consump-
tion, we modify ZSim [35] based on the mathematical proof
for PUM-based cycle-accurate simulation [41]. We use two
separate phases to obtain simulation results. In the first phase,
we use HSPICE to obtain the parameters of all peripheral
circuits. We also use CACTI 6.5 to obtain the parameters of
all on-chip buffers and I/O interfaces. In the second phase, we
use ZSim to combine all the above components together to
obtain the system-level latency and energy.

Declaration of iso-area. All non-PUM platforms [13], [39]
have two components of area, i.e., (i) on-chip logic area and
(ii) DRAM area. PUM solution [14] and SPLIM have only one
area because computation and storage are both in ReRAM (iii).
It is unfair to SPLIM if we keep (i) and (iii) the same. It is
also unfair to other comparison platforms if we keep (ii) the
same as (iii) because ReRAM has higher memory density. For
a fair comparison, we configure equal-capacity for non-PUM
platforms and iso-area for PUM platforms. Specifically, we

9

0

100

200

300

400

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16N
or

m
al

iz
ed

 S
pe

ed
up SAM SpaceA ReFlip SPLIM

Fig. 14. Performance comparison between GPU baseline, SAM, SpaceA,
ReFlip, and SPLIM (normalized to GPU)

keep the memory capacity the same as SPLIM for SAM [13]
and SpaceA [39], while using 3 ReFlip chips [14] to maintain
the same area with SPLIM.

VI. EVALUATION RESULTS

A. Performance and Energy Efficiency

We devise experiments to evaluate SPLIM’s overall per-
formance and energy efficiency in contrast to GPU baseline,
SAM [13], SpaceA [39], and ReFlip [14]. The execution time
and energy outcomes are depicted in Figure 14 and Figure 15,
respectively, with normalization to the GPU. The point-to-
point comparison and analysis are detailed below.

SPLIM vs. GPU. SPLIM demonstrates a remarkable perfor-
mance advantage over the GPU baseline, achieving an average
performance improvement of 276× and energy savings of
687× across all 16 input matrices. The superiority of SPLIM
over the GPU baseline can be attributed to several factors.
First, SPLIM effectively mitigates off-chip data movement
issues, which are recognized bottlenecks in conventional hard-
ware like GPUs [39]. Second, the utilization of the in-situ
computing platform exposes SPLIM with million-level row
parallelism. Finally, SPLIM adopts ELLPACK-based compu-
tation paradigm and in-situ search for SpGEMM, eliminating
significant random access overhead compared to GPU base-
line. The heightened energy efficiency of SPLIM, as compared
to the GPU, can be attributed to its avoidance of energy
consumption through off-chip transfer and random data access.
Additionally, SPLIM’s in-situ computing strategy substantially
reduces data transfers between the storage and computation
units, thus leading to reduced energy consumption. Finally,
SPLIM eliminate on-chip scheduler, saving lots of random
scheduling energy compared to GPU.

SPLIM vs. SAM. SPLIM demonstrates an average perfor-
mance improvement of 11.2× and energy saving of 15.4×
when compared to the state-of-the-art ASIC-based SpGEMM
accelerator, SAM [13]. As a memory-processor separated ar-
chitecture, SAM takes long latency to random access non-zero
values from the off-chip DRAM. These off-chip data transfers
significantly impede SAM performance. Second, SAM still
relies on the on-chip scheduler for coordinates alignment.
Therefore, scheduling large amount of irregular data makes
the scheduler a performance bottleneck for SAM. Conversely,
SPLIM’s exceptional performance can be attributed to two
point-to-point pivotal factors. First, SPLIM operates as a
PUM-based accelerator, negating the need for extensive off-
chip DRAM access, reducing latency and energy consumption
at the same time. Second, SPLIM adopts ELLPACK-based
computation paradigm and in-situ search rather than on-

0

200

400

600

800

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16

N
or

m
al

iz
ed

En

er
gy

 S
av

in
g

SAM SpaceA ReFlip SPLIM

Fig. 15. Energy saving comparison between GPU baseline, SAM, SpaceA,
ReFlip, and SPLIM (normalized to GPU)

chip scheduler for SpGEMM, removing the random on-chip
scheduling bottleneck with PUM-friendly in-situ operations.

SPLIM vs. SpaceA. SPLIM demonstrates an average per-
formance improvement of 19.7× and achieves energy savings
of 13.4× when compared to the PIM-based SpGEMM accel-
erator, SpaceA [39]. SPLIM outperforms SpaceA in terms of
both performance and energy efficiency, benefiting from its
PUM-based design that inherently offers enhanced computa-
tional parallelism compared to the PIM-based SpaceA. SpaceA
requires cross-bank scheduling for input matrices involving
many C/A buses conflicts and on-chip PE idleness. In con-
trast to SpaceA, SPLIM adopts PUM-friendly approaches for
intermediate result storage and processing, effectively reducing
on-chip memory access overhead. We further design ring-
wise transfer to release C/A bus conflicts. The reduction in
memory access overhead enhances both computational and
energy efficiency. The innovative utilization of in-situ search
operations for coordinate alignment further enhances SPLIM’s
efficiency, enabling exact read/write operations and mitigating
inefficient scheduling for intermediate results.

SPLIM vs. ReFlip. SPLIM showcases an average perfor-
mance improvement of 3.9× and energy savings of 2.8×
when comparing to the PUM-based accelerator ReFlip [14].
Although ReFlip also adopts PUM-based platform, it does not
fully utilize the potential of in-situ computing for the following
reasons. ReFlip employs a novel data mapping strategy for
their SpMV kernel, i.e., storing dense vectors rather than
sparse matrices to PUM platform. Their data mapping method
performs well for SpMV kernel, because the dense vectors
stored in PUM do not introduce any zeros. However, their
mapping method fails for processing SpGEMM because there
is no dense vectors any more. To this end, ReFlip suffers the
same problem as GraphR (Figure 5). First, ReFlip needs an ad-
ditional decompression phase that converts COOs format (for
storage) into a dense decompressed format (for computation).
This decompression incurs extra data read/write operations
between storage and computation formats. Furthermore, Re-
Flip conducts matrix multiplication in a decompressed dense
format, reintroducing zeros and thereby diminishing the array
utilization of the PUM platform. In contrast, SPLIM directly
employs the compressed ELLPACK format for both storage
and computation, eliminating the need for remapping and
significantly reducing data read/write operations.

B. Efficiency of Computation Paradigm

To assess the effectiveness of the proposed computation
paradigm, we establish a sister comparison platform for

10

0

200

400

600

800

1000

#1 #2 #3 #4 #5 #6 #7 #8

N
or

m
al

iz
ed

Ar

ra
y

U
til

iz
at

io
n

SPLIM over COO-SPLIM

(a)

0
2
4
6
8

10

S#
1

C
#1 S#

2
C

#2 S#
3

C
#3 S#

4
C

#4 S#
5

C
#5 S#

6
C

#6N
or

m
al

iz
ed

 E
ne

rg
y Array Leakage I/O CTRL

(b)
Fig. 16. (a) Array utilization comparison between SPLIM and COO-SPLIM,
and (b) Energy breakdown of SPLIM and COO-SPLIM, with normalization
to SPLIM’s array energy. In this context, “S#1” denotes SPLIM processing
matrix#1, and “C#1” signifies COO-SPLIM processing matrix#1.

SPLIM (Section IV-C), denoted as COO-SPLIM. While COO-
SPLIM maintains identical configurations to SPLIM, the key
distinction lies in its computation paradigm, wherein it em-
ploys the COO storage format. To mitigate storage-related
challenges stemming from decompression, we configure COO-
SPLIM to handle the input matrix in batches, thereby process-
ing individual sub-matrices sequentially.

Array utilization. We define array utilization as the ratio
of the number of valid rows to the total number of ReRAM
rows. Figure 16 (a) illustrates the array utilization comparison
between SPLIM and COO-SPLIM. SPLIM outperforms COO-
SPLIM, exhibiting an average utilization enhancement of
557×. The discernable performance disparity between SPLIM
and COO-SPLIM can be attributed to the following reasons.
COO-SPLIM adopts an additional decompression phase to
convert the COO storage format into a decompressed compu-
tation format. This decompression step involves many zeros
to the computation region, thereby introducing supplementary
invalid computations. Conversely, SPLIM directly employs the
compressed ELLPACK format for both storage and calcula-
tion, eliminating the need for remapping between different
regions. As a result, SPLIM effectively reduces introducing
zeros, leading to increase in valid computations.

Energy breakdown. Figure 16 (b) depicts the energy
breakdown of both SPLIM and COO-SPLIM. The energy
consumption is categorized into four distinct components. The
term “Array” signifies the energy expended by the memristor
arrays, while “Leakage” accounts for the energy dissipation
resulting from array current flowing into the ground (GND),
attributed to high resistance cells (‘0’). “I/O” and “CTRL”
correspond to the energy consumption of the I/O interface and
the controller, respectively. Notably, COO-SPLIM registers
higher energy consumption in “Array” due to the neces-
sity for a greater number of vector multiplication iterations,
consequently requiring more frequent activation of DRVs.
Additionally, COO-SPLIM exhibits increased leakage current
to the GND owing to the presence of numerous zeros. Both
SPLIM and COO-SPLIM demonstrate I/O and CTRL energy
consumption of less than 4%, benefiting from the good energy
efficiency of digital in-situ computing.

C. Sensitivity Study

The sparsity of the matrix and the distribution pattern of its
non-zero values influence the performance of SpGEMM. In
this context, we denote τ as the matrix’s sparsity, defined as

0

1

2

3

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16N
or

m
al

iz
ed

 S
pe

ed
up τ (SPLIM) τ/2 τ/3

Fig. 17. Performance comparison of SPLIM processing input matrices with
various sparsity (normalized to τ)

0.5

1

1.5

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16N
or

m
al

iz
ed

 S
pe

ed
up σ (SPLIM) σ/2 σ/3

Fig. 18. Performance comparison of SPLIM processing input matrices with
various standard deviation (normalized to σ)

the ratio of non-zero elements to the total number of elements
in the sparse matrix (nnz

Dim2). To gauge the distribution of non-
zero elements, we employ the standard deviation (σ) of the
non-zero elements per row. We conduct experiments aimed at
examining the impact of variations in τ and σ .

Impact of matrix sparsity τ . We configure three levels of
input matrix sparsity: τ , τ

2 , and τ

3 . The sparsity levels of τ

2 and
τ

3 are achieved by randomly removing 1
2 and 2

3 of the non-zero
elements from the sparse matrices, respectively. In Figure 17,
we depict the normalized speedup of SPLIM when processing
sparse matrices of varying sparsity. SPLIM exhibits improved
performance as matrix sparsity increases, while maintaining
the same matrix dimensions. Specifically, transitioning from
sparsity τ to τ

2 results in a 39.6% reduction in SPLIM’s
execution time. This trend can be attributed to SPLIM’s
utilization of the ELLPACK format, effectively condensing all
non-zero values. As matrix sparsity increases, the number of
ELLPACK vectors decreases, subsequently leading to fewer
iterations of vector-vector multiplications.

Impact of standard deviation σ . We vary the standard
deviation across three levels: σ , σ

2 , and σ

3 . By redistributing
non-zero elements from rows with higher nnz to rows with
lower nnz, sparse matrices are created with reduced standard
deviations of σ

2 and σ

3 . Figure 18 illustrates the normalized
speedup achieved by SPLIM when processing input matrices
with varying standard deviations. Notably, SPLIM demon-
strates heightened performance as the standard deviation di-
minishes. A decrease in standard deviation signifies a narrower
disparity in non-zero element counts among rows, leading
to a reduction in ELLPACK format zeros. The diminished
presence of zeros within the ELLPACK format contributes
to an enhanced level of array utilization within SPLIM, thus
reducing the number of iterations and latency.

D. Scalability

The scalability of SPLIM is evidenced through incremental
augmentation of processing elements (PEs), as depicted in
Figure 19. When equipped with 32 PEs, SPLIM achieves
average speedups of 3.8× and 1.8× in comparison to configu-
rations with 8 PEs and 16 PEs, respectively. This performance

11

0

100

200

300

400

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16N
or

m
al

iz
ed

 S
pe

ed
up 8-PE 16-PE 32-PE (SPLIM)

Fig. 19. Speedups comparison of different PE configurations

trend highlights SPLIM’s robust scalability, a quality primarily
attributed to the utilization of in-situ computing hardware.
The in-situ computational memory cells within SPLIM scales
proportionally with the number of PEs, leading to a significant
enhancement of computational parallelism. The inclusion of
additional PEs also facilitates a more granular partitioning
of input matrices, resulting in a more uniform distribution
of intermediate results. Importantly, SPLIM circumvents the
need for cross-PE transfer of intermediate results, rendering
it impervious to potential performance hindrances stemming
from such transfers.

VII. RELATED WORK

Conventional SpGEMM Solutions. Compared to CPU-
based solutions [9], GPUs have higher computing parallelism
and memory bandwidth, emerged as promising candidates for
SpGEMM acceleration [31], [32]. The compressed sparse row
(CSR) format has maintained its dominance as the preferred
compression scheme on GPUs. In parallel, FPGA [1], [11],
[16] and ASIC [12], [43] based SpGEMM accelerators have
emerged to address inherent latency-bound inefficiencies as-
sociated with limited sparse data reuse. However, the perfor-
mance of these conventional platforms is constrained as the
size of sparse matrices expands.

PIM and PUM Accelerators. PIM and PUM platforms are
potential eliminate off-chip transfers. While these solutions
excel in addressing bandwidth utilization and data reuse,
they grapple with issues like C/A bus conflicts and on-chip
scheduling overhead. PUM platforms advantage serves as
the bedrock for developing various accelerators catering to
applications ranging from neural networks [19], [20], [25],
[40] to graph processing [6]. While prior solutions yield re-
markable performance enhancements, they have yet to unlock
the full computational parallelism potential of PUM platforms.
This is attributed to the inherent trade-off between array-level
parallelism and hardware flexibility.

VIII. CONCLUSION

The objective of this study is to accelerate the commonly
employed SpGEMM. PUM-based platforms offer enhanced
parallelism compared to other platforms, making them a
promising candidate for accelerating SpGEMM. Neverthe-
less, attempting to accelerate unstructured SpGEMM using
structured PUM platforms results in sub-optimal performance.
To bridge this gap, we introduce SPLIM, a novel co-design
SpGEMM accelerator that utilizes PUM platforms. First, we
develop an innovative computational paradigm by transform-
ing SpGEMM into structured ELLPACK-based vector multi-
plication. Second, we introduce a search-based approach for

coordinates alignment, converting unstructured accumulation
into in-situ search. The experimental outcomes demonstrate
that SPLIM exhibits remarkable performance and energy effi-
ciency compared to state-of-the-art accelerators.

REFERENCES

[1] Z. Bai, P. Dangi, H. Li, and T. Mitra, “SWAT: Scalable and Efficient
Window Attention-based Transformers Acceleration on FPGAs,” 2024.
[Online]. Available: https://arxiv.org/abs/2405.17025

[2] S. R. Bernabeu, V. Puzyrev, M. Hanzich, and S. Fernandez, “Effi-
cient sparse matrix-vector multiplication for geophysical electromagnetic
codes on xeon phi coprocessors,” in Second EAGE Workshop on High
Performance Computing for Upstream, vol. 2015, no. 1, 2015, pp. 1–5.

[3] N. Challapalle, S. Rampalli, L. Song, N. Chandramoorthy, K. Swami-
nathan, J. Sampson, Y. Chen, and V. Narayanan, “GaaS-X: Graph
analytics accelerator supporting sparse data representation using crossbar
architectures,” in 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA), 2020, pp. 433–445.

[4] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Trans. Math. Softw., vol. 38, no. 1, 2011.

[5] S. Feng, X. He, K.-Y. Chen, L. Ke, X. Zhang, D. Blaauw, T. Mudge, and
R. Dreslinski, “MeNDA: A near-Memory Multi-Way Merge Solution for
Sparse Transposition and Dataflows,” in Proceedings of the 49th Annual
International Symposium on Computer Architecture, 2022, p. 245–258.

[6] S. A. Ghasemi, B. Jahannia, and H. Farbeh, “GraphA: An efficient
ReRAM-based architecture to accelerate large scale graph processing,”
Journal of Systems Architecture, vol. 133, p. 102755, 2022.

[7] C. Giannoula, I. Fernandez, J. G. Luna, N. Koziris, G. Goumas, and
O. Mutlu, “SparseP: Towards Efficient Sparse Matrix Vector Multipli-
cation on Real Processing-In-Memory Architectures,” Proc. ACM Meas.
Anal. Comput. Syst., vol. 6, no. 1, feb 2022.

[8] R. G. Grimes, D. R. Kincaid, and D. M. Young, ITPACK 2.0 user’s
guide. Center for Numerical Analysis, Univ., 1979.

[9] Z. Gu, J. Moreira, D. Edelsohn, and A. Azad, “Bandwidth Optimized
Parallel Algorithms for Sparse Matrix-Matrix Multiplication Using Prop-
agation Blocking,” in Proceedings of the 32nd ACM Symposium on
Parallelism in Algorithms and Architectures, 2020, p. 293–303.

[10] S. Gupta, M. Imani, and T. Rosing, “FELIX: Fast and Energy-Efficient
Logic in Memory,” in 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2018, pp. 1–7.

[11] P. Haghi, T. Geng, A. Guo, T. Wang, and M. Herbordt, “FP-
AMG: FPGA-Based Acceleration Framework for Algebraic Multigrid
Solvers,” in 2020 IEEE 28th Annual International Symposium on Field-
Programmable Custom Computing Machines, 2020, pp. 148–156.

[12] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. Emer, and C. W. Fletcher, “ExTensor: An Acceler-
ator for Sparse Tensor Algebra,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, p.
319–333.

[13] O. Hsu, M. Strange, R. Sharma, J. Won, K. Olukotun, J. S. Emer,
M. A. Horowitz, and F. Kjølstad, “The Sparse Abstract Machine,” in
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3,
2023, p. 710–726.

[14] Y. Huang, L. Zheng, P. Yao, Q. Wang, X. Liao, H. Jin, and J. Xue,
“Accelerating Graph Convolutional Networks Using Crossbar-based
Processing-In-Memory Architectures,” in 2022 IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA), 2022, pp.
1029–1042.

[15] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “FloatPIM: In-Memory
Acceleration of Deep Neural Network Training with High Precision,”
in Proceedings of the 46th International Symposium on Computer
Architecture, 2019, p. 802–815.

[16] E. Jamro, T. Pabiś, P. Russek, and K. Wiatr, “The algorithms for
FPGA implementation of sparse matrices multiplication,” Computing
and Informatics, vol. 33, no. 3, pp. 667–684, 2014.

[17] H. Jun, J. Cho, K. Lee, H.-Y. Son, K. Kim, H. Jin, and K. Kim, “HBM
(high bandwidth memory) DRAM technology and architecture,” in 2017
IEEE International Memory Workshop (IMW), 2017, pp. 1–4.

[18] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible
DRAM Simulator,” IEEE Computer Architecture Letters, vol. 15, no. 1,
pp. 45–49, 2016.

[19] H. Li, D. Chen, and T. Mitra, “SADIMM: Accelerating Sparse Attention
using DIMM-based Near-memory Processing,” IEEE Transactions on
Computers, pp. 1–12, 2024.

https://arxiv.org/abs/2405.17025

12

[20] H. Li, H. Jin, L. Zheng, Y. Huang, X. Liao, D. Chen, Z. Duan, C. Liu,
J. Xu, and C. Gui, “CPSAA: Accelerating Sparse Attention using
Crossbar-based Processing-In-Memory Architecture,” arXiv preprint
arXiv:2210.06696, 2022. [Online]. Available: https://arxiv.org/abs/2210.
06696

[21] H. Li, H. Jin, L. Zheng, Y. Huang, X. Liao, Z. Duan, D. Chen,
and C. Gui, “ReSMA: accelerating approximate string matching using
ReRAM-based content addressable memory,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference, 2022, p. 991–996.

[22] H. Li, H. Jin, L. Zheng, and X. Liao, “ReSQM: Accelerating database
operations using ReRAM-based content addressable memory,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 11, pp. 4030–4041, 2020.

[23] H. Li, Z. Li, Z. Bai, and T. Mitra, “ASADI: Accelerating Sparse
Attention Using Diagonal-based In-Situ Computing,” in 2024 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2024, pp. 774–787.

[24] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A
Processing-in-Memory Architecture for Bulk Bitwise Operations in
Emerging Non-Volatile Memories,” in Proceedings of the 53rd Annual
Design Automation Conference, 2016.

[25] C. Liu, H. Liu, H. Jin, X. Liao, Y. Zhang, Z. Duan, J. Xu, and
H. Li, “ReGNN: a ReRAM-based heterogeneous architecture for general
graph neural networks,” in Proceedings of the 59th ACM/IEEE Design
Automation Conference, 2022, p. 469–474.

[26] F. Liu, W. Zhao, Y. Chen, Z. Wang, Z. He, R. Yang, Q. Tang, T. Yang,
C. Zhuo, and L. Jiang, “PIM-DH: ReRAM-based processing-in-memory
architecture for deep hashing acceleration,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference, 2022, p. 1087–1092.

[27] L. Lu, Y. Jin, H. Bi, Z. Luo, P. Li, T. Wang, and Y. Liang, “Sanger: A Co-
Design Framework for Enabling Sparse Attention Using Reconfigurable
Architecture,” in MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, 2021, p. 977–991.

[28] B. Lyu, M. Hamdi, Y. Yang, Y. Cao, Z. Yan, K. Li, S. Wen, and
T. Huang, “Efficient Spectral Graph Convolutional Network Deployment
on Memristive Crossbars,” IEEE Transactions on Emerging Topics in
Computational Intelligence, vol. 7, no. 2, pp. 415–425, 2023.

[29] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0:
A tool to model large caches,” HP laboratories, vol. 27, p. 28, 2009.

[30] M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi, “Cusparse
library,” in GPU Technology Conference, 2010.

[31] Y. Niu, Z. Lu, H. Ji, S. Song, Z. Jin, and W. Liu, “TileSpGEMM: A Tiled
Algorithm for Parallel Sparse General Matrix-Matrix Multiplication on
GPUs,” in Proceedings of the 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2022, p. 90–106.

[32] M. Parger, M. Winter, D. Mlakar, and M. Steinberger, “SpECK: Accel-
erating GPU Sparse Matrix-Matrix Multiplication through Lightweight
Analysis,” in Proceedings of the 25th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2020, p. 362–375.

[33] S. Park, J.-J. Kim, and J. Kung, “AutoRelax: HW-SW Co-Optimization
for Efficient SpGEMM Operations With Automated Relaxation in
Deep Learning,” IEEE Transactions on Emerging Topics in Computing,
vol. 10, no. 3, pp. 1428–1442, 2022.

[34] M. Saberi, R. Lotfi, K. Mafinezhad, and W. A. Serdijn, “Analysis of
power consumption and linearity in capacitive digital-to-analog convert-
ers used in successive approximation ADCs,” IEEE Transactions on
Circuits and Systems I, vol. 58, no. 8, pp. 1736–1748, 2011.

[35] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchi-
tectural Simulation of Thousand-Core Systems,” in Proceedings of the
40th Annual International Symposium on Computer Architecture, 2013,
p. 475–486.

[36] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhi-
menko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C.
Mowry, “RowClone: Fast and Energy-Efficient in-DRAM Bulk Data
Copy and Initialization,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, 2013, p. 185–197.

[37] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, “ISAAC: A Con-
volutional Neural Network Accelerator with in-Situ Analog Arithmetic
in Crossbars,” in Proceedings of the 43rd International Symposium on
Computer Architecture, 2016, p. 14–26.

[38] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “GraphR: Accelerating
graph processing using ReRAM,” in 2018 IEEE International Sympo-
sium on High Performance Computer Architecture, 2018, pp. 531–543.

[39] X. Xie, Z. Liang, P. Gu, A. Basak, L. Deng, L. Liang, X. Hu, and
Y. Xie, “SpaceA: Sparse Matrix Vector Multiplication on Processing-in-

Memory Accelerator,” in 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2021, pp. 570–583.

[40] J. Xu, H. Liu, Z. Duan, X. Liao, H. Jin, X. Yang, H. Li, C. Liu, F. Mao,
and Y. Zhang, “ReHarvest: An ADC Resource-Harvesting Crossbar
Architecture for ReRAM-Based DNN Accelerators,” ACM Trans. Archit.
Code Optim., vol. 21, no. 3, Sep. 2024.

[41] L. Yavits, A. Morad, and R. Ginosar, “Computer Architecture with As-
sociative Processor Replacing Last-Level Cache and SIMD Accelerator,”
IEEE Transactions on Computers, vol. 64, no. 2, pp. 368–381, 2015.

[42] G. Zhang, N. Attaluri, J. S. Emer, and D. Sanchez, “Gamma: Leveraging
Gustavson’s Algorithm to Accelerate Sparse Matrix Multiplication,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, p.
687–701.

[43] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “SpArch: Efficient Archi-
tecture for Sparse Matrix Multiplication,” in 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2020,
pp. 261–274.

[44] M. Zhou, W. Xu, J. Kang, and T. Rosing, “TransPIM: A Memory-
based Acceleration via Software-Hardware Co-Design for Transformer,”
in Proceedings of 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2022, pp. 1071–1085.

Hui-Ze Li received his Ph.D. degree from the
School of Computer Science and Technology,
Huazhong University of Science and Technology
(HUST), in 2022. He is now working as a Research
Fellow in School of Computing, National University
of Singapore (NUS). His current research interests
include computer architecture, emerging non-volatile
memory, and processing in memory.

Dan Chen received the Ph.D. degree from the
School of Computer Science and Technology,
Huazhong University of Science and Technology
(HUST), in 2024. He is now working as a Research
Fellow in School of Computing, National University
of Singapore (NUS). His research interests focus on
processing-in-memory and graph neural network.

Tulika Mitra received a BE degree in computer
science from Jadavpur University, Kolkata, India,
in 1995, an ME degree in computer science from
the Indian Institute of Science, Bengaluru, India,
in 1997, and a Ph.D. degree from the State Uni-
versity of New York, Stony Brook, NY, USA, in
2000. She is currently Provost’s Chair Professor
of Computer Science at the School of Computing,
National University of Singapore, Singapore. Her
research interests include the design automation of
embedded realtime systems with particular emphasis

on software timing analysis/optimizations, application-specific processors,
energy-efficient computing, and heterogeneous computing.

https://arxiv.org/abs/2210.06696
https://arxiv.org/abs/2210.06696

	Introduction
	Background and Motivation
	Sparse Matrix-matrix Multiplication
	In-situ Computing
	Motivation

	Structured In-situ SpGEMM
	ELLPACK-based Computation Paradigm (ECP)
	In-situ Search for Accumulation
	Hybrid ELLPACK and COO Format

	SPLIM
	Overview Architecture
	SPLIM Dataflow
	Comparison of Memory and Time Complexity

	Evaluation Methodology
	Evaluation Results
	Performance and Energy Efficiency
	Efficiency of Computation Paradigm
	Sensitivity Study
	Scalability

	Related Work
	Conclusion
	References
	Biographies
	Hui-Ze Li
	Dan Chen
	Tulika Mitra

