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Abstract—Self-attention mechanism is the performance bot-
tleneck of Transformer based language models. In response, re-
searchers have proposed sparse attention to expedite Transformer
execution. However, sparse attention involves massive random
access, rendering it as a memory-intensive kernel. Memory-based
architectures, such as near-memory processing (NMP), demon-
strate notable performance enhancements in memory-intensive
applications. Nonetheless, existing NMP-based sparse attention
accelerators face suboptimal performance due to hardware and
software challenges. On the hardware front, current solutions
employ homogeneous logic integration, struggling to support
the diverse operations in sparse attention. On the software
side, token-based dataflow is commonly adopted, leading to load
imbalance after the pruning of weakly connected tokens.

To address these challenges, this paper introduces SADIMM,
a hardware-software co-designed NMP-based sparse attention
accelerator. In hardware, we propose a heterogeneous integration
approach to efficiently support various operations within the at-
tention mechanism. This involves employing different logic units
for different operations, thereby improving hardware efficiency.
In software, we implement a dimension-based dataflow, dividing
input sequences by model dimensions. This approach achieves
load balancing after the pruning of weakly connected tokens.
Compared to NVIDIA RTX A6000 GPU, the experimental results
on BERT, BART, and GPT-2 models demonstrate that SADIMM
achieves 48×, 35×, 37× speedups and 194×, 202×, 191× energy
efficiency improvement, respectively.

Index Terms—Near-memory processing, Sparse attention ac-
celerator, DRAM architecture, Software-hardware co-design.

I. INTRODUCTION

Transformer-based [35] neural network models can enhance
the accuracy of diverse machine learning inference, such as
natural language processing (NLP) [3], [8] and computer
vision (CV) [1], [10]. The accuracy enhancement is primarily
attributed to the self-attention mechanism, facilitating the
capture of long-term dependencies among input tokens [35].
However, these advantages come at the expense of high
computational complexity to calculate the full connections
among all tokens. In response to this challenge, researchers
have introduced sparse attention by pruning weakly connected
tokens, thereby mitigating computational complexity with a
slight reduction of accuracy [30]. Nevertheless, the random
distribution of non-zero values introduces additional memory
access overhead, which in turn constrains system performance.
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Recently, there has been a growing interest in hardware-
software co-design solutions aimed at mitigating random
memory access. These solutions encompass diverse platforms,
including GPU [3], [8], Field Programmable Gate Array
(FPGA) [2], [41], and Application Specific Integrated Circuit
(ASIC) [23], [30]. These co-design approaches outperform
software-only solutions by implementing hardware-friendly
scheduling and computation techniques, thereby enhancing
both access and computational efficiency. Nonetheless, these
computation-centric solutions still face the constraint of off-
chip memory bandwidth when accelerating memory-intensive
sparse attention, leading to long latency off-chip access of a
substantial number of intermediate results [9].

Memory-based acceleration, which includes processing in
memory (PIM) and near memory processing (NMP), holds
promise for enhancing memory-intensive applications [27]. By
integrating processing elements (PEs) in memory or utilizing
the computational ability of memory, researchers propose vari-
ous NMP [9], [43] and PIM-based [18], [19], [42] accelerators
for attention mechanism. This paper focuses on the Dual
In-line Memory Module (DIMM)-based NMP platform [33],
which integrates PEs into commercial dynamic random access
memory (DRAM), compatible with current main memory
fabrication process while obtaining substantial parallelism and
bandwidth. DIMM-based NMP platforms, renowned for their
excellent performance, find widespread use in accelerating
graph mining [5], [34] and recommendation systems [22],
[28]. Despite their advantages, current DIMM-based NMP
sparse attention accelerators face suboptimal performance due
to hardware and software challenges.

In hardware, contemporary solutions employ homogeneous
logic integration, struggling to support the diverse operations
in sparse attention. Existing NMP-based attention accelerators
assume uniform hardware resource demands for all operations
within sparse attention. Consequently, they integrate identical
processing elements (PEs) in different DIMM locations to
support these operations. In practice, operations within sparse
attention exhibit distinct computational and memory access
requirements. A homogeneous architecture fails to address the
varied access and computation needs of diverse operations
in sparse attention, leading to PE idleness and diminished
hardware efficiency (details in Section III-A).

In software, token-based dataflow is commonly adopted in
memory-based accelerators, leading to load imbalance after
the pruning of weakly connected tokens. To minimize cross-
layer data transmission, contemporary NMP-based attention
accelerators [9], [19], [43] adopt a token-based dataflow. Their
approach divide input sequences by tokens and store distinct
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Fig. 1. (a) Multi-head attention, (b) SDDMM and SpMM

token shards in different banks. Token-based dataflow can
reuse data cross different layers, thus are efficient in pro-
cessing the vanilla attention, which calculates full connections
among tokens [43]. However, token-based dataflow encounters
challenges with sparse attention due to the irregular pruning
of numerous weakly connected tokens. The irregular pruning
leads to a significant load imbalance problem, as a substantial
number of banks storing weakly connected tokens become idle
(refer to details in Section III-B).

Given the current landscape, we present SADIMM, an
innovative hardware-software co-designed NMP-based sparse
attention accelerator for model inference. In hardware,
SADIMM employs heterogeneous NMP architectures by in-
tegrating distinct logic units across different hierarchies of
DIMM. Subsequently, different logic units are assigned to
support corresponding operations, enhancing overall hardware
efficiency. In software, SADIMM adopts a dimension-based
dataflow, partitioning input sequences based on model dimen-
sions. By storing identical dimensions of all tokens in the
same memory bank, SADIMM can efficiently support sparse
attention with balanced loads. Our contributions are as follows:

• We analyze current NMP-based sparse attention accel-
erators and we find that they mainly face hardware
inefficiency and software load imbalance challenges.

• To improve hardware efficiency, we propose heteroge-
neous NMP, integrating different logic units within the
memory hierarchy to support various operations.

• To address the issue of load imbalance, we propose
dimension-based dataflow, dividing and storing input se-
quences by model dimensions to avoid PE idleness.

• The experimental results show that SADIMM achieves
156.5× (AMD Ryzen CPU), 39.6× (RTX A6000 GPU),
12.2× (ASIC-based Sanger [23]), 4.7× (NMP-based
TRiM-B [28]), and 2.8× (NMP-based HAIMA [9])
speedups when comparing to modern solutions.

II. BACKGROUND

A. Basics of Attention Mechanism

Transformer-based neural network models comprise mul-
tiple layers of Encoders and Decoders, with each Encoder
and Decoder is structured with multi-head attention and full
connected (FC) layers. Figure 1 (a) illustrates the computation
of multi-head attention. Initially, the input sequence with n
tokens is embedded into a matrix I ∈ Rn×d , where n denotes
the sequence length and d represents the model dimension,
i.e., number of features contained in each token. Subsequently,

Fig. 2. DRAM-based main memory hierarchy

matrix I undergoes a General Matrix Multiplication (GEMM)
operation (time complexity of O(nd2)) with three weight
matrices, WQ, WK , and WV , to obtain matrices Q (query), K
(key), and V (value). Following this, matrix Q will undergo
another GEMM operation (O(dn2)) with the transpose of
matrix K (KT), yielding the attention score matrix S̃ ∈ Rn×n.
Subsequently, a row-wise softmax function is applied to matrix
S̃ to produce matrix S, which denotes the normalized proba-
bility. Finally, matrix S is subjected to a GEMM operation
(O(dn2)) with matrix V , yielding the output matrix Z.

Both GEMM operations, Q×KT and S×V , exhibit com-
putational complexity of O(dn2), which poses challenges
for vanilla attention when applied to longer sequences. Re-
searchers observed that many tokens are weakly connected
to others. Pruning these weak connections via low-precision
quantization can generate sparse mask matrix to reduce com-
putational complexity [23], [30]. With the sparse mask ma-
trix, the GEMM operation Q×KT is converted into Sample
Dense-Dense Matrix Multiplication (SDDMM). Similarly, the
GEMM operation S ×V is transformed into Sparse-dense
Matrix Multiplication (SpMM). Figure 1 (b) provides an
example of SDDMM, taking two dense matrices, Q and K,
and one sparse mask matrix M as inputs to generate the sparse
matrix S. Figure 1 (b) also illustrates an example of SpMM,
which takes the sparse S and dense V matrices as inputs to
generate a dense output matrix Z.

B. Basics of DRAM and Near-DRAM Processing

As shown in Figure 2, DRAM-based main memory sys-
tems [14] exhibit a hierarchical structure, encompassing chan-
nels, ranks, bank-groups, and banks. At the apex of this
hierarchy is the memory channel (depth-0), which includes a
primary host memory controller (MC) and multiple secondary
DRAM ranks (depth-1) connected via a DQ (data) path to the
buffer chip. Each rank comprises eight DRAM chips, operating
in an 8-bit lockstep manner to provide 64-bit width [14]. In
DDR5 DRAM [14], a DRAM chip consists of eight bank-
groups (depth-2), each housing four banks (depth-3). Each
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Fig. 3. (a) The ratio of memory access latency for various operations, and
(b) The ratio of memory access latency for different configurations of NMP

memory bank contains multiple memory arrays to store data.
Uniform Command/Address (C/A) signals are broadcasted to
all DRAM chips, dictating their operations. Similar to the
depth-1 DQ path, the depth-2 and depth-3 DQ paths are
shared between a rank and eight bank-groups, and between
a bank-group and four banks, respectively. While all banks
in a DRAM chip operate independently, only one bank can
utilize depth-1/2/3 data paths simultaneously.

Due to DRAM’s hierarchical architecture, only one rank
can utilize the DQ path between the MC and the rank at a
time. However, if a processing element (PE) is integrated into
the buffer chip, the depth-0 path between the MC and the
buffer chip remains underutilized during computations. Con-
sequently, all ranks can concurrently transfer data to connected
PEs in buffer chips, thereby enhancing overall bandwidth.
Similarly, placing a PE near the bank-group/bank can obviate
the use of depth-1/2 path during computations, leading to even
more bandwidth gains.

TRiM [28] provides three configurations of NMP archi-
tecture, i.e., TRiM-R, TRiM-G, and TRiM-B. TRiM-R/G/B
represent integreting logical units within the rank, rank &
bank-group, rank & bank-group & bank, respectively. TRiM-
R costs the minimal area overhead with the minimal band-
width and computational parallelism, which is suitable for
applications where the access overhead is much higher than
the computational overhead. TRiM-B has the largest area
overhead and integration costs with the biggest bandwidth and
computational parallelism, which is suitable for applications
requiring both high bandwidth and high parallelism. Current
HBM-based TransPIM [43] supports reduction with ring-wise
broadcast, which transfers data between banks and introduces
many cross-bank transmissions.

III. MOTIVATION ANALYSIS

A. Diverse Operations vs. Homogeneous PEs

Observation#1: Sparse attention encompasses diverse op-
erations, each characterized by unique computational and
memory access demands. Existing DIMM-based NMP solu-
tions employ uniform logic units across ranks, bank-groups,
and banks. Employing a homogeneous NMP architecture to
accommodate the varied operations in sparse attention results
in the inefficiency of hardware resources.

Variations in operations and their differing access
requirements. In assessing the access demands of distinct
operations, we focus on three primary operations within sparse
attention: sparse matrix multiplication, reduction, and softmax.
The generation of sparse mask matrices employs the pruning
algorithm of Sanger [23]. Our experimentation involves the

execution of five datasets [36], i.e., cola, mnli, mrpc, rte, and
squad, on a DIMM-based NMP accelerator, maintaining con-
sistent configurations with TRiM-G [28]. We also configure a
softmax unit in each NMP PE. The detailed methodology is
shown in Section VI. Figure 3 (a) illustrates the proportion of
memory access latency to the total latency for the identified
operations. The latency caused by memory access means the
average PEs’ stall time since waiting for data. Assuming we
have N PEs and the overall latency of the NMP accelerator
is T . The execution time and stall time of PEi is ti and si
(T = si+ ti), respectively. The average stall ratio for all PEs is
∑

N
i=1 si
NT . Notably, sparse matrix multiplication incurs over 40%

memory access latency, primarily attributed to the substantial
random accesses involved in sparse matrices. Conversely,
reduction and softmax operations exhibit lower memory access
latency percentages, approximately 10% and 5%, respectively,
as these operations do not necessitate extensive access to
sparse matrices.

Impact of NMP configuration on parallelism and band-
width. To evaluate the influence of varied NMP configurations,
we set up three DIMM-based NMP hardware in alignment
with TRiM [28], namely TRiM-R, TRiM-G, and TRiM-
B. In Figure 3 (b), we present the proportion of memory
access latency to the total latency in sparse attention. Notably,
TRiM-B exhibits a reduced percentage of memory access
latency compared to TRiM-R, attributed to enhanced band-
width achieved by avoiding the depth-1/2 DQ paths. Beyond
bandwidth variations, distinct computational parallelism is ev-
ident. Specifically, near-bank NMP incorporates a compact PE
area within each bank, making it adept at parallel processing
small data batches. Conversely, near-rank NMP integrates
more expansive PEs within buffer chip, providing heightened
computing capability for processing aggregated data.

Challenges in utilizing current DIMM-based NMP plat-
forms for sparse attention. DIMM-based NMP platforms are
widely applied in graph mining [5], [34] and recommenda-
tion systems [22], [28]. Graph mining accelerators primarily
focus on sparse matrix-vector multiplication (SpMV), while
recommendation system accelerators center around gather and
reduction (GnR). SpMV or GnR relies on a single core
operation and, as a result, follow a uniform memory access
pattern. For example, TRiM, a well-known GnR accelerator,
performs gather-and-reduction operations to extract hundreds
of elements from billions. After completing the reduction,
TRiM uses the same PE to execute SpMV operations on the
reduced set of elements. Since the SpMV kernel requires mini-
mal computation, a homogeneous PE with a consistent access
pattern suffices to handle the task efficiently. Consequently,
existing DIMM-based NMP solutions are homogeneously in-
tegrated to align with their specific core operations. In contrast,
sparse attention workloads involve a variety of core operations,
which demand greater computational resources and exhibit
diverse memory access patterns, as analyzed in Observation#1.

Applying current DIMM-based NMP accelerators to sup-
port the varied operations in sparse attention introduces two
inherent challenges. First, equitably distributing tasks to near-
memory PEs amplifies access overhead. Compared to near-
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Fig. 4. Token-based [43] sparse attention dataflow causes load imbalance problems.

rank PEs, near-bank PEs are in closer proximity to the memory
array, resulting in lower access latency to the data stored in
memory banks. Conversely, near-rank PEs, being closer to the
memory controller, are better suited for aggregating interme-
diate results. Assigning access-demanding operations to near-
rank PEs introduces more access overheads than near-bank
PEs. Secondly, homogeneous integration leads to increased
area overhead and diminished energy efficiency. NMP-based
platforms are designed to off-load memory-intensive atomic
operations to memory. Therefore, a large number of PEs may
only need to support a small number of atomic operations.
Integrating more powerful PEs equally to support diverse
operations may render some logic units unused, which will
waste area and reduce energy efficiency.

B. Regular Mapping vs. Irregular Pruning

Observation#2: To mitigate cross-layer data transfers, con-
temporary NMP-based attention accelerators adopt a token-
based dataflow, evenly distributing input tokens across differ-
ent banks. However, the adoption of sparse attention, aimed
at reducing computational complexity by randomly pruning
weakly connected tokens, introduces challenges related to load
imbalance and idle PEs.

Layer-based dataflow. In pursuit of enhanced parallelism,
prevalent NMP-based deep neural network (DNN) accelera-
tors [13] employ a layer-based dataflow, allocating sufficient
memory resources to parallelize computations for different
output elements in a layer. This approach dedicates significant
memory resources to concurrently process computations for
distinct outputs within a layer, requiring the complete loading
of data before processing each layer. However, as indicated by
prior research [43], approximately 60% of the execution time
is consumed by data movement in the layer-based dataflow.
The prolonged data movement time stems from two primary
factors [43]. First, for optimal parallelism, the layer-based
dataflow necessitates data duplication in memory for parallel
computations, leading to an increased volume of loaded data.
Second, many parallel data layouts overlook the exploitation
of data reuse between adjacent layers, compelling the loading
of all data for attention layers.

Token-based dataflow. To mitigate substantial cross-layer
data transmissions, contemporary NMP-based attention accel-
erators [9], [19], [20], [43] adopt a token-based dataflow. This
strategy involves partitioning input tokens into different shards
and assigning these shards to distinct memory banks. Dur-
ing attention computation, each memory bank independently
processes its associated token shard across various layers.
Due to the significantly enhanced data reuse across layers,
token-based dataflow reduces much of the data movement
overhead in comparison to layer-based dataflow. Figure 4
illustrates an instance of token-based dataflow in sparse atten-
tion, containing full connected (FC) layer, SDDMM operation
with S = Q × KT, row-wise softmax, and SpMM operation
with Z = S×V . The SDDMM and SpMM operations in this
example correspond to those in Figure 1 (b). Specifically,
L=D=N = 3, where L represents sequence length, D denotes
model dimension, and N signifies the number of banks. All
matrices are token-divided, with row vectors depicted at the
top of Figure 4.

Irregular pruning and load imbalance. In step 1 , each
bank accommodates L

N tokens, each represented as a vector
with D dimensions. The GEMM operations in FC layers
produce three L

N ×D sub-matrices in each bank, denoted as
Qi, Ki, and Vi (1 ≤ i ≤ N). Progressing to step 2 , each bank
initiates the matrix multiplication Sii = Qi×KT

i . Subsequently,
a ring-wise token transfers convey Ki to bank j for computing
S ji = Q j ×KT

i ( j = i+1 in our example). Some banks experi-
ence idleness due to token pruning via sparse mask matrices,
such as bank1 with weakly connected tokens Q2 and K2. Step
3 involves row-wise softmax with the matrix S. Finally, in
step 4 , the SpMM operation Z = S×V will also introduce
PE idleness, which is caused by the random distribution of a
large number of non-zeros in matrix S. The irregular pruning
of weak connected tokens in sparse attention leads to varying
sparse patterns with strong randomness, making it challenging
to address load imbalance using an on-chip scheduler [23] due
to the significant random scheduling overhead it introduces.

C. Key Ideas of SADIMM

Hardware acceleration: To effectively accommodate
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Fig. 5. (a) Overall architecture of SADIMM, (b) Near-rank NMP architecture, (c) Near bank-group NMP architecture, (d) Near-bank NMP architecture, and
(e) Architecture of softmax unit

the diverse operations within sparse attention mechanism,
SADIMM introduces subtle enhancements to the conventional
DIMM architecture, enabling the acceleration of multiple op-
erations inherent to sparse attention. Specifically, a heteroge-
neous integration strategy is employed, incorporating diverse
logic units into the memory hierarchy, i.e., near-rank PEs, near
bank-group PEs, and near-bank PEs. These logic units are then
allocated to specific operations based on their unique access
requirements (as analysed in Section III-A). Significantly, this
heterogeneous integration approach not only optimizes area
utilization but also enhances energy efficiency.

Dataflow: SADIMM employs an innovative dataflow
paradigm that aligns sparse attention computation with a
memory-based architecture using a dimension-based sharding
mechanism. This approach entails partitioning input sequences
based on model dimensions and assigning these dimensions
to distinct memory partitions. Throughout acceleration, each
memory partition independently processes its associated di-
mension shard across different layers. Observation#2 empha-
sizes that token-based dataflow introduces load imbalance to
sparse attention, resulting in significant random scheduling
overhead to balance loads. In contrast, the dimension-based
dataflow facilitates a load-balanced distribution in memory
banks after irregular pruning.

IV. SADIMM HARDWARE ACCELERATION

A. Overall Architecture

The overall architecture of SADIMM is depicted in Figure 5
(a). Derived from the commercial Load-Reduced DIMMs
(LRDIMM) [14], we implement specific modifications to
enhance its compatibility with diverse operations in sparse
attention mechanism. The integration encompasses three types
of NMP: near-rank PEs, near bank-group PEs, and near-
bank PEs. The buffer chip incorporates two near-rank PEs
responsible for handling input/output data to/from two ranks.
Each bank-group in the rank pairs with one PE to facilitate
near bank-group NMP, ensuring bandwidth gains at the bank-
group level. All banks within the bank-group integrate with
PEs to maximize bank-level bandwidth. Each near-bank PE
operates in two access modes for obtaining data from all
banks: local access and global access. Local access denotes
a near-bank PE accessing its integrated memory bank, such
as PEi accessing banki. Global access signifies that PE0 is
requesting data from banks other than bank0. The latency
of global access is notably higher than local access due to
additional broadcasts [43]. Importantly, the modified DIMM

retains the capability to function as a conventional main mem-
ory device by preserving all conventional interfaces. To utilize
the advantages of DRAM’s lockstep access, we configure the
host processor to access one token at a time.

As depicted in Figure 1 and detailed in Section III-A, sparse
attention contains three fundamental operations: sparse matrix
multiplication, reduction, and softmax. These operations entail
three operators, i.e., multiplication, addition, and exponentia-
tion. Consequently, the integration of SADIMM necessitates
the inclusion of multipliers, adders, and exponential lookup
tables. The critical consideration is determining where these
logic units should be integrated to satisfy the varied demands
of different operations. Figure 3 (a) presents the access char-
acteristics of diverse operations. Specifically, sparse matrix
multiplication has the highest memory access requirements,
suggesting that utilizing near-bank PEs for processing matrix
multiplication incurs minimal access overhead. Conversely,
the reduction operation involves summing up intermediate
results produced by each bank, which does not involve random
memory access. To fully leverage the hierarchy of DIMM,
transferring intermediate results from each bank to a bank-
group and processing them with near bank-group PEs is
optimal. The rank-level PE, situated at the memory’s root,
is also well-suited for processing the reduction operation.
The above configuration will generate intermediate results in
banks and bank-groups. The rank-level NMP will accumulate
these intermediate results to generate S matrix. To avoid data
transfers, we integrate a softmax unit in the near-rank PE.

B. Integration Details
Rank-level NMP. The hardware configuration of the rank-

level NMP in SADIMM is depicted in Figure 5 (b). We inte-
grate a DDR PHY and protocol engine, mirroring the design
of a conventional DIMM buffer chip that relays the DRAM
Command/Address (C/A) and Data (DQ) signals to and from
the host-side memory controller. Central to this architecture is
the First-In-First-Out (FIFO) instruction queue, responsible for
receiving instructions from the host-side memory controller.
These instructions are subsequently parsed to access data and
control the near-rank PEs. Given the near-rank PE’s primary
role in reduction and softmax operations, the rank-level NMP
includes 32-bit floating-point accumulators and a softmax unit.
The input/output (16B/32B) buffer efficiently manages the
reception and storage of data from/to all bank-groups in the
ranks, respectively. In line with ReCross [22], a 2-bit flag
nmp level = 01 distinguishes which instructions should be
executed by the near-rank NMP.
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Fig. 6. The instruction format of SADIMM

Bank-group level NMP. As shown in Figure 5 (c), the
near bank-group NMP configuration mirrors the near-rank
NMP in its task of performing the reduction operation. Hence,
SADIMM integrates 32-bit floating-point accumulators within
each bank-group to aggregate data from different banks. We
configure 16B input buffer and 32B output buffer for each PE.
Each NMP instruction necessitates the bank-group level FIFO
instruction queue to determine whether it pertains to itself or
a bank-level NMP. This determination is facilitated by a 2-bit
flag nmp level= 10. If the instruction belongs to the bank-
group itself, it is decoded and directly accessed; otherwise, it is
routed to the bank-level NMP. The input buffer is responsible
for receiving data from the memory banks, while the output
buffer transmits data to the near-rank NMP.

Bank-level NMP. Figure 5 (d) illustrates the near-bank
NMP architecture. The FIFO instruction queue is designed to
receive and store the C/A signals. Subsequently, the instruc-
tion decoder parses these instructions, extracting the memory
address. In response, the memory arrays’ row decoder will
read the data located at the specified address into the row
buffer. Then, the column decoder of memory arrays will read
the corresponding data out. For sparse matrix multiplication, a
32-bit floating-point multiplier near the memory bank is incor-
porated. This multiplier efficiently accesses the row buffer with
lower latency. Additionally, each near-bank NMP exclusively
processes data associated with its designated dimension shards.

Softmax PE. Within the rank-level NMP, a dedicated
softmax PE is incorporated to execute the row-wise softmax
operation so f tmax(si) =

esi−smax

∑
n
c=1 esc−smax , as illustrated in Figure 5

(e). The softmax unit adheres to the design principles of
A3 [12], with a distinctive partitioning of the exponential
lookup table into upper and lower halves to manage the size
of the lookup table more effectively.

C. NMP Instruction and C/A Bandwidth

Similar to RecNMP [16] and ReCross [22], SADIMM
employs instruction compression, condensing signals, tags,
and relevant details into an 82-bit instruction. Each component
is delineated below. As shown in Figure 6, the 1-bit D mode

indicates the memory working on DRAM mode or NMP mode.
The 2-bit nmp level field determines whether an instruction
is executed by the host, near-rank NMP, near bank-group NMP,
or near-bank NMP. This classification is generated by the host-
side memory controller based on operation types. The 3-bit
op redu field designates a reduction operation, encompassing
summation and vectors’ aggregation. The 3-bit DDR CMD
field signifies DDR commands (ACT, RD, and PRE). The
34-bit addr field denotes the physical address of the target
matrices’ row vectors. The 3-bit row size field indicates
the row vector size and DRAM reads per row vector. The

32-bit mat mul field represents the floating-point data for
matrix multiplication. The redu tag identifies if row vectors
belonging to the same reduction operation are identically set,
ensuring aggregation of only relevant data. The batch end

indicates the batch’s end, with the last instruction setting it
to 1, signaling that reduced results can be transferred to the
host. For main memory consistency, all data sent to the host
is written back to memory banks. The left 2-bits are reserved
for the future use.

To alleviate potential PE stalling caused by delayed C/A
signals, our objective is to establish an optimal scenario
wherein an NMP instruction is transferred before its predeces-
sor is completed. This approach synchronizes the instruction
transfer time with the access time of the matrices’ vectors,
which is directly proportional to the vector length. To achieve
above goals, akin to the strategy employed in TRiM [28],
we implement a two-stage instruction transfer technique. This
method utilizes both the DQ and C/A pins to transfer NMP
instructions from the memory controller to the DRAM buffer
chip. During matrix multiplication, where matrices’ vectors
are stored in PEs without occupying the DQ bus until the
batch’s completion, the idle DQ path can be repurposed for
NMP instruction transfer.

V. SADIMM DATAFLOW

A. Dimension-based Data Sharding

As illustrated at the top of Figure 7, we implement a
dimension-based partition for matrices WQ, WK , Q, K, and
S, while employing a token-based partition for the remaining
matrices (V and Z). We shard matrix S dimension-wise to
utilize the tree-structure of DIMM to perform reductions
efficiently. To ensure the correct calculation of SpMM, the
matrix V must be sharded token-wise. Figure 7 adopts a
specific configuration with L = N = D = 3, where L denoting
the sequence length, N representing the number of banks, and
D signifying the model dimension. We extract each dimension
of all tokens to form a dimension-based vector, resulting in D
vectors with L elements in each vector. The mapping strategy
for the dimension-based partition is depicted in 1 . We store
the same dimension of WQ and WK in the same bank, while
storing WV in all banks. Our dimension-based sharding incurs
the same intra-layer access overhead as token-based sharding,
since there is no distinction between row-wise and column-
wise access when processing the entire matrix. To minimize
cross-layer transmissions and maximize cross-layer data reuse,
we store the same part (here is dimensions) of all layers in
the same bank, following a similar approach (here is tokens)
to TransPIM [43].

This approach provides notable advantages, primarily as
each memory bank is dedicated to a specific dimension for all
tokens. In the scenario of sparse attention pruning for a weakly
connected token, dimension-based sharding ensures the simul-
taneous pruning of all dimensions associated with weakly con-
nected tokens across all banks. As a result, dimension-based
sharding facilitates load balancing even when a considerable
number of weakly connected tokens are pruned. Furthermore,
this technique leverages data reuse across different layers
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Fig. 7. The dimension-based dataflow of SADIMM

by consolidating computations of token dimensions in the
same memory location. To support the dimension-based data
partitioning, we write a scheduling program for the dataflow
in Figure-6. The scheduling program will be loaded to the
memory controller when DRAMs are in NMP mode.

B. Dimension-based Dataflow

Full-connection layer. Within the full connected layers, the
input matrix I in banki undergoes GEMM operations with the
dimension shards of weight matrices WQ and WK . Specifically,
Qdi = I×W di

Q and Kdi = I×W di
K are performed, generating dis-

tinct dimensions of Q and K in each bank. For the generation
of matrix V , the token-based dividing approach is adopted,
where banki executes Vi = Ii×WV , resulting in L

N ×D elements
per bank. Notably, the calculation in each bank-level PE for the
full connected layers exclusively involves local access to the
nearest bank, effectively eliminating potential PE stalls arising
from data dependencies.

SDDMM between matrices Q and K. As depicted in 2 ,
the output Qdi and Kdi from the FC layer will serve as the input
of SDDMM operation in banki. Subsequently, banki performs
the same-dimension multiplication to generate the ith dimen-
sion of matrix S without requiring cross-bank transmissions. In
the example illustrated in Figure 7, the first bank initiates the
generation of the first dimension/slice of matrix S. To manage
the data dependencies associated with cross-dimension accu-
mulation, we leverage the broadcast and reduction capabilities
of the DIMM-based NMP platform, as detailed in Section II-B.
All banks transmit their dimensions/slices of matrix S to the
bank-group PE, which undertakes cross-dimension accumula-
tion to yield matrix S. Although the accumulation is done in
the bank-group, our method introduces only small memory
overhead. Because near-bank PEs process tokens one by one.
When the intermediate results of current token is transmitted
to the bank-group, the intermediate results of next token can
be stored in the same place to save space. Despite a substantial
number of tokens being pruned, the dimension-based SDDMM
method does not introduce a load imbalance problem, as the
dimensions of the retained tokens are evenly distributed across
the memory banks.

Softmax operation. Executing the softmax operation within
the dimension-based dataflow is straightforward. As shown in
3 , the bank-group or rank-level PEs aggregate all dimensions
from memory banks to generate matrix S (ranging from S0 to
SN). To save memory space, we apply the softmax operation
to S0 immediately after its generation. However, the row-wise
softmax introduces token-based sharding of matrix S, necessi-
tating a subsequent reslicing phase to transform matrix S into
dimension-based sharding. Given the limited memory arrays
in the bank-group, we perform these operations sequentially
from S0 to SN .

SpMM between matrices S and V . Considering the ab-
sence of memory arrays and the presence of only buffers in the
bank-group, the dimension-based slices of matrix S generated
by the bank-group PEs need storage back to memory banks
through broadcasting. We employ dimension-based sharding
for matrix S, with each bank accommodating D

N × L ele-
ments (both zeros and non-zeros). The computation between
dimension-based S and token-based V mirrors the SDDMM
operation of Q×KT. As illustrated in 4 , the calculation of
S×V concludes with bank-level multiplication and bankgroup-
level accumulation.

End-to-end Transformer. SADIMM is switchable between
two memory modes, conventional Memory Mode (M-mode)
and memory Computing Mode (C-Mode). Collaborating with
SADIMM, the host processor performs the execution of the
end-to-end Transformer. Specifically, SADIMM takes charge
of offloading the self-attention kernel, while the host manages
the remaining operations. Our experiments compare the per-
formance of sparse attention kernel only.

Advantage: Fewer Cross-bank Transfers. In comparison
to token-based dataflow, the dimension-based dataflow also
reduces on-chip transmission with minimal cross-bank broad-
casting. Specifically, same-dimension multiplication exhibits
no data dependency with the information stored in other banks,
enabling independent work for all near-bank PEs. In contrast,
the token-based dataflow shown in Figure 4 involves many
cross-bank token transfers, resulting in significant conflicts in
DQ and C/A paths [43]. Furthermore, we utilize broadcasts to
fulfill cross-dimension data dependencies, aligning well with
the DIMM hierarchy.
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TABLE I
SADIMM CONFIGURATIONS

Host Processor
16 out-of-order cores, 2.5GHz,

32KB L1 cache, 256KB L2 cache,
16MB LLC cache

DRAM Module
DDR4-2400MHz 8GB, 64GB total size,
4× Channels, 2× DIMMs, 2× Ranks,

4KB row buffer size, FR-FCFS

DRAM Timing
Parameters

tRCD=16, tCL=16, tRP=16, tRC=55,
tRRD S=4, tRRD L=6, tFAW=26,

tCCD S=4, tCCD L=6, tBL=4

NMP Config.

16KB input buffer, 32KB output buffer,
2 FP32 adder and 1 softmax unit

per rank-NMP, 1 FP32 adder per BG-NMP,
and 1 FP32 multiplier per bank-NMP

Energy and
Latency

Parameters

DRAM ACT energy=2nJ, RD/WR=4.2pJ/bit,
Off-chip I/O=4pJ/bit, FP32 adder=0.9pJ/Op,

FP32 mult=2.4pJ/Op

VI. EVALUATION

A. Experimental Setup

Simulation. Table I provides a concise overview of the
fundamental configurations of SADIMM. To comprehensively
assess SADIMM’s performance, we employ both Ramula-
tor [17] and ZSim [32], a cycle accurate simulator. To model
host interactions for NMP instruction offloading, token and
weighted matrix retrieval, and data broadcast to the NMP
side, we enhance the trace-driven version of ZSim. Within
Ramulator, we introduce the DIMM-SADIMM module to em-
ulate the sparse attention operations offloaded to the memory
side. Utilizing CACTI [26], we estimate cache area, energy
consumption, and access latency. The bandwidth of each near-
bank NMP is configured to 1GB/s with our experiments. The
total bandwidth of SADIMM is up to 1TB/s. The Synopsys
Design Compiler, operating under a 40nm technology library,
assesses the area, energy consumption, and latency of the
integrated specialized hardware units. CACTI-3DD [4] gauges
the energy consumption of DRAM devices, while CACTI-
IO [15] evaluates the energy consumption of off-chip I/O and
DIMM-level considerations.

Workloads. We evaluate SADIMM’s performance across
various natural-language processing (NLP) tasks using the
BERT-base (BERT), BART, and GPT-2-Small (GPT2) models.
For dynamic sparse attention, we apply Sanger’s quantize-
and-pruning method [23] to all models. For NLP inference,
we utilize nine datasets from the General Language Under-
standing Evaluation (GLUE) [36] collection, including cola,
mnli, mrpc, qnli, qqp, rte, sst-2, stsb, and wnli. The maximal
sequence length (MSL) for all GLUE datasets is below 384.
Additionally, we assess models on MSL 512 Stanford Question
Answer Dataset (SQuAD v1.2) [31], MSL 1K WikiText-
2 [25], and MSL 2K IMDB [24] datasets. Throughout this
study, the maintained data precision is Float32.

Methodology. In our benchmarking analysis, we compare
SADIMM against five contemporary designs on standard plat-
forms. (1) CPU baseline: AMD Ryzen Threadripper 3970X;
(2) GPU baseline: NVIDIA RTX A6000 GPU, featuring 46GB
memory, 300W TDP, CUDA v11.6, and PyTorch v2.0.0 [29];
(3) Sanger [23]: an ASIC-based accelerator utilizing recon-
figurable systolic arrays for sparse attention; (4) TRiM [28]:
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Fig. 8. The speedup improvement of SADIMM over GPU and CPU on BERT,
BART, and GPT-2 benchmarks

a DIMM-based NMP accelerator designed for accelerating
recommendation systems through near rank/bank-group/bank
processing. We add the softmax time of SADIMM to TRiM
for the lack of softmax unit; (5) HAIMA [9]: a hybrid NMP
leveraging near-SRAM and near-DRAM hardware.

Our pre-processing phases involve fine-tuning all models
from pre-trained checkpoints using the corresponding training
datasets to obtain weight matrices. These matrices are then
pre-stored in memory banks with dimension-based sharding.
Following this, we apply quantize-and-pruning sparse attention
to obtain sparse mask matrices for all datasets, compressing
them into Compressed Sparse Row (CSR) format. The sparse
matrices are loaded and stored with CSR format. During the
computation by the PEs, there is a coordinates alignment phase
of the CSR format before the multiplication. For GLUE and
SQuAD datasets, we maintain consistent learning rates and
batch sizes as in Sanger [23]. Our code is adapted from
the Sanger project on Github [23]. All models and datasets
are sourced from the Hugging Face models library [37] and
datasets library.

B. Comparison with CPUs and GPUs

We conduct experiments to evaluate the overall performance
and energy efficiency of SADIMM in comparison to CPU and
GPU platforms. In Figure 8, we present the achieved speedups
by SADIMM relative to the CPU and GPU baselines. Some
results are missing because the CPU was unable to obtain the
results within the required time. Across BERT, BART, and
GPT-2 datasets, SADIMM demonstrates average speedups of
47.3×, 35.2×, and 36.6× over the Nvidia RTX A6000 GPU,
and 242.5×, 118.5×, and 117.7× over the AMD Ryzen CPU,
respectively. Our experimental results show that SADIMM
outperforms the CPU and GPU baselines in all benchmarks.
This superiority arises from SADIMM’s utilization of near-
memory computation for sparse attention, resulting in a sub-
stantial reduction in off-chip memory access compared to the
CPU and GPU baselines.

Figure 9 illustrates the energy efficiency gains achieved
by SADIMM over the CPU and GPU baselines. For the
BERT, BART, and GPT-2 models, SADIMM exhibited average
energy efficiencies of 189.1×, 202.1×, and 191.3× compared
to the GPU, and 348.6×, 470.9×, and 401.7× compared to
the CPU platform. Across all datasets, SADIMM consistently
outperformed CPU and GPU platforms in terms of energy
efficiency. This heightened energy efficiency can be primarily
attributed to the substantial reduction in data transfers between
the host processor and off-chip main memory facilitated by
SADIMM.
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Fig. 9. The energy efficiency improvement of SADIMM over GPU and CPU
on BERT, BART, and GPT-2 benchmarks

C. Comparison with Other Accelerators

We conducted experiments to assess the overall performance
of SADIMM in comparison to contemporary accelerators,
including Sanger [23], TRiM [28], and HAIMA [9]. The
performance results are illustrated in Figure 10, normalized
to the GPU.

SADIMM vs. Sanger. Figure 10 presents a comparative
analysis of the performance between the ASIC-based Sanger
and SADIMM. Sanger introduces a prediction-based pruning
method to minimize unnecessary calculations in the atten-
tion. These optimizations enable Sanger to achieve better
performance, approximately 4.7× compared to GPU-based
sparse attention solutions. Despite this, Sanger leaves certain
challenges unresolved, which SADIMM addresses for further
speedups. As an ASIC-based sparse attention accelerator,
Sanger adheres to the conventional data access approach
seen in other processor-centric architectures. Although Sanger
rearranges non-zeros in the sparse matrix to enhance data
reuse, the numerous intermediate matrices generated in the
remaining calculations necessitate extensive off-chip transfers
from DRAM to on-chip PEs. This off-chip transfer over-
head significantly impacts Sanger’s efficiency. In contrast,
SADIMM’s superior performance can be attributed to two
key factors. First, SADIMM is a memory-based accelerator
that can significantly reduce off-chip memory access. Second,
SADIMM employs dimension-based data partitioning, allow-
ing sparse matrices to be uniformly distributed by dimension
in the memory bank. Therefore, SADIMM primarily involves
random accesses within the bank, which has a higher band-
width than Sanger’s random accesses throughout the whole
memory spaces.

SADIMM vs. TRiM. SADIMM demonstrates an average
performance improvement of 5.6× and 4.7× compared to
TRiM-G and TRiM-B, respectively. In contrast to GPUs,
TRiM achieves an 11.3× performance boost by leveraging a
memory-based architecture to mitigate off-chip transfers and
introducing hot-entry replication to address load imbalance
issues. While TRiM’s homogeneous architecture proves ef-
fective for gather and reduction (GnR) operations in recom-
mendation systems, it exhibits sub-optimal performance in
supporting more intricate sparse attention tasks. Moreover,
sparse attention, characterized by randomness and dynam-
ics, poses challenges in identifying hot entries. SADIMM
surpasses TRiM in performance, benefiting from two key
aspects. First, SADIMM employs heterogeneous integration,
providing dedicated logic units at different NMP levels for
distinct operations. This strategy allocates appropriate hard-
ware resources based on the bandwidth requirements of each
operation, thereby enhancing overall bandwidth utilization.
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Fig. 10. Performance comparison with modern accelerators (normalized to
GPU baseline)

Second, SADIMM adopts dimension-based data partitioning,
achieving balanced loads without the need for hot entry
information and consequently reducing significant random
scheduling overheads.

SADIMM vs. HAIMA. HAIMA employs two innovations
to surpass GPU performance: 1) a hybrid NMP architecture,
utilizing DRAM-based NMP for large-scale matrix multiplica-
tion and SRAM-based NMP as a filter between DRAM-based
NMP and the host; 2) a parallel dataflow that accommodates
varying parallelism and resource requirements among different
layers. The above optimizations enable HAIMA to achieve
a 20.5× performance improvement over GPUs. However,
two challenges cause HAIMA’s suboptimal performance: 1)
Assuming equal access demands for all operations in the
attention mechanism, leading to the allocation of the same
hardware resources to diverse operations and resulting in
wasted bandwidth; 2) While HAIMA’s dataflow reduces cross-
layer transfers, it introduces load imbalance when support-
ing sparse attention. In contrast, SADIMM introduces two
optimizations for further performance enhancement. First,
SADIMM employs heterogeneous integration, providing ded-
icated logic units at different NMP levels for distinct opera-
tions, allocating hardware resources based on the bandwidth
requirements of each operation to enhance overall bandwidth
utilization. Second, SADIMM adopts dimension-based data
partitioning, achieving load balance without relying on hot
entry information and thereby reducing significant random
scheduling overheads.

D. Hardware and Software Efficiency

SADIMM constitutes a hardware-software co-designed
sparse attention accelerator, where the interplay between hard-
ware and software design is pivotal. In this section, experi-
ments are conducted to compare SADIMM with two sister sys-
tems, aiming to assess the individual contributions of hardware
and software optimizations. To gauge the hardware efficiency
of SADIMM, Sister#1 is configured using our dimension-
based dataflow on the NMP-based TRiM-B platform. Con-
versely, to assess the software efficiency of SADIMM, Sister#2
is configured using the token-based dataflow tailored for
SADIMM. Figure 11 presents the average performance of
each model on each dataset, with all performance metrics
normalized to the speedups of the GPU baseline.

Hardware efficiency. Figure 11 illustrates that Sister#1
achieves average speedups of 26.1× and 2.14× compared to
the GPU baseline and TRiM-B, respectively. The enhance-
ment over the GPU baseline is attributed to the reduction
in processor-memory transmissions through the utilization of
NMP architecture. The improvement over TRiM-B is primarily
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Fig. 11. Performance comparison with two sister platforms and TRiM-B
(normalized to GPU baseline)

due to the dimension-based dataflow, which achieves load
balance and reduces numerous random scheduling overheads.
However, the Sister#1 system only attains 46% of the per-
formance compared to SADIMM. This is because Sister#1
integrates the same logical units to support diverse operations
in sparse attention, leading to three challenges, as analyzed
in Section III-A. In contrast, SADIMM adopts heterogeneous
integration, allocating different logical units to support diverse
operations. This reduces resource contention between opera-
tions and enhances bandwidth utilization, resulting in higher
speedups over Sister#1.

Software efficiency. The Sister#2 platform achieves
speedups of 22.3× and 1.84× compared to the GPU baseline
and TRiM-B, respectively. The improvement over the TRiM-
B platform can be attributed to heterogeneous integration,
achieving a better match between hardware resources and
the access requirements of operations. However, the Sister#2
platform only achieves 39% of the performance compared
to SADIMM. This is because the Sister#2 platform adopts
a token-based dataflow, leading to a severe load imbalance
problem. To address this imbalance, Sister#2 utilizes the on-
chip scheduler to realign data, introducing significant on-
chip scheduling overhead and many cross-bank transmissions.
In contrast, SADIMM employs dimension-based dataflow,
achieving balanced loads naturally and greatly reducing run-
time scheduling overhead.

E. Scalability

Numbers of Ranks. Figure 12 (a) illustrates the perfor-
mance of SADIMM varies with the number of ranks. Although
the rank-level bandwidth increases with the number of ranks,
the DIMM-level bandwidth does not increase linearly due to
shared data cables between ranks. Nevertheless, SADIMM
exhibits improved performance with an increasing number of
ranks. For instance, there is a 1.69× performance improve-
ment for four ranks compared to two ranks. This enhance-
ment is attributed to the effective utilization of rank/bank-
group/bank-level bandwidth. By integrating logical units in
each rank/bank-group/bank, SADIMM leverages higher near-
memory bandwidth as the number of ranks increases. This
highlights the superior scalability of SADIMM with memory
bandwidth compared to the GPU baseline.

Numbers of Tokens. Facilitating the processing of long
sequences is pivotal for sparse attention accelerators. To assess
the sequence scalability of SADIMM, we extend our evalua-
tion by generating longer sequence datasets through repetition,
doubling and quadrupling the original sequence. Figure 12
(b) depicts the speedups achieved by SADIMM compared to
the GPU baseline for varying sequence lengths. Notably, as
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the sequence length increases, SADIMM demonstrates higher
speedups, showcasing its superior scalability in handling long
sequences compared to the GPU baseline. This scalability
is attributed to SADIMM’s utilization of NMP hardware,
which significantly mitigates off-chip random access, which
is a primary bottleneck for the GPU baseline that grows
quadratically with sequence length [19].

F. Discussion
PE Activity Rate. To reveal the hardware utilization effi-

ciency of SADIMM, Figure 13 (a) presents the PE activity rate
of SADIMM and TRiM-B. Compared with TRiM-B’s 60% PE
activity rate, SADIMM has a higher PE activity rate of about
80%. The improvement of PE utilization of SADIMM can
be contributed to our dimension-based dataflow, which can
significantly reduce cross-bank transmissions. Fewer cross-
bank transfers will reduce PE access overhead and increase
PE utilization.

Analysis of Refresh Stalls. Figure 13 (b) evaluates the
refresh stalls of DRAM, TRiM-B, and SADIMM. We define
refresh stalls as PE stalls caused by periodic memory refresh.
Compared to DRAM, both TRiM-B and SADIMM have a
higher refresh stalls, due to a higher memory utilization
reducing the time-overlap opportunity for many idle memory
banks. Our results also show that SADIMM does not result
in increased refresh stalls compared to TRiM-B even with
higher PE utilization. The common used time-overlap method
involves refreshing idle banks while other active banks are
engaged in computation. However, in the baseline platform,
while some PEs may be idle, the memory banks themselves
are always busy, as shown in Figure 4. This is due to cross-
bank data access, where one bank may be serving data to the
PE of another bank. SADIMM’s goal is to reduce near-bank
PE idle time, which does not change the idleness of memory
arrays. Therefore, the methods in SADIMM do not directly
correlate with an increase in refresh stalls.

G. Energy and Area Breakdown
DIMM-based NMP accelerators integrate logic units di-

rectly into the DRAM chip, imposing additional area and
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TABLE II
POWER AND AREA BREAKDOWN OF SADIMM AND TRIM

Name Component PE type Area (mm2) Power (mW)

SADIMM
Rank PEs adder&soft. 0.73 82
BG PEs adder 0.39 37

Banks PEs multiplier 2.29 216

TRiM-B Rank PEs MAU 0.36 54
BG/bank PEs MAU 11.5 1.3K

power overhead on DRAM. We present the area and power
consumption details of SADIMM in Table II, which contains
2× DIMMs, 2× ranks, 8× DRAM chips, 8× bank-groups, and
4× banks. In a 40nm technology context, SADIMM exhibits a
minimal area overhead of 3.42 mm2, a considerable reduction
compared to the 11.86 mm2 area of TRiM-B. Current NMP
platforms integrate powerful PEs to support diverse operations.
In contrast, SADIMM integrates small area adder or multiplier
to support some specific arithmetic operations. Furthermore,
the power consumption of SADIMM is measured at 335 mW ,
significantly lower than the total power of TRiM-B, which
stands at 1.3W .

VII. RELATED WORK

Accelerating Sparse Attention. Research aimed at ac-
celerating sparse attention initially flourished on GPU plat-
forms due to their enhanced computing parallelism [3], [6]–
[8], [35]. GPU-based solutions [3], [6], [7] focus reducing
memory requirements during attention computation. However,
the irregular distribution of non-zeros in sparse attention
introduces a substantial random access overhead. To address
these challenges, hardware-software co-design approaches,
such as FPGA [2], [41] and ASIC [12], [23], [30] platforms,
have emerged. These platforms aim to overcome the inherent
latency-bound inefficiencies associated with limited sparse
data reuse. However, the performance of these processor-
centric solutions is constrained as the sequence length expands,
with off-chip memory access becoming a bottleneck [38].

NMP and PIM Platforms. NMP platforms can reduce
off-chip transfers and concurrently enhances the bandwidth
of in-memory logic units. Demonstrating prowess in improv-
ing performance for memory-intensive applications, including
neural networks [11], [21], [39], graph processing [5], [34],
[40], and attention mechanisms [9], [20], [43]. The above
NMP-based solutions exhibit superior bandwidth utilization.
However, they grapple with challenges such as PE idleness
and on-chip scheduling overhead, arising from homogeneous
integration and irregular pruning. This work aims to address
these challenges by proposing heterogeneous integration and
a dimension-based dataflow. In addition to NMP-based solu-
tions, there are also PIM-based attention mechanism accelera-
tors [19], [42], which reduce off-chip random access through
the computational capabilities of memory arrays.

VIII. CONCLUSION

We introduce SADIMM, a novel co-design sparse atten-
tion accelerator that utilizes NMP platforms. First, we de-
velop heterogeneous NMP architecture, integrating different
logical units in the memory hierarchy to support various

operations with high hardware efficiency. Second, we intro-
duce dimension-based dataflow, dividing and storing input
sequences by model dimensions to avoid PE idleness. The
experimental outcomes demonstrate that SADIMM exhibits
remarkable performance and energy efficiency compared to
state-of-the-art sparse attention accelerators.
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and Memory-Efficient Exact Attention with IO-Awareness,” in Advances
in Neural Information Processing Systems, vol. 35, 2022, pp. 16 344–
16 359.

[8] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” CoRR,
vol. abs/1810.04805, 2018.

[9] Y. Ding, C. Liu, M. Duan, W. Chang, K. Li, and K. Li, “HAIMA:
A Hybrid SRAM and DRAM Accelerator-in-Memory Architecture for
Transformer,” in 2023 60th ACM/IEEE Design Automation Conference
(DAC), 2023, pp. 1–6.

[10] Y. Fang, B. Liao, X. Wang, J. Fang, J. Qi, R. Wu, J. Niu, and W. Liu,
“You Only Look at One Sequence: Rethinking Transformer in Vision
through Object Detectio,” CoRR, vol. abs/2106.00666, 2021.

[11] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS:
Scalable and Efficient Neural Network Acceleration with 3D Memory,”
in Proceedings of the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
Apr 2017.

[12] T. J. Ham, S. J. Jung, S. Kim, Y. H. Oh, Y. Park, Y. Song, J.-H. Park,
S. Lee, K. Park, J. W. Lee, and D.-K. Jeong, “A3: Accelerating attention
mechanisms in neural networks with approximation,” in Proceedings of
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2020, pp. 328–341.

[13] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “FloatPIM: In-Memory
Acceleration of Deep Neural Network Training with High Precision,”
in Proceedings of the 46th International Symposium on Computer
Architecture, 2019, p. 802–815.

[14] JEDEC, “DDR5 SDRAM STANDARD,” 2020. [Online]. Available:
https://www.jedec.org/standards-documents/docs/jesd79-5b

[15] N. P. Jouppi, A. B. Kahng, N. Muralimanohar, and V. Srinivas, “CACTI-
IO: CACTI with off-Chip Power-Area-Timing Models,” in Proceedings
of the International Conference on Computer-Aided Design. Associa-
tion for Computing Machinery, 2012, p. 294–301.

[16] L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril,
A. Firoozshahian, K. Hazelwood, B. Jia, H.-H. S. Lee, M. Li, B. Maher,
D. Mudigere, M. Naumov, M. Schatz, M. Smelyanskiy, X. Wang,
B. Reagen, C.-J. Wu, M. Hempstead, and X. Zhang, “RecNMP: Accel-
erating Personalized Recommendation with Near-Memory Processing,”
in 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020, pp. 790–803.

[17] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
DRAM simulator,” IEEE Computer Architecture Letters, vol. 15, no. 1,
pp. 45–49, 2016.

https://arxiv.org/abs/2405.17025
https://www.jedec.org/standards-documents/docs/jesd79-5b


12

[18] H. Li, H. Jin, L. Zheng, Y. Huang, X. Liao, Z. Duan, D. Chen,
and C. Gui, “ReSMA: accelerating approximate string matching using
ReRAM-based content addressable memory,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference, 2022, p. 991–996.

[19] H. Li, H. Jin, L. Zheng, X. Liao, Y. Huang, C. Liu, J. Xu, Z. Duan,
D. Chen, and C. Gui, “CPSAA: Accelerating Sparse Attention Using
Crossbar-Based Processing-In-Memory Architecture,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
pp. 1–1, 2023.

[20] H. Li, Z. Li, Z. Bai, and T. Mitra, “ASADI: Accelerating Sparse
Attention Using Diagonal-based In-Situ Computing,” in 2024 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2024, pp. 774–787.

[21] C. Liu, H. Liu, H. Jin, X. Liao, Y. Zhang, Z. Duan, J. Xu, and
H. Li, “ReGNN: a ReRAM-based heterogeneous architecture for general
graph neural networks,” in Proceedings of the 59th ACM/IEEE Design
Automation Conference, 2022, p. 469–474.

[22] H. Liu, L. Zheng, Y. Huang, C. Liu, X. Ye, J. Yuan, X. Liao, H. Jin,
and J. Xue, “Accelerating Personalized Recommendation with Cross-
Level Near-Memory Processing,” in Proceedings of the 50th Annual
International Symposium on Computer Architecture, 2023.

[23] L. Lu, Y. Jin, H. Bi, Z. Luo, P. Li, T. Wang, and Y. Liang, “Sanger: A Co-
Design Framework for Enabling Sparse Attention Using Reconfigurable
Architecture,” in Proceedings of 54th Annual IEEE/ACM International
Symposium on Microarchitecture, 2021, p. 977–991.

[24] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, June 2011, pp. 142–150.

[25] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel
mixture models,” arXiv preprint arXiv:1609.07843, 2016.

[26] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0:
A tool to model large caches,” HP laboratories, vol. 27, p. 28, 2009.
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