
Page 1 of 6 
 

CS1020: DATA STRUCTURES AND ALGORITHMS I 

Tutorial 1 – Simple OO with Java 
(Week 3, starting 25 January 2016) 

 

1. Variables & Message Passing 
Explain the behavior of the following three code fragments. Specifically, why some methods are able to 
swap the desired int values passed into the argument (on the caller end), while others are not able to. 

Tip: Try it out! Create a program in vim, paste the fragment in the right place. Compile and run in sunfire. 

// Are the int values within a and b swapped? 
public static void swap1(int a, int b) { 
 int temp = a; 
 a = b; 
 b = temp; 
} 
 
class MyInteger { 
 public int x; 
 public MyInteger(int n) { 
  x = n; 
 } 
 // Are the int values swapped? 
 public static void swap2(MyInteger a, MyInteger b) { 
  int temp = a.x; 
  a.x = b.x; 
  b.x = temp; 
 } 
} 
 
// Are the int values within a[i] and a[j] swapped? 
public static void swap3(int[] a, int i, int j) { 
 int temp = a[i]; 
 a[i] = a[j]; 
 a[j] = temp; 
} 

 

 

Use diagrams to explain. For example, the following diagram shows the call swap1(1, 3) and the values 
of the local variables a, b and temp after the first statement in the method is executed. What are the 
values of the local variables after all the statements in the method are executed? 

    

Related Concepts 
• Primitive vs reference data types 
• (Caller, arguments) & (callee, params) 
• Pass-by-value 
• Dereferencing 



Page 2 of 6 
 

 
 
Answer 
On the caller’s end, only the values passed into swap1() are not swapped, while those passed into swap2() 
and swap3() are swapped. Java uses pass-by-value for method calls. Argument values (caller end) are 
copied to parameters (callee end). Here, we show swap1(1, 3) being invoked from main() method. 

 

swap1() shows how primitive variables are stored. In swap2() and swap3(), we have variables of a 
reference data type, the value of which is a memory address of an object. Therefore, the value that is 
copied from argument to parameter is the address of the SAME object. Here, we show 
swap2(new MyInteger(1), new MyInteger(3)) being invoked from the main() method. 

 

From the diagram, it is clear that the values 1 and 3 in swap2() will be interchanged on both ends. Why are 
objects not stored directly in a variable? This is because an object can be arbitrarily large. Thus, copying the 
entire object unnecessarily may not be efficient (imagine a 4GB object being copied repeatedly). 

Caller Callee swap2() 

   1 
temp a 

Caller Callee swap2() 

   1 
temp a 

 
b 

 
b 

1 
x 

3 
x 

3 
x 

1 
x 

Caller Callee swap1() 

1 3 1 1 
temp a 

Caller Callee swap1() 

1 3 3 1 
temp a 

3 
b 

1 
b 

Caller Callee swap1() 

1 3 1 1 
temp a 

3 
b 



Page 3 of 6 
 

Similarly in swap3(), since an array can be very long, the value copied is the starting address of the array, 
i.e. arr[0]. Hence, the value the value of arr[i] and arr[j] are swapped on both ends. Here, we show 
int[] arr = {9, 8, 7, 6, 5}; swap3(arr, 1, 3) being invoked from main() method. 

 
Now what exactly does a.x in swap2(), and a[i] in swap3(), mean? In swap2(), a stores the memory 
location of a MyInteger object. a is not the object itself. (a.) moves to the object, and a.x reads the 
member variable x of THAT object. 

In swap3(), a stores the memory location of an object, a 1-dimensional int array (int[]). a is not the 
array object itself. (a[) moves to the array object, and a[i] reads the integer element that is i spaces 
away. 

 

In subsequent tutorials, you are expected to draw diagrams to help yourself 
understand what happens in memory, just as in Q1 and Q2. 

 
  

Caller Callee swap3() 

 3 1 8 
temp i 

3 
j 

9 
arr[0] 

 
a arr 

8 7 6 5 
arr[4] 

1 

Caller Callee swap3() 

 3 1 8 
temp i 

3 
j 

9 
arr[0] 

 
a arr 

6 7 8 5 
arr[4] 

1 



Page 4 of 6 
 

2. Arrays 
(a) Draw out what each of these 4 statements does in memory: 

int[] int1DArray = new int[3]; 
int[][] int2DInitArray = new int[3][5];  
int[][] int2DPartialArray = new int[3][]; 
Point[] pointArray = new Point[3]; 
 

(b) After creating these 4 arrays, each array is then used to hold zero or more elements. If we then 
examine the memory for each array, what is the minimum and maximum number of objects that could 
possibly be present? 

For example, the pointArray variable could have 1 to 4 objects present. When the array is first created, 
it is the only object being referred to by the pointArray reference. It could also hold 3 more objects. 

 

Answer 
int[] int1DArray = new int[3]; 

 
 Minimum: 1 object Maximum: 1 object 

The array reference points to an array object. Within the array object, each element is a primitive int. 
Even if we store some int values in the array, no other objects are created. 

 

int[][] int2DInitArray = new int[3][5];  

 
 Minimum: 4 objects Maximum: 4 objects 

The array reference points to an array object of length 3, which in turn points to an array object of length 5. 
Again, since int is a primitive type, no other objects are created. 

  

 

Int2DInitArray 

 

 

 

0 0 0 3 0 

0 0 7 0 0 

0 0 0 0 0 

 
int1DArray 

0 0 0  
int1DArray 

3 7 5 



Page 5 of 6 
 

 

int[][] int2DPartialArray = new int[3][]; 

 

 Minimum: 1 object Maximum: 4 objects 

The array reference points to an array object of length 3. Each element in the first dimension does NOT 
point to anything, i.e. a null reference. Therefore, there is only 1 object at the start. We can then create 
arrays of different lengths for the second dimension, which store int elements. 

 

Point[] pointArray = new Point[3]; 

 
 Minimum: 1 object Maximum: 4 objects 

As explained in the question. 

 

  

 
pointArray 

    
pointArray 

 

   

1 
y 

3 
x 

1 
y 

4 
x 

3 
y 

4 
x 

 

 

 

 

Int2DPartialArray 

4 0 0 0 

7 0 



Page 6 of 6 
 

3. Objects 
The java.awt.Point class was mentioned in lecture 3. View the API documentation at: 

https://docs.oracle.com/javase/7/docs/api/java/awt/Point.html 

Complete the following method to “draw” a few identical diamonds at different points on the Cartesian 
plane. Each diamond is made up of an array of Points. 

You are provided with the height and width of each diamond, which is a positive even integer. You are also 
provided with the centres of where the diamonds are to be drawn, in a 1D Point array. The method 
returns an array of diamonds, i.e. a 2D Point array. 

public static Point[][] drawDiamonds(int width, int ht, Point[] ctrs) { 
 /* TODO: create diamonds and return array of diamonds */ 
} 
 

Answer 

Remember, understand the requirements and try out a few possible cases first. Draw out how the input 
and output should look like in memory. 

Then, design your algorithm. Think of the steps that can be repeated. When should they repeat until? 
What should be done before and after the repeatable part of the problem? 

public static Point[][] drawDiamonds(int width, int ht, Point[] ctrs) { 
 Point[][] diamonds = new Point[ctrs.length][]; 
 for (int idx = 0; idx < ctrs.length; idx++) { 
  int ctrX = (int) ctrs[idx].getX(); // or ctrs[idx].x; 
  int ctrY = (int) ctrs[idx].getY(); // or ctrs[idx].y; 
  Point[] currDiamond = new Point[4]; 
  currDiamond[0] = new Point(ctrX, ctrY + ht/2); // top 
  currDiamond[1] = new Point(ctrX – width/2, ctrY); // left 
  currDiamond[2] = new Point(ctrX, ctrY – ht/2); // bottom 
  currDiamond[3] = new Point(ctrX + width/2, ctrY); // right 
  diamonds[idx] = currDiamond; 
 } 
 return diamonds; 
} 
 

A picture (diagram) speaks a thousand words. Don’t forget to draw objects in memory and references to 
them! 

 

Note: If you have any queries on tutorials, please post on the “Tutorial” forum in IVLE. 

- Hope you had fun, prepare well for tutorial 2 ☻ - 

 Revise lecture material 
Draw diagrams, code 

Attempt tutorials 
Test your solution 

https://docs.oracle.com/javase/7/docs/api/java/awt/Point.html

	1. Variables & Message Passing
	Answer

	Related Concepts
	2. Arrays
	Answer

	3. Objects
	Answer


