
Programming Language Concepts, CS2104  
Lab/Assignment 1.  (Deadline 10 Sept 2007 Mon 6pm) 
Note : Submit in a single file, say lab1.oz. Provide your own test cases and also browser 
output in the same file as comments.  
(Lab sessions 3-4pm 31Aug and 4-6pm 7Sept, please attend 1 hr or more) 
 
Exercise 1. (Combinations) The number of combinations of r items taken from n is 
equal to the number of subsets of size r that can be made from a set of size n. This is 
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 in mathematical notation and pronounced “n choose k”. It can be defined as 
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, which leads naturally to the following Oz 

function: 
declare 
fun {Comb N K} 
{Fact N} div ({Fact K}*{Fact N-K}) 
end 

For example, {Comb 10 3} is 120, which is the number of ways that 3 items can be 
taken from 10. This function is not very efficient because it might require calculating 
very large factorials, but it is probably the simplest. Write a more efficient version of 
Comb.  
(a) As a first step, use the following alternative definition to write a more efficient 
function: 
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Calculate the numerator and denominator separately and then divide them. Make sure 
that the result is 1 when k = 0. In other words, the result of {Comb N 0} should be 1. 
(b) The above definition may overflow for large numbers. To prevent this, we could 
compute the numerator and denominator progressively, allowing for division to take 
place incrementally, as follows:  (n/1)*(n-1)/2*(n-3)/3 *… *(n-k+1)/k. Write a recursive 
definition Combthat has the above computational characteristic. 
 



Exercise 2. (Reverse) Given a list L=[x1 x2 … xN], its reverse would [xN … x2 x1]. 
One standard way of writing such a reverse function is shown below. If you execute 
{Reverse [’I’ ’want’ 2 go ’there’]}, it should return/display [there go 2 
want ’I’]. 

declare 
fun {Append L1 L2} 
   case L1 of 
      nil then L2 
   [] H|T then H|{Append T L2} 
   end 
end 
 
 
 
 
fun {Reverse L1} 
   case L1 
   of nil then nil 
   [] H|T then {Append {Reverse T} [H]} 
   end end 
{Browse {Reverse [’I’ ’want’ 2 go ’there’]}} 

However, this implementation has quadratic time complexity since each  Append call 
takes time that is linear to its first argument. Using a second parameter that contains the 
partially reversed list, write another definition of Reverse that is more efficient, without 
using Append calls.  

 
Exercise 3. (Infinite Structures) One of the advantage of lazy evaluation is the support 
for infinite data structures. This may be useful for generating a list of infinite prime 
numbers. Given below is a function to generate a list of prime numbers. If you run it, it 
will go into a loop. Modify it to make it lazy. After that, use it to write a function 
{GetAfter N} that would return the first prime number after a given value. 
  
fun {Sieve L}  case L of 
        nil then nil 
      [] H|T then H|{Sieve {Filter T H}} 
end end 
fun {Filter L H}  

case L of 
            nil then nil 
      [] A|As then if (A mod H)==0 then {Filter As H} 
                else A|{Filter As H} end 
end end 
fun {Prime} {Sieve {Gen 2}} end 
fun {Gen N}  N|{Gen N+1} end 
{Browse {Prime}} 
 



Exercise 4. (Binary Search Tree) Consider a binary search tree (BST) data structure of 
the following form: 
 

<BTree> ::= leaf(<Int>) |  node(<Int>,<BTree>,<BTRee>) 
 
 The elements of this tree are assumed to be sorted if it has the following properties: 
 

a. It is leaf node with an integer value. 
b. It is a node where the left and right subtrees are sorted, and  

all integers in its left subtree < integer in current node  
      integer in current node ��DOO�LQWHJHUV�LQ�LWV�ULJKW�VXEWUHH� 

 
A simple example of this BST data structure is the following : 
 
 N1 = node(3 nil N2) 

N2 = node(5 nil nil) 

 
Implement the following methods that manipulates/queries binary search tree : 
 

(i) Insert ::  {<BTree>, <Int> } Æ  <BTree> 

// inserts an integer into a binary search tree (BST) 
 

(ii) Smallest :: <BTree> Æ <Int> 

// returns the smallest element of the given BST 
 

(iii) Biggest :: <BTree> Æ <Int> 

// returns the largest element of the given BST 
 

(iv) IsSortedBST :: <BTree> Æ <Bool> 

// checks if the given tree has the sortedness property  
// Hint : may use Smallest/Biggest functions for this method 

 


