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Introduction

Traditional Regular Pumping Lemma [Michael Rabin and
Dana Scott 1959, Yehoshua Bar-Hillel, Micha Perles and Eli
Schamir 1961]
Given a regular language L, there is a constant k such that
for all words u of at least length k, one can split u into x,y, z

such that y 6= ε, |xy| ≤ k for all h ∈ N, L(u) = L(xyhz).

one-sided: Only u ∈ L are considered;
two-sided: All u are considered.

The original formulation of the Pumping Lemma is
one-sided.

Corollary (Weak Traditional Pumping Lemma)
One can in the above the condition |xy| ≤ k replace by the
weaker condition |y| ≤ k.
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Example

Let H be a nonregular subset of {0,1,2}∗ and
L = {0,1,22} · {0,1,2}∗ ∪ {210} ·H. Now this language
satisfies the two-sided pumping lemma but is not regular.

If a word u starts with one of 0,1,20,211,212,22 then
pump the fourth symbol, which does not change the prefix
and pumping lemma satisfied in this case.

If a word u starts with 210 and is in L then pump the first
symbol, pumping down gives 1 as first symbol and pumping
up gives 22 as starting symbols, so {2}∗ · {10u} ⊆ L.

If a word u starts with 210 and is not in L then pump the
second symbol, pumping down gives words starting with 20

which are not in L and pumping up gives words starting
with 211. Thus {2} · {1}∗ · {0u} ∩ L = ∅.

L ∩ {210} · {0,1,2}∗ = {210} ·H is nonregular, so is L.
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Matching Pumping Lemmas

Let Lx = {y : xy ∈ L} be the derivative of L at x. Myhill and
Nerode investigated the derivatives and showed that a
language is regular iff it has exactly finitely many distinct
derivatives.

A pumping lemma is matching iff exactly the regular
languages satisfy its pumping condition and no other
languages do.

Theorem [Jaffe 1978].
The following two-sided pumping lemma is matching: There
is a constant k such that all words u with |u| ≥ k can be
split into xyz with y 6= ε and Lxyz = Lxyhz for all h ∈ N.

This is a two-sided pumping lemma and the one-sided
version only pumping the words inside the language is not
matching, example is L · {3} for the L from the previous
slide.
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Proof of Jaffe’s Pumping Lemma

If the dfa has k states, then one can find among the first
k+ 1 states two states which are the same. So let x and xy

be the parts of the word u read when reading these states.
One can easily see that the state at the end after parsing

xyhz is the same as after parsing u and therefore the
derivatives Lxyhz and Lu coincide.

For the other way round, note that one finds for each u of
length k or more a shorter v with Lu = Lv and thus all
derivatives equal to a derivative of a word w with |w| < k.
So there are only finitely many derivatives and the language
is regular.
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Block Pumping Lemma

There are constants k,h such that, given a word u of length
at least h (say in {0,1}∗) with exactly k special symbols
(say @) inserted such that between any two @ there is at
least one normal symbol from u, one can delete all but two
of the @s from the word obtaining x@y@z such that

L(xyz) = L(xyℓz) for all ℓ.

The weak block pumping lemma requires in addition that
the first block border is before the beginning of the word
and the last one after the end of the word.

There are one-sided and two-sided versions of this block
pumping lemma and also its weak form.
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Block Pumping and Matching
Theorem [Ehrenfeucht, Parikh and Rozenberg 1981]
A language is regular iff it satisfies the two-sided block
pumping lemma iff it satisfies the two-sided block pumping
lemma with the extra condition that one only pumps down
(omits y).

Theorem [Varricchio 1997]
A language is regular iff it satisfies the two-sided block
pumping lemma with the additional constraint that one can
only pump up.

Example [Ehrenfeucht and Rozenberg 1983, Ross and
Winklmann 1982]
The language of square-containing ternary words (of form
xyyz with y 6= ε) is not context-free. It satisfies those
one-sided pumping lemmas which only allow to pump up.

Thus a matching pumping lemma must be two-sided or
allow to pump down.
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One-Sided Block Pumping

Example [Chak, Freivalds, Stephan and Tan 2016]
The language of all binary words which are cube-containing
or have a length which is not a power of 10 is one-sided
block pumpable.
The language of all ternary words which are
square-containing or have a length which is not a power of
10 is one-sided block pumpable.

Thus the one-sided block pumping lemma is not matching.

Theorem
Only a subclass of the regular languages satisfies the
one-sided block pumping lemma with constant k = 2 and
arbitrary h. These languages are unions of a finite set with
sets of the form {w ∈ Υ∗ : |w| ≥ h} where Υ is a subset of
the alphabet.
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Computing the pump

An automatic function is a function recognised by a finite
automaton which reads input and output synchronously,
that is, each of them with one symbol per cycle with a
special symbol for the case that input or output are
exhausted.

So a pump inside a word, say 010011010, will be marked
off by inserting @ at the beginning and end, the output is
then 01@0011@010 and the pump is 0011.

Thus one can simplify the concept of automatic function
here with saying that an NFA goes over the word and is in
special states while marking off the pump.
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Regular Ogden’s Lemma

Ogden’s Lemma allows to mark some symbols by making
them green. One could consider it as a game.

Ogden’s Pumping Lemma for Regular Languages
A language L satisfies the lemma iff there is a constant k
such that for every input word w out of which at least k
symbols are green, the word can be split into x,y, z such
that y contains at least one and at most k green symbols

and L(xyz) = L(xyhz) for all h ∈ N.

Example. L is all binary words with an even number of 1.
Constant is k = 2.
If there is a green 0 in the input word then pump this 0 else
there are two green 1 and pump an interval from one green
1 to the next 1 before or after it including the 0s in between.
So 001001001 is mapped to 001@0@01001

and 0011001001 is mapped to 001@1001@001.
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Two-Sided Automatic Ogden Lemma 1

Theorem
If a language L satisfies the two-sided automatic Ogden
Lemma then L is regular.

Proof. The nondeterministic algorithm just assumes that
always the first k symbols are green and this type of input is
enough to decide membership of L and it computes while
processing the input word u from front to back with constant
memory the output, such a model is equivalent to an NFA.

The memory consists of two words v,w of up to k symbols
plus a symbol a plus a subset p of the state-set N of the
NFA computing the pump plus another state s of N to track
the current pump.

The idea is to simulate a concatenated version of
successive down-pumping of the input word until less than
k symbols are left.
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Two-Sided Automatic Ogden Lemma 2

Nondetermistic Algorithm.
Whenever the state transition function δ has choices, it
nondeterministically picks one of the choices.
1. Initialise w = ε, p = ∅, s = startstate.
2. If input is exhausted then goto 8 else Read a.
3. Update s = δ(s, a).
4. Update p to {δ(b, a) : b ∈ p}.
5. If s says “a not part of pump” then w = wa.
6. If |w| = k then begin p = p ∪ {s}; let s = δ(startstate,w);
let v be symbols of w after removal of those in the new
pump (note that |v| < k); let w = v; end.
7. Goto 2.
8. If all states in p∪ {s} are accepting then output L(w) else
reject computation.
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Applications

Above algorithm also works for two-sided traditional
pumping lemma and two-sided weak block pumping lemma.

For the first, the pump is always among the first k symbols
and covered by above algorithm.

For the latter, one makes all blocks except the last one
containing one symbol and then the pump is either a subset
of the first k symbols or a tail starting somewhere among
the first k+ 1 symbols until the end of the word. This is also
covered by the above algorithm.

Theorem
Thus the automatic versions of the two-sided regular
Ogden’s Pumping Lemma, the two-sided traditional
pumping lemma and the two-sided weak block pumping
lemma are all matching.
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Regular Ogden Lemma 1

Proposition
Let f(x) be the number of 1 minus the number of 0 in the
word x and L = {x ∈ {0,1, . . .}∗ : f(x) = 0}. Now L satisfies
the two-sided regular Ogden Lemma.

Proof. The constant is 2. Given a word u with at least two
green characters, one splits the word into blocks such that
each block contains exactly one green letter. Now one
takes the first option which applies:

If there is a block y with f(y) = 0 then one pumps this block.
Pumping a balanced word does not change membership in L

as f(xykz) = f(xyz) for all k ∈ N.
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Regular Ogden Lemma 2

If there are two neighbouring blocks y, z with f(y) · f(z) < 0

then one selects first that block, say y with f(y) · f(yz) ≤ 0.
Let z′ = z and as long as f(yz′) 6= 0 one deletes the last
symbol of z′. This algorithm terminates with nonempty z′

due to the discrete intermediate value theorem. Now one
pumps yz′.

The remaining case is that all blocks have the same sign,
say f(y) > 0 for all blocks y in the splitting. So one picks

any y and pumps it, all resulting words xykz satisfy

f(xykz) > 0. Thus pumping is also here possible.

Note. L does not satisfy the one-sided regular traditional
pumping lemma.
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Two-Sided Pumping Limitations

Theorem
The automatic two-sided weak pumping lemma is satisfied
by {u ∈ {0,1}∗ : u has as many 0s as 1s}.

Method: Pump first occurrence of 01,10 which exists; for
{a}+{a}+, pump first symbol. Constant is k = 2.

However, every language L which obeys the automatic
weak pumping lemma satisfies that it can be decided in
quadratic time.
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One-sided Automatic Pumping

Theorem
The one-sided automatic regular Ogden Lemma is not
matching.

Method: Let L be the language of all square-containing
ternary words and let k = 20. If there is a square of up to 18

symbols then pump any marked symbol outside it else
there are two occurrences of a symbol a with a marked b

plus perhaps up to two further symbols between the two a,
pump the symbols strictly between the two a.

The same applies to traditional pumping lemma and weak
traditional pumping lemma.

Fact [Chak, Freivalds, Stephan and Tan 2016]
All languages of the form L∗ satisfy the one-sided weak
block pumping lemma and the pump is the full word, thus
automatic.
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Regular Bader-Moura Lemma
Definition [Bader and Moura 1982]
The regular version of the Pumping Lemma of Bader and
Moura can be stated as follows: If L is regular then there is
a constant k such that for all words u which have
distinguished symbols (painted in green) and excluded
symbols (painted in red) where the word contains a block
(subword) having at exactly k green and no red symbols,

one can split u into x,y, z such that ∀h ∈ N [L(u) = L(xyhz)]
and in y are 1 to k green and no red symbols.

Note that this subword condition is satisfied whenever the
number of the green symbols is at least (k− 1) times the
red symbols plus k and that for the context-free original
version the green symbols had to outnumber the red ones
exponentially.

The two-sided automatic Bader-Moura Lemma is matching,
so the one-sided is of interest.
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Example

Let the alphabet contain at least two symbols and let L
contain all cube-containing words as well as all words
whose length is not a nonzero power of 10. Then L satisfies
the automatic Bader-Moura lemma with constant 2.

Given a word u with a subword containing two green and no
red symbols, one can split u as vabw where a is a green
symbol and b is a further symbol which is not red next to a.

If the length of u is odd then all words v(ab)hw with

h ∈ {0} ∪ {2,3,4, . . .} are in L else all words vahbw with
h ∈ {0} ∪ {2,3,4, . . .} are in L. This is due to the fact that
h ∈ {0,2} produces an odd length word and h ≥ 3

produces a cube-containing word.

Note that an automatic function can detect whether the
length is odd and where the first occurrence of an ab as
above in the word is. Matching Regular Pumping Lemmas and Automaticity – p. 19



Generalisation
Theorem
If L is (automatically) one-sided block pumpable then L

satisfies (automatically) the one-sided regular pumping
Lemma of Bader and Moura.

Proof. Let k be the block pumping constant and choose the
same constant k for the Bader-Moura Lemma.

Given now a word u ∈ L with red and green symbols such
that there are k green symbols with no red ones between
them, an automatic function can now insert the separation
markers @ exactly before each of the k green symbols and
split the word u into blocks so that each inner block
contains exactly one green and no red symbol. Now the
pump consists of some consecutive inner blocks.

If the pump selection function of block pumping lemma is
automatic, also the overall function to compute the pump
from the coloured word is automatic.
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Open Problem

Conjecture
If a language L is automatically one-sided block pumpable
then it is regular.

Note that for the case of only one inner block, the block
pumping function is trivial and thus automatic and every
language pumpable with this constant is regular.

Furthermore, for the unary alphabet, one-sided block
pumpable languages are regular. This holds in general for
all one-sided block pumpable languages with polynomial
growth [Chak, Freivalds, Stephan, Tan 2016].

None of the known examples of one-sided block pumpable
languages admits an automatic pump function.
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Summary

Two-sided automatic pumping is matching, that is,
characterising the regular languages, for the traditional
pumping lemma, the regular variant of Ogden’s Pumping
Lemma, the weak block pumping lemma as well as all
pumping lemmas stronger than these.

The automatic two-sided weak traditional pumping lemma
is not matching, but is satisfied only by quadratic time
decidable languages.

For one-sided pumping, various examples are found where
one-sided automatic pumping is not matching, for example
Ogden’s Pumping Lemma and traditional pumping lemma
and weak block pumping lemma.

Open Problem. Is the one-sided automatic block pumping
lemma matching?
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