
NATIONAL UNIVERSITY OF SINGAPORE

CS 5230: Computational Complexity

Semester 2; AY 2023/2024; Midterm Test

Time Allowed: 60 Minutes

INSTRUCTIONS TO CANDIDATES

1. Please write your Student Number. Do not write your name.

2. This assessment paper consists of FOUR (4) questions and comprises NINE (9)
printed pages.

3. Students are required to answer ALL questions.

4. Students should answer the questions in the space provided.

5. This is a CLOSED BOOK assessment with one helpsheet.

6. You are not permitted to communicate with other people during the exam and
you are not allowed to use additional material beyond the helpsheet.

7. Every question is worth FIVE (5) marks. The maximum possible marks are 20.

STUDENT NO:

This portion is for examiner’s use only

Question Marks Remarks
Question 1:
Question 2:
Question 3:
Question 4:
Total:

Question 1 [5 marks] CS 5230 – Solutions

Let F (x) = (x+ 1)3 modulo x2 and G(x) = 2x (plain number, no modulo). Here the
input x is an integer with x > 0. How much computation time needs the computation
in the worst case, here the computation time is measured in the size n of the input
and size(x) = min{n ≥ 1 : x ≤ 2n}.

� F : Constant Time; Linear Time; Polynomial Time;
Exponential Time or more;

� G: Constant Time; Linear Time; Polynomial Time;
Exponential Time or more.

For both, F and G make a choice and provide an Addition Machine program wit-
nessing this complexity class; the choice should be the best possible time complexity.
If better classes do not apply, explain in few lines why.

For info: Addition machines can do the following operation in O(1) as by the machine
model: Adding, Subtracting, Comparing (=, <,>), Assignment, Goto, Conditional
Goto, Read, Write. A sample program computing the logarithm:

Line 1: Read x;

Line 2: y = 1; z=0;

Line 3: If y >= x Then Goto Line 7;

Line 4: y = y+y;

Line 5: z = z+1;

Line 6: Goto Line 3;

Line 7: Write z;

Line 8: End.

This sample program runs in time linear of the input size, as the program just com-
putes the logarithm, that is, the first z with 2z ≥ x. The value of y is 2z throughout
the program.

Write down your programs and comments starting from here.

Solution. As (x + 1)3 = x3 + 3x2 + 3x + 1, the result modulo x2 is 3x + 1. This
result can be computed by an addition machine in constant time as witnessed by the
following program:

Line 1: Read x;

Line 2: y = x+x;

Line 3: y = y+x;

Line 4: y = y+1;

Line 5: If x = 3 then y = 1;

Line 6: If x = 2 then y = 3;

Line 7: If x = 1 then y = 0;

Line 8: Write y;

Line 9: End.

The case distinction at the end is to capture the cases where 3x+1 ≥ x2. They need
an adjustment of the result; for a constant time program, it must be made this way,
as computing the square takes linear time and is thus not possible.

2

For the second program, one needs exponential time, as one needs to double up a
number from at most logarithmic size to size x and each addition or subtraction can
increase the size (number of binary digits) of the largest register or constant in the
program by at most 1. As the output is a number of exponential size, the run time
is at least exponential. The following program does this:

Line 1: Read x;

Line 2: y = 1;

Line 3: If x < 1 Then Goto Line 7;

Line 4: y = y+y;

Line 5: x = x-1;

Line 6: Goto Line 3;

Line 7: Write y;

Line 8: End.

This sample program runs in time exponential of input size, as the size n of x satisfies
x ∈ Θ(2n).

3

Question 2 [5 marks] CS 5230 – Solutions

Which of the following problems is known to be in LOGSPACE:

1. Given a context-free grammar and a word, check whether the grammar
generates the word;

2. Given a binary word, decide whether it is in the fixed context-sensitive
language {uvuw ∈ {0, 1}∗ and u, v, w all have the same length};

3. Given a 4SAT formula, decide whether it has a satisfying assignment.

Tick one option and explain how a LOGSPACE algorithm works for this problem.

Solution. The second choice is in logarithmic space. The idea is to count the length n
of the word and divide it by 4 and then, for each of the positions ℓ = 0, 1, . . . , n/4−1,
compare whether the symbol there is the same as at the position ℓ+ n/2. If so, then
accept else reject; furthermore, reject all inputs whose length is not a multiple of 4.
These checks can be done in LOGSPACE and the algorithm can be implemented with
few variables tracking the current and the target positions when moving around in
the input word. The variables can be stored on the work tape in logarithmic space,
as they take values between 0 and n.

The first problem is P-complete and the third is NP-complete, see slides number 69
for first problem and slide 161 for 4SAT where the best algorithm known runs in time
O(1.4986n) and thus not in LOGSPACE; if they would be in LOGSPACE then P or
NP, respectively, would collapse to LOGSPACE what is unlikely.

4

Question 3 [5 marks] CS 5230 – Solutions

Recall that X3SAT is the problem to find to an instance where all clauses have at
most 3 literals a solution where in every clause exactly one instance is true.

Consider the following X3SAT algorithm. It always takes the first case which applies.

1. If there is a one-literal clause, then set the corresponding literal true and simplify
accordingly.

2. If one of the clauses of the form x∨ x∨ y, x∨ x or x∨ y ∨¬y appears or if two
clauses of the form x ∨ y ∨ w, x ∨ ¬y ∨ w appear then set x = 0 and simplify
accordingly.

3. If there is a two-literal clause x∨y then replace x by ¬y and ¬x by y everywhere
and remove the clause x ∨ ¬x.

4. If there is a clause sharing at most one variable with other clauses, then remove
it. Also remove clauses of the form x ∨ ¬x.

5. If there are clauses x∨ y ∨ v, x∨ y ∨w then set v = w and simplify accordingly.

6. If there are clauses x ∨ y ∨ v, ¬x ∨ ¬y ∨ w, then set x = ¬y, v = 0, w = 0 and
simplify accordingly.

7. If there is a clause x ∨ y ∨ z such that the variables of the literals x, y appear
also in other clauses, then branch x = 1, y = 0, z = 0 versus x = 0, y = ¬z.

Assume that when branching x ∨ y ∨ z according to case 7, the second clause where
x appears is either of the form x ∨ v ∨ w or ¬x ∨ v ∨ w. The further clause where y
appears is either y ∨ r ∨ s or ¬y ∨ r ∨ s. Note that every clause shares at least two
variables with other clauses when branching occurs.

Explain why other cases (like x, y jointly appearing in another clause) do not arise
when the algorithm goes into case 7 for branching and find the best branching fac-
tor according to the table below (only the cases in the table are relevant) for the
branching. Case x = 1 and Case x = 0 can, according to different cases, lead to the
elimination of the number of variables listed in a row.

Case x = 1 Case x = 0 Branching Factor
5 2 1.2365
5 3 1.1938
5 4 1.1673
5 5 1.1486
6 2 1.2106
6 3 1.1739
6 4 1.1509
6 5 1.1347

Provide your branching factor for the algorithm (the c with O(cn) performance) and
explain the underlying cases considered.

Solution. Note that the case that x once appears with y and once appears with ¬y in
a clause is eliminated by the second rule. The sixth rule eliminates the case that x∨y

5

appears in two clauses, the seventh rule eliminates the case that x ∨ y and ¬x ∨ ¬y
appear both in a clause. Thus if x, y appear in one clause together, then they do not
do it in any other clause.

Now consider the case where x appears in this form in two clauses. If x = 1 then in
both clauses four further variables are set to 0. At least one of them, y, appears in a
further clause, so setting y = 0 causes either r = ¬s or both r, s being 0 due to the
corresponding subcase; one assumes the worse case and so 6 variables are eliminated
when x = 1. When x = 0 then y = ¬z and v = ¬w, thus three variables are elimi-
nated and the branching factor is 1.1739 in this case.

The other case is that x occurs once as x and once as ¬x. If x = 1 then y, z are set
to 0, v is set to ¬w and y causes also in some other clauses a further elimination. So
5 variables are eliminated. When x = 0 one can argue symmetrically as the other
clause is ¬x∨v∨w and one of v, w appears elsewhere in a clause. So both cases x = 1
and x = 0 eliminate five variables and the branching factor is 1.1486. So the overall
performance of the algorithm is O(1.1739n), as the worse branching factor has to be
taken.

Additional explanation (not required for the solution): The clause in item 4 can be
removed, as every assignment making all other clauses true by choosing the variables
occurring there accordingly can be extended to an assignment also making this clause
true, as this assignment fixes at most one variable in the clause and, due to the other
elimination cases before, this clause contains at least three variables so that the re-
maining variables can be chosen such that exactly one literal is true.

6

Question 4 [5 marks] CS 5230 – Solutions

The Chomsky hierarchy consists of four levels: Those of languages generated by reg-
ular, context-free, context-sensitive and unrestricted grammars, respectively.

Which of the first three coincide with space complexity classes? And which of the
following classes are it: CONSTANTSPACE, LOGSPACE, NLOGSPACE, POLY-
LOGSPACE, LINSPACE, NLINSPACE, PSPACE. Provide these equialvalences and
explain which class or classes are not equivalent to any of the given complexity classes.

Solution. Regular languages can be recognised by deterministic finite automata.
These are Turing machines which read the word from the left to the right and do not
use any worktape – all memory is in the form of a state of the Turing machine. Once
the Turing machine has read the complete word, it says ACCEPT or REJECT.

All context-free languages are in the class POLYLOGSPACE. However, there are
even LOGSPACE decidable language which are not context-free. An example is the
language of all words 0n1n0n which is in LOGSPACE by counting the number of digits
of the three subwords and comparing them, but the language is a standard example
of a language which cannot be generated by a context-free grammar.

NLINSPACE is sufficient to simulate a context-sensitive grammar which step by step
(on the work tape) generates a word until it reaches the length of the input. If it
overshoots or differs from the input word, the input word is not accepted. However,
if the word generated coincides with the input word, the input word is accepted.

By the Theorem of Kuroda from 1964, NLINSPACE also consists entirely of context-
sensitive languages; that is, context-sensitve languages are exactly the NLOGSPACE
recognisable languages. It is unknown whether the class of all context-sensitive lan-
guages also coincides with the deterministic class LINSPACE.

Explanation for grammars: Unrestricted grammars are those given by rules where
the only requirement is that in a rule v → w at least one of the symbols in v is a non-
terminal and this condition is also satisfied by all other types of grammars. Context-
sensitive grammars are those where each rule v → w also satisfies that |v| ≤ |w|,
that is, w is at least as long as v (except for the case that the empty word is in the
language and some additional rules apply to handle that). Context-free grammars
have in rules on the left side exactly one symbol which is a nonterminal. Regular
grammars are context-free grammars with the additional property that the right side
w has at most one nonterminal and, if this exists, it is always the last symbol of all
the symbols in w.

END OF MIDTERM TEST.

7

