SJT- reducibility and its equivalents

André Nies joint work with Greenberg and Turetsky

Jan 13, 2021

Main Def

SJT-reducibility was introduced in Exercise of my 2009 book. It weakens \leq_T .

Definition (Main: SJT-reducibility)

- ► For an oracle *B*, a *B*-c.e. trace is a u.c.e. in *B* sequence $\langle T_n \rangle_{n \in \mathbb{N}}$ of finite sets.
- For a function h, such a trace is h-bounded if $|T_n| \le h(n)$ for each n.
- ► A set A is jump-traceable if there is a computably bounded \emptyset -c.e. trace $\langle T_n \rangle_{n \in \mathbb{N}}$ such that $J^A(n)$ is in T_n if it is defined.

For sets A, B, we write $A \leq_{SJR} B$ if for each order function h, there is a B-c.e., h-bounded trace for J^A .

This is transitive by an easy argument.

Proposition

For each K-trivial set B, there is a c.e. K-trivial set A such that $A \not\leq_{SJR} B$.

A Demuth test is a sequence $\langle G_m \rangle_{m \in \mathbb{N}}$ of open subsets of $\{0, 1\}^{\mathbb{N}}$ such that $\lambda G_m \leq 2^{-m}$ and there is an ω -c.a. function p such that $G_m = [W_{p(m)}]^{\prec}$.

Definition (Weak Demuth randomness)

- ▶ A nested Demuth test is a Demuth test $\langle G_m \rangle_{m \in \mathbb{N}}$ such that $G_m \supseteq G_{m+1}$ for each m.
- ▶ One says that Z is weakly Demuth random if $Z \notin \bigcap_m G_m$ for each nested Demuth test $\langle G_m \rangle_{m \in \mathbb{N}}$.

A cost function is a computable functions $c : \mathbb{N} \times \mathbb{N} \to \mathbb{Q}^+$. c(x, s) is the cost of changing A(x) at stage s. (A_s) satisfies c if the total of changes is finite.

Definition

Let c be a cost function. For sets A, B, we write $A \models_B c$ if there is a *B*-computable enumeration of $\langle A_s \rangle$ satisfying c.

Definition (Benign cost functions)

A cost function **c** is benign if from a rational $\epsilon > 0$, we can compute a bound on the length of any sequence $n_1 < s_1 \leq n_2 < s_2 \leq \cdots \leq n_{\ell} < s_{\ell}$ such that $\mathbf{c}(n_i, s_i) \geq \epsilon$ for all $i \leq \ell$. For example, \mathbf{c}_{Ω} is benign, with the bound being $1/\epsilon$.

Theorem (see Logic Blog, 2020)

- The following are equivalent for K-trivial c.e. sets A, B.
 - (a) $A \leq_{SJR} B$
- (b) $A \models_B \mathbf{c}$ for every benign cost function \mathbf{c}
- (c) $A \leq_T B \oplus Y$ for each Martin-Löf-random set Y that is not weakly Demuth random
- (d) $A \leq_T B \oplus Y$ for each Martin-Löf-random set $Y \in \mathcal{C}$, where \mathcal{C} is the class of the ω -c.a., superlow, or superhigh sets.