SJT- reducibility and its equivalents

André Nies
joint work with
Greenberg and Turetsky

Main Def

SJT-reducibility was introduced in Exercise of my 2009 book. It weakens \leq_{T}.

Definition (Main: SJT-reducibility)

- For an oracle B, a B-c.e. trace is a u.c.e. in B sequence $\left\langle T_{n}\right\rangle_{n \in \mathbb{N}}$ of finite sets.
- For a function h, such a trace is h-bounded if $\left|T_{n}\right| \leq h(n)$ for each n.
- A set A is jump-traceable if there is a computably bounded \emptyset-c.e. trace $\left\langle T_{n}\right\rangle_{n \in \mathbb{N}}$ such that $J^{A}(n)$ is in T_{n} if it is defined.

For sets A, B, we write $A \leq_{S J R} B$ if for each order function h, there is a B-c.e., h-bounded trace for J^{A}.

This is transitive by an easy argument.

Proposition

For each K-trivial set B, there is a c.e. K-trivial set A such that $A \not \leq_{S J R} B$.

A Demuth test is a seqence $\left\langle G_{m}\right\rangle_{m \in \mathbb{N}}$ of open subsets of $\{0,1\}^{\mathbb{N}}$ such that $\lambda G_{m} \leq 2^{-m}$ and there is an ω-c.a. function p such that $G_{m}=\left[W_{p(m)}\right]^{\prec}$.

Definition (Weak Demuth randomness)

- A nested Demuth test is a Demuth test $\left\langle G_{m}\right\rangle_{m \in \mathbb{N}}$ such that $G_{m} \supseteq G_{m+1}$ for each m.
- One says that Z is weakly Demuth random if $Z \notin \bigcap_{m} G_{m}$ for each nested Demuth test $\left\langle G_{m}\right\rangle_{m \in \mathbb{N}}$.

A cost function is a computable functions $c: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Q}^{+}$. $c(x, s)$ is the cost of changing $A(x)$ at stage s. $\left(A_{s}\right)$ satisfies c if the total of changes is finite.

Definition

Let c be a cost function. For sets A, B, we write $A=_{B} c$ if there is a B-computable enumeration of $\left\langle A_{s}\right\rangle$ satisfying c.

Definition (Benign cost functions)

A cost function \mathbf{c} is benign if from a rational $\epsilon>0$, we can compute a bound on the length of any sequence $n_{1}<s_{1} \leq n_{2}<s_{2} \leq \cdots \leq n_{\ell}<s_{\ell}$ such that $\mathbf{c}\left(n_{i}, s_{i}\right) \geq \epsilon$ for all $i \leq \ell$. For example, \mathbf{c}_{Ω} is benign, with the bound being $1 / \epsilon$.

Theorem (see Logic Blog, 2020)

The following are equivalent for K-trivial c.e. sets A, B.
(a) $A \leq_{S J R} B$
(b) $A \neq{ }_{B} \mathbf{c}$ for every benign cost function \mathbf{c}
(c) $A \leq_{T} B \oplus Y$ for each Martin-Löf-random set Y that is not weakly Demuth random
(d) $A \leq_{T} B \oplus Y$ for each Martin-Löf-random set $Y \in \mathcal{C}$, where \mathcal{C} is the class of the ω-c.a., superlow, or superhigh sets.

