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Is There a Simplest Natural Unsolvable Problem? ;!

» Simplicity can be measured in different ways. For instance,
the weakest natural unsolvable problem with respect to Turing
reducibility seems to be the halting problem, whereas there are
weaker natural problems with respect to many-one-reducibility.

» Naturality is supposed to express that the problem is not
“artificially constructed” or exists only by invocation of the
Axiom of Choice etc. A natural problem should be one with a
simple definition that is of independent genuine interest.

» Solvability again refers to the underlying reducibility. Here we
are interested in problems as multi-valued functions with
respect to Weihrauch reducibility and solvability can either be
meant in the computable or in the continuous sense.



Weihrauch Reducibility ;"

Let f:C X =2 Y and g:C Z =% W be two multi-valued functions.

F
p K G H F(p)
T
> fis to g, f <y g, if there are computable

H,K :C NV — NN such that H(id, GK) I- f whenever G - g.

» We write f <J, g for the continuous version of Weihrauch
reducibility, where the translation functions H, K are only
required to be

» The mentioned reducibilities all induce lattices. The lattice for
<w is usually referred to as



Basic Complexity Classes and Reverse Mathematics ;!

Perfect Subtree Theorem Cy ATRg
1
Bolzano-WeierstraB Theorem IZN
Monoton Convergence Theorem lim EiN EIII ACAy
Frostmann’s Lemma Cr=w éN x Con WKLg + |Z(1)
e
Weak Kénig's Lemma  Coy =y Co WKL
Weak Weak Kénig's Lemma ‘ \PCQN WWKLg
Intermediate Value Theorem CC[0,1]

Baire Category Theorem \ Cy IZ?
e

KN =sW CE BZ?
l
C RCA}



LPO as Simplest Discontinuous Function ;!
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By LPO : N — {0,1} we denote the
, which is defined by LPO(p) =1: <= p = 000....

Theorem (Folklore)

For a function f : N — NY the following are equivalent:
1. LPO <iy f,

2. f is discontinuous.

1. Early proofs of this result are due to von Stein (1989),
Weihrauch (1992), B. (1993).

2. Pauly (2010) has generalized this result to arbitrary
topological spaces (using a modified reducibility).

3. If one combines his proof with Schroder’s characterization of
sequential continuity, then the theorem generalizes to
functions f :C X — Y on admissibly represented spaces X, Y
with sequential continuity in place of continuity.



LPO in a Dichotomy X

discontinuous

LPO

id

continuous

Functions f : X — Y on admissibly represented spaces with
respect to continuous Weihrauch reducibility <j.



The Picture for Multi-Valued Problems %
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, is multi-valued. It is the problem: given an infinite
list that is possibly empty or contains at most one digit n € {0,1},
find one digit that is missing.
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LPO

LLPO

ACCy

id

continuous

LLPO., = ACCy :C NN = N is multi-valued, the so-called

, is multi-valued. It is the problem:
given an infinite list that is possibly empty or contains at most one
digit n € N, find one digit that is missing.
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LPO

LLPO

/ACCN/' NON
1d

continuous

NON : NV = NN p s {q: g £ p} is called the



A Weakest Discontinuous Multi-Valued Problem? %
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The Discontinuity Problem X

LPO

LLPO

y NON
DIS

id

continuous

DIS: NN = NN p s {q: U(p) # q}, where U:C NN — NN is a
fixed universal computable function.
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Effective Discontinuity ;"

Let ® be a defined by ®4(p) := U(q, p).

Definition

Let (X,dx) and (Y,dy) be represented spaces. A problem
f:C X =Y is called if there is a
continuous D : N — N such that for all g € N we obtain

D(q) € dom(fdx) and dy®,D(q) & foxD(q).

In this case the function D is called a of f.
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DIS as Simplest Effectively Discontinuous Problem ;!

For a problem f :C X == Y the following are equivalent:
1. DIS <§y f,

2. f is effectively discontinuous.

The proof is based on the Recursion Theorem.
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f:C NN = NN that is discontinuous, but not effectively so.




e ol
An Unnatural Discontinuous Problem J

Assuming the Axiom of Choice (AC) there exists a problem
f:C NN = NN that is discontinuous, but not effectively so.

1. The fact can be derived from the existence of
(which are sets B C NV such that B as well as its
complement have non-empty intersection with every
uncountable closed set A C N'.)

2. This construction can be seen as an infinitary version of Post’s
construction of an immune set.

3. By a direct transfinite recursion one can even strengthen the
result such that f becomes total and parallelizable.

4. Is the Axiom of Choice (AC) really necessary for this
construction?



Wadge Games ;!

Pauly and Nobrega have introduced Wadge games for problems.

Let f :C NV = N" be a problem. Then in a f two
players | and Il consecutively play words

» Player L wp wy wy ...=:r,

> Playerll: v v w ..=:gq,
with w;, v; € N*. The concatenated sequences (r, q) € (NN U N*)?
are called a of the game f. Player Il the run (r, q) of f, if

(r,q) € graph(f) or r ¢ dom(f). Otherwise Player |



Wadge Games

1

Pauly and Nobrega have introduced Wadge games for problems.

Let f :C NV = N" be a problem. Then in a f two
players | and Il consecutively play words

» Player L wp wy wy ...=:r,

> Playerll: v v w ..=:gq,
with w;, v; € N*. The concatenated sequences (r, q) € (NN U N*)?
are called a of the game f. Player Il the run (r, q) of f, if

(r,q) € graph(f) or r ¢ dom(f). Otherwise Player |

Theorem
Consider the game f :C NN — NN, Then the following hold:
1. f is continuous <= Player Il has a winning strategy for f,

2. f is effectively discontinuous <= Player | has a winning
strategy for f.

<
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A Dichotomy Under Determinacy

Theorem

In ZF + DC + AD every problem f :C X = Y s either continuous
or effectively discontinuous, i.e., either f <5y id or DIS <§y, f.

Proof idea. The theorem can be proved by a reduction of Wadge
games to Gale-Stewart games. Any such game is determined by
the axiom AD, which means that either player | or player |l has a
winning strategy. U

Corollary

In ZFC every problem f :C X = Y on Polish spaces X, Y such
that graph(f) and dom(f) are Borel, is either continuous or
effectively discontinuous, i.e., either f <5, id or DIS <jj f.

Summary: DIS can be considered as the simplest natural
discontinuous problem!



Parallelization and Summation



. - -
Parallelization

Definition

For every problem f :C X = Y we define its
nf :C XY = YN by dom(Mf) := dom(f)" and

Nf(xn) :={(yn) € yN. (Yn) yn € f(xn)}

for all (x,) € XN, We usually write f:=T1f and we call a problem
if f=w f holds.

Parallelization is known to be a closure operator on the Weihrauch
lattice (and an analogue of the ! operator in linear logic).



Parallelization

1

Definition

For every problem f :C X = Y we define its

nf :C XY = YN by dom(Mf) := dom(f)" and
Nf(x,) == {(va) € YN : (¥n) yn € F(xn)}

for all (x,) € XN, We usually write f:=T1f and we call a problem
if f=w f holds.

Parallelization is known to be a closure operator on the Weihrauch
lattice (and an analogue of the ! operator in linear logic).

Theorem
DIS =y NON.

The proof is based on the Recursion Theorem.

Slogan: Non-computability is the parallelization of discontinuity!



For every problem f :C X = Y we define its
Sf:C XN = V" by dom(Zf) := dom(f)" and

TF(xn) == {(yn) €Y' : (3n) yn € F(x)}

for all (x,) € X". We also write f := ¥f and we call a problem
if fzwf holds.

Here Y denotes the completion of Y (a construction that saw a
recent surge of interest after work of Dzhafarov (2019)).



Summation

1

Definition
For every problem f :C X = Y we define its
Sf:C XN = V" by dom(Zf) := dom(f)" and

TF(xn) == {(yn) €Y' : (3n) yn € F(x)}

for all (x,) € X". We also write f := ¥f and we call a problem
if fzwf holds.

Here Y denotes the completion of Y (a construction that saw a
recent surge of interest after work of Dzhafarov (2019)).

Proposition

The summation operator f — X f is an interior operator on the
Weihrauch lattice.

Summation can be seen as the analogue of the 7 operator in linear
logic.



'
The Parallelization Summation Pentagons "!

In the general situation parallelization and summation can generate
at most five different problems in the Weihrauch lattice:

nf

>Nf

nxf

There are no cross reductions in a proper pentagon (otherwise the
pentagon collapses to a smaller graph).
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The Parallelization Summation Pentagons "!

In the general situation parallelization and summation can generate
at most five different problems in the Weihrauch lattice:

nf

>Nf

nxf

There are no cross reductions in a proper pentagon (otherwise the
pentagon collapses to a smaller graph).

Surprisingly, X1 and MXf are always “computability theoretic”
problems that can be expressed using Turing cones.



- - -
Turing Cone Versions

Definition

Let f :C X == Y be a problem. We define the
fP.C X = D by dom(fP) := dom(f) and
F2(x) := {degr(q) € D: By <19) y € F(x)}.
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Turing Cone Versions

Definition

Let f :C X == Y be a problem. We define the
fP.C X = D by dom(fP) := dom(f) and
F2(x) := {degr(q) € D: By <19) y € F(x)}.

Proposition

f — P is an interior operator on the Weihrauch lattice.

Proposition

(NF)P =ow Nf and (NXF)P =4w NZf for every problem f.

Corollary

f— Xf and f — fP are identical restricted to parallelizable
Weihrauch degrees.



The LLPO Pentagon X

WKL

PA

LLPO

NON

DIS

Here MLLPO =w WKL was proved by B. and Gherardi (2011).

WKL denotes Weak Konig's Lemma and PA the problem of finding
a Turing degree that is of PA degree relative to the given input.



The ACC Pentagon X

DNCy

DNCER

ACCy

NON

DIS

Here NMACCy =w DNCpy was proved independently by Higuchi and
Kihara (2014) and B., Hendtlass and Kreuzer (2017).

DNCy denotes the problem of finding a point in Baire space that is
diagonally non-computable relative to the given input.



Al

» We claim that in a well justified way the discontinuity problem
DIS can be seen as the weakest natural unsolvable problem.

» The existence of other weak unsolvable problems depends on
the axiomatic setting.

» Parallelization of the discontinuity problem DIS yields the
non-computability problem.

» Summation of LLPO (and ACCy and other problems) yields
the discontinuity problem DIS.

> Hence the discontinuity problem is also naturally behaved with
respect to the algebraic structure of the Weihrauch lattice.

» All this is work in progress, nothing has been published yet
and there are many open questions left.
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