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Is There a Simplest Natural Unsolvable Problem?

I Simplicity can be measured in different ways. For instance,
the weakest natural unsolvable problem with respect to Turing
reducibility seems to be the halting problem, whereas there are
weaker natural problems with respect to many-one-reducibility.

I Naturality is supposed to express that the problem is not
“artificially constructed” or exists only by invocation of the
Axiom of Choice etc. A natural problem should be one with a
simple definition that is of independent genuine interest.

I Solvability again refers to the underlying reducibility. Here we
are interested in problems as multi-valued functions with
respect to Weihrauch reducibility and solvability can either be
meant in the computable or in the continuous sense.
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Weihrauch Reducibility

Let f :⊆ X ⇒ Y and g :⊆ Z ⇒W be two multi-valued functions.

K HG

F

p F (p)

I f is Weihrauch reducible to g , f ≤W g , if there are computable
H,K :⊆ NN → NN such that H〈id,GK 〉 ` f whenever G ` g .

I We write f ≤∗W g for the continuous version of Weihrauch
reducibility, where the translation functions H,K are only
required to be continuous.

I The mentioned reducibilities all induce lattices. The lattice for
≤W is usually referred to as Weihrauch lattice.
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Basic Complexity Classes and Reverse Mathematics
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LPO as Simplest Discontinuous Function

By LPO : NN → {0, 1} we denote the limited principle of
omniscience, which is defined by LPO(p) = 1 :⇐⇒ p = 000....

Theorem (Folklore)

For a function f : NN → NN the following are equivalent:

1. LPO ≤∗W f ,

2. f is discontinuous.

1. Early proofs of this result are due to von Stein (1989),
Weihrauch (1992), B. (1993).

2. Pauly (2010) has generalized this result to arbitrary
topological spaces (using a modified reducibility).

3. If one combines his proof with Schröder’s characterization of
sequential continuity, then the theorem generalizes to
functions f :⊆ X → Y on admissibly represented spaces X ,Y
with sequential continuity in place of continuity.
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LPO in a Dichotomy

LPO

id

discontinuous

continuous

Functions f : X → Y on admissibly represented spaces with
respect to continuous Weihrauch reducibility ≤∗W.
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The Picture for Multi-Valued Problems

LPO

id

LLPO

continuous

C2 = LLPO :⊆ NN ⇒ {0, 1}, the so-called lesser limited principle
of omniscience, is multi-valued. It is the problem: given an infinite
list that is possibly empty or contains at most one digit n ∈ {0, 1},
find one digit that is missing.
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The Picture for Multi-Valued Problems

LPO

id

LLPO

ACCN

continuous

LLPO∞ = ACCN :⊆ NN ⇒ N is multi-valued, the so-called
all-or-co-unique choice principle, is multi-valued. It is the problem:
given an infinite list that is possibly empty or contains at most one
digit n ∈ N, find one digit that is missing.
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The Picture for Multi-Valued Problems

LPO

id

LLPO
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continuous

NON

NON : NN ⇒ NN, p 7→ {q : q 6≤T p} is called the
non-computability problem.
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A Weakest Discontinuous Multi-Valued Problem?

LPO

id

LLPO

ACCN

?

continuous

NON



;
The Discontinuity Problem
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The Discontinuity Problem

LPO
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DIS : NN ⇒ NN, p 7→ {q : U(p) 6= q}, where U :⊆ NN → NN is a
fixed universal computable function.
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DIS as Simplest Effectively Discontinuous Problem

Theorem

For a problem f :⊆ X ⇒ Y the following are equivalent:

1. DIS ≤∗W f ,

2. f is effectively discontinuous.

The proof is based on the Recursion Theorem.

DIS

id

effectively discontinuous

continuous
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Effective Discontinuity

Let Φ be a defined by Φq(p) := U〈q, p〉.

Definition

Let (X , δX ) and (Y , δY ) be represented spaces. A problem
f :⊆ X ⇒ Y is called effectively discontinuous if there is a
continuous D : NN → NN such that for all q ∈ NN we obtain

D(q) ∈ dom(f δX ) and δY ΦqD(q) 6∈ f δXD(q).

In this case the function D is called a discontinuity function of f .

NN -

X -

Φq

f

?

δYδX

NN

Y
?
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DIS as Simplest Effectively Discontinuous Problem

Theorem

For a problem f :⊆ X ⇒ Y the following are equivalent:

1. DIS ≤∗W f ,

2. f is effectively discontinuous.

The situation resembles the case of productivity with ≤m:

N \ KK

productive
=effectively non-c.e.

computably enumerable
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DIS as Simplest Effectively Discontinuous Problem

Theorem

For a problem f :⊆ X ⇒ Y the following are equivalent:

1. DIS ≤∗W f ,

2. f is effectively discontinuous.

The situation resembles the case of productivity with ≤m:

N \ KK

productive
=effectively non-c.e.

computably enumerable

immune set
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DIS as Simplest Effectively Discontinuous Problem

Theorem

For a problem f :⊆ X ⇒ Y the following are equivalent:

1. DIS ≤∗W f ,

2. f is effectively discontinuous.

The proof is based on the Recursion Theorem.

DIS

id

effectively discontinuous

continuous

?
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An Unnatural Discontinuous Problem

Theorem

Assuming the Axiom of Choice (AC) there exists a problem
f :⊆ NN ⇒ NN that is discontinuous, but not effectively so.

1. The fact can be derived from the existence of Bernstein sets
(which are sets B ⊆ NN such that B as well as its
complement have non-empty intersection with every
uncountable closed set A ⊆ NN.)

2. This construction can be seen as an infinitary version of Post’s
construction of an immune set.

3. By a direct transfinite recursion one can even strengthen the
result such that f becomes total and parallelizable.

4. Is the Axiom of Choice (AC) really necessary for this
construction?
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Wadge Games

Pauly and Nobrega have introduced Wadge games for problems.

Definition

Let f :⊆ NN ⇒ NN be a problem. Then in a Wadge game f two
players I and II consecutively play words

I Player I: w0 w1 w2 ... =: r ,

I Player II: v0 v1 v2 ... =: q,

with wi , vi ∈ N∗. The concatenated sequences (r , q) ∈ (NN ∪ N∗)2
are called a run of the game f . Player II wins the run (r , q) of f , if
(r , q) ∈ graph(f ) or r 6∈ dom(f ). Otherwise Player I wins.

Theorem

Consider the game f :⊆ NN ⇒ NN. Then the following hold:

1. f is continuous ⇐⇒ Player II has a winning strategy for f ,

2. f is effectively discontinuous ⇐⇒ Player I has a winning
strategy for f .
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A Dichotomy Under Determinacy

Theorem

In ZF + DC + AD every problem f :⊆ X ⇒ Y is either continuous
or effectively discontinuous, i.e., either f ≤∗W id or DIS ≤∗W f .

Proof idea. The theorem can be proved by a reduction of Wadge
games to Gale-Stewart games. Any such game is determined by
the axiom AD, which means that either player I or player II has a
winning strategy. �

Corollary

In ZFC every problem f :⊆ X ⇒ Y on Polish spaces X ,Y such
that graph(f ) and dom(f ) are Borel, is either continuous or
effectively discontinuous, i.e., either f ≤∗W id or DIS ≤∗W f .

Summary: DIS can be considered as the simplest natural
discontinuous problem!
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Parallelization and Summation
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Parallelization

Definition

For every problem f :⊆ X ⇒ Y we define its parallelization
Πf :⊆ XN ⇒ Y N by dom(Πf ) := dom(f )N and

Πf (xn) := {(yn) ∈ Y N : (∀n) yn ∈ f (xn)}

for all (xn) ∈ XN. We usually write f̂ := Πf and we call a problem
parallelizable if f ≡W f̂ holds.

Parallelization is known to be a closure operator on the Weihrauch
lattice (and an analogue of the ! operator in linear logic).

Theorem

D̂IS≡W NON.

The proof is based on the Recursion Theorem.

Slogan: Non-computability is the parallelization of discontinuity!
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Summation

Definition

For every problem f :⊆ X ⇒ Y we define its summation

Σf :⊆ XN ⇒ Y
N

by dom(Σf ) := dom(f )N and

Σf (xn) := {(yn) ∈ Y
N

: (∃n) yn ∈ f (xn)}

for all (xn) ∈ XN. We also write f̂ := Σf and we call a problem
summable if f ≡W f̂ holds.

Here Y denotes the completion of Y (a construction that saw a
recent surge of interest after work of Dzhafarov (2019)).

Proposition

The summation operator f 7→ Σf is an interior operator on the
Weihrauch lattice.

Summation can be seen as the analogue of the ? operator in linear
logic.
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The Parallelization Summation Pentagons

In the general situation parallelization and summation can generate
at most five different problems in the Weihrauch lattice:

f

Σf

Πf

ΣΠf

ΠΣf

Π

Σ

Σ

Π

There are no cross reductions in a proper pentagon (otherwise the
pentagon collapses to a smaller graph).

Surprisingly, ΣΠf and ΠΣf are always “computability theoretic”
problems that can be expressed using Turing cones.
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Turing Cone Versions

Definition

Let f :⊆ X ⇒ Y be a problem. We define the Turing cone version
f D :⊆ X ⇒ D by dom(f D) := dom(f ) and
f D(x) := {degT(q) ∈ D : (∃y ≤T q) y ∈ f (x)}.

Proposition

f 7→ f D is an interior operator on the Weihrauch lattice.

Proposition

(Πf )D ≡sW ΣΠf and (ΠΣf )D ≡sW ΠΣf for every problem f .

Corollary

f 7→ Σf and f 7→ f D are identical restricted to parallelizable
Weihrauch degrees.
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The LLPO Pentagon

LLPO

DIS

WKL

PA

NON

Π

Σ

Σ

Π

Here ΠLLPO≡W WKL was proved by B. and Gherardi (2011).

WKL denotes Weak Kőnig’s Lemma and PA the problem of finding
a Turing degree that is of PA degree relative to the given input.
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The ACC Pentagon

ACCN

DIS

DNCN

DNCDN

NON

Π

Σ

Σ

Π

Here ΠACCN≡W DNCN was proved independently by Higuchi and
Kihara (2014) and B., Hendtlass and Kreuzer (2017).

DNCN denotes the problem of finding a point in Baire space that is
diagonally non-computable relative to the given input.
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Conclusion

I We claim that in a well justified way the discontinuity problem
DIS can be seen as the weakest natural unsolvable problem.

I The existence of other weak unsolvable problems depends on
the axiomatic setting.

I Parallelization of the discontinuity problem DIS yields the
non-computability problem.

I Summation of LLPO (and ACCN and other problems) yields
the discontinuity problem DIS.

I Hence the discontinuity problem is also naturally behaved with
respect to the algebraic structure of the Weihrauch lattice.

I All this is work in progress, nothing has been published yet
and there are many open questions left.
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A Survey as a Reference

There is a bibliography on Weihrauch complexity with more than 130 items:

http : //cca− net.de/publications/weibib.php
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