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Positive Equivalence Relations

Definition. An equivalence relation is called positive iff it is
an r.e. equivalence relation on N and the set of equivalent
pairs is recursively enumerable; furthermore, it is required
that there are infinitely many equivalence classes.

A subset A ⊆ N is called E-closed iff whenever x ∈ A and
xEy implies y ∈ A. E-closed sets consisting of finitely
many equivalence classes are called E-finite and an r.e.
E-closed sets consisting of infinitely many equivalence
classes are called E-infinite. The E-closure of a finite set is
always E-finite.

E is many-one reducible to F iff there is a recursive function
f such that all x,y satisfy xEy ⇔ f(x)F f(y).
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Examples

If A is a nonempty coinfinite r.e. set then the equivalence
relation E given as xEy ⇔ x = y ∨ (x ∈ A ∧ y ∈ A). If A is
simple then this has only E-finite and E-cofinite sets and a
set is E-cofinite iff it is a cofinite superset of A. [Ershov]

There is a theory of complete and precomplete positive
equivalence relations; complete ones allow to many-one
reduce every further equivalence relation to them.

All recursive positive equivalence relations are many-one
equivalent.

Recall that E-finite and E-infinite sets have to be both,
E-closed and recursively enumerable. Some positive
equivalence relation E has only one E-infinite set, namely
N. These equivalence relations are neither recursive nor
complete, also their equivalence classes are never
recursive.
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Realising Structures

Definition. A group G is realised by an equivalence relation
E iff one can identify the group members with equivalence
classes in a way that there is a recursive function f which
maps two representatives x,y of two group elements a,b to
a representative f(x,y) of a ◦ b; similarly for other algebraic
structures.

Example. Boone and Novikov (independently of each other)
constructed around 1955 finitely presented groups such
that their word problem was only a positive but not recursive
equivalence relation (on the set of all words over fixed
generators). Thus there are groups which can be realised
by some positive equivalence relation E but not by a
recursive one.

Relations. A structure which has a relation R requires that
the relation R respected E, that is, if xEx′ and yEy′ then
xRy if and only if x′Ry′. Similarly for functions.
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Recursive Equivalence Relations

Definition. A (countable) algebra has domain N and is given

by several functions from Nk → N.

Theorem. The following structures are only realised by
recursive positive equivalence relations (if at all):
(a) All finitely generated algebras where all nontrivial
quotients are finite, in particular arithmetic (N,+, ·),
(N,Succ) [Malcev 1961].
(b) All countable fields and simple groups [Ershov and
Goncharov 2000].
(c) All finitely presentable locally finite algebras, where
finitely presentable = finitely generated with finitely many
defining equations, locally finite = every two distinct x,y are
mapped to different elements by some homomorphism onto
a finite structure [Malcev 1961 and MacKenzie].
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Algebra-Degrees

Definition. For positive equivalence relations E and F,
E is algebra-reducible to F iff every algebra realised by E is
also realised by F.

Theorem [Gavryushkin, Khoussainov, Stephan 2016].
There are positive equivalence relations E which realise
exactly those algebras where all defining functions are
either projections or constant functions; these E form the
least algebra-degree.

Theorem [Khoussainov 2016].
Every E which realises some finitely generated algebra has
maximal algebra-degree.

Theorem [Khoussainov, Lempp and Slaman 2005].
There is a maximal algebra-degree which does not contain
any finitely generated algebra.
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Permutation Algebras

Definition. A permutation algebra consists of a bijection f

from N to N. E is perm-reducible to F iff every permutation
algebra realised by E is also realised by F.

Theorem [Gavryushkin, Khoussainov and Stephan 2016].
(a) The recursive positive equivalence relations form a
single maximal perm-degree.
(b) If E is many-one equivalent to F via a recursive
permutation then E is perm-equivalent to F; however, if only
E ≤m F and F ≤m E then it might be that E is not
perm-equivalent to F.
(c) There are minimal pairs of perm-degrees.
(d) There is an ascending chain of many-one degrees which
is at the same time an ascending chain of perm-degrees.
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Boolean Algebras

Definition [Badaev 1991]. A positive equivalence relation E

is precomplete iff for every recursive function f there is an x

with xE f(x).

Theorem [Bazhenov, Mustafa, Stephan and Yamaleev 2017].
(a) If E realises a Boolean algebra then all its equivalence
classes are uniformly many-one equivalent.
(b) Weakly precomplete positive equivalence relations do
not realise any Boolean algebra.
(c) The recursive positive equivalence relations are the only
ones which realise all recursive Boolean algebras, thus they
form a maximal element in the Boolean-algebra-derees.

Theorem [Bazhenov, Mustafa, Stephan and Yamaleev 2017].
Some positive equivalence relation E satisfies (a) all
equivalence classes are many-one equivalent to E, (b) E
realises an Abelian group, (c) E does not realise any
Boolean algebra.
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Realising Graphs

Definition. A graph (V,F) is realised by positive
equivalence relation E iff there is a bijection from V to the
equivalence classes of E such that the image of F is
recursive enumerable.

Theorem [Malcev 1961].
A positive equivalence relation can realise the directed
graph (N,Succ) iff it is recursive; the same holds for
(Z,Succ).

Example. Given a finitely generated group G with
nonrecursive word problem and generators {a,b, c, . . .}
which includes the neutral element, one considers the
graph with nodes G× {a,b, c, . . .} and the edge relation
{((v, a), (w,b)) : a = b ∨ v ◦ a = w}; this directed graph with
self-loops can only be realised by some nonrecursive
positive equivalence relations.
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Island Graphs

An island graph is an undirected graph with possible
self-loops where infinitely many nodes are not contained in
any edge.

An equivalence relation E is island-reducible to F iff every
island graph realised by E is also realised by F. The
island-degrees are the degrees of positive equivalence
relations with respect to island reducibility.

Examples.
The graph which connects all pair of even numbers with an
edge but which does not have edges with odd numbers as
endpoints is an island graph.
Finite island graphs are those graphs where only finitely
many nodes are part of an edge. Such graphs still have
infinitely many nodes (the full domain N) but they do not
use most of the nodes.
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Findings

Theorem [Gavryushkin, Jain, Khoussainov, Stephan 2014].
(a) There is a greatest island-degree which coincides with
the complete many-one degree.
(b) If E is many-one reducible to F then E is island-
reducible to F, but not vice versa.
(c) If a positive equivalence-relation has only one E-infinite
set, namely N, then it realises only finite island graphs;
furthermore, every positive equivalence relation realises all
finite island graphs, thus the positive equivalence relations
realising exactly the finite island graphs form the least
island-degree.
(d) There is only one minimal island-degree above the least
island-degree and one further island-degree which is
minimal above the minimal degree; the latter is the join of
two incomparable island-degrees.
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Example: Proof for (c)

Consider any E and a set {(x1,y1), . . . , (xk,yk)} of finitely
many edges. Now the corresponding relation of edges in
the graph is {(x,y) : ∃h [xExh ∧ yEyh]} which respects E

and is generated from the edges. Thus every positive
equivalence relation E realises all finite island graphs.

If E has only one E-infinite set (namely N) then the union of
all E-equivalence classes being an endpoint of some edge
of an island graph cannot contain all equivalence classes
and is E-finite, hence there are only finitely many edges.

An E which has only one E-infinite set can be constructed
as follows: At each stage one has finite sets [a0,t], [a1,t], . . .

which partition N. In stage t, find least triple (m, e,n) with
m+ e < n, We,t ∩ [am,t] = ∅, We,t ∩ [an,t] 6= ∅ and update

am,t+1 = am,t ∪ an,t and ak,t+1 = ak+1,t for k ≥ n.
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Results for General Graphs

Theorem [Gavryushkin, Jain, Khoussainov, Stephan 2014].
(a) There is a least graph-degree in which every graph
realised contains only finitely many edges.
(b) There is an ascending chain E0,E1, . . . of graph-degrees
such that between Ek and Ek+1 there is no further
graph-degree.
(c) There are exactly two minimal graph-degrees which are
given by locally finite graphs (every node has only finitely
many neighbours).
(d) There is no greatest graph-degree and every
graph-degree which realises a recursively categorical graph
is maximal.

Open Question. Are there infinitely many minimal
graph-degrees?
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Linear Orders

Definition A positive equivalence relation E realises a linear
order < iff one can identify the equivalence classes with the
elements of the partially ordered set (A, <) such that the
corresponding preorder ≤ is recursively enumerable and
respects E.

Remark. If E realises < itself (instead of ≤) then E is a
recursive positive equivalence relation.

Theorem [Fokina, Khoussainov, Semukhin, Turetsky 2016].
(a) There is an infinite antichain of lo-degrees.
(b) There is an infinite chain of lo-degrees.
(c) There is a maximal lo-degree which is given by the
lo-degree of all recursive positive equivalence relations.
(d) The structure of lo-degrees is not an upper semilattice.
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Learning Theory

Idea: Learner receives an infinite sequence of data
containing all members of a recursively enumerable set
(plus perhaps pause symbols) and outputs in response an
infinite set of conjectures. Such sequences are called text.
[Gold 1967; early follow-up work in East-Germany, Latvia,
USA, Japan].

Learner M learns class L0,L1, . . . of r.e. languages iff for
every Le and every text T of Le the hypotheses of M
converge to a Le in one of the below sense. There are
various notions of learning, the basic one is explanatory by
Gold (1967), others followed later.

Example. Learner sees 225225489 . . . and conjectures
{2} (twice), {2,5} (four times), {2,4,5} (twice), {2,4,5,8},
{2,4,5,8,9}, . . . and this learner converges on all finite sets
to a listing of the set, but fails to learn any infinite set (like
the set of all prime powers).
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Learning Criteria

Formally learner does not conjecture lists of elements of
sets, but indices of a family of uniformly r.e. sets containing
all members of the family {L0,L1, . . .} to be learnt; let Le be
the current learning task.

(a) Behaviourally correct: Almost all indices are for Le with
respect to some underlying indexing of the r.e. languages;
(b) Vacillatory: As (a), but from some time onwards, the
learner vacillates only between finitely many correct
hypotheses;
(c) Explanatory: The learner outputs a sequence of
hypotheses converging to one correct hypothesis;
(d) Confident: As (c), but learner converges on every text
(also on those not for any Le) to some index;
(e) Finite: The learner outputs after some special symbols ?
one correct hypothesis which is never revised.
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Examples

The class of all five-element sets can be learnt finitely.
The class of all four- and all five-element sets can be learnt
confidently but not finitely.
The class of all finite sets can be learnt explanatorily but not
confidently, as the learner will on some texts for infinite
languages make infinitely many different hypotheses.
The class of all sets {e, e+ 1, e+ 2, . . .} plus all sets
{e+ d : d ≤ |We|} can be learnt vacillatorily but not
explanatorily.
The class of all sets K ∪ F where F is finite and K is the
halting problem can be learnt behaviourally correctly but not
vacillatorily, the learner just conjectures the union of K and
the set of all elements observed so far.
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Learning and Positive Equivalence

Given positive equivalence relation E, consider a family of
E-closed r.e. sets which has a one-one numbering.
Previous slide showed that for the learning criteria
considered, there is a proper hierarchy and each level
contains examples. Now the question is how does this
hierarchy behave with respect to the setting of E-closed
families with one-one numberings, from now on called
E-families. Results may depend on choice of E. Recursive
equivalence relations replicate those classic results which
use one-one families.

Angluin initiated the study of learning from indexed families
where every set in the family is recursive, this had
comprehensive follow-up work. Infinite indexed families can
be made one-one. However one cannot keep in the setting
of E-families that the E-family is uniformly recursive, as
then some E would not realise any E-families at all.
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Examples of E-Families

Order the E-equivalence classes by their least elements
a0, a1, . . . so that [an] is the equivalence class generated by
an. Now the family of all An = [{a0, a1, . . . , an−1}] is an
E-family.

If f is recursive and strictly increasing then every r.e.
superfamily of Af(0),Af(1),Af(2), . . . has a one-one

numbering and is therefore an E-family. In particular the
family of all E-finite sets is an E-family.

There are positive equivalence relations E such that
(a) {[an] : n = 0,1, . . .} is not an E-family and
(b) every E-family contains comparable sets (one set is a
proper subset of the other one).

There is an E-family and an an not contained in any mem-
ber as an element iff there are at least two E-infinite sets.
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Behaviourally Correct Learning

Theorem [Belanger, Gao, Jain, Li and Stephan 2021].
(a) All ehaviourally correctly learnable families consist only
of E-finite sets iff N is the only E-infinite set.
(b) Every positive equivalence relation E has an E-family
which is behaviourally correctly learnable but not
vacillatorily learnable.
(c) It depends on the E-family whether vacillatory and
explanatory learning coincide or not; for some explicit
constructed E they coincide; for recursive equivalence
relations, they do not coincide.
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Explanatory Learning

Theorem [Belanger, Gao, Jain, Li and Stephan 2021].
(a) The E-family {An : n = 0,1, . . .} is for every positive
equivalence relation E explanatorily learnable but not
confidently learnable.
(b) There is a positive equivalence relation without
E-families which are confidently learnable; there are then
also no finitely learnable E-families.
(c) If there is an E-family which is finitely learnable then the
hierarchy Finite ⇒ Confidently ⇒ Explanatorily learnable is
strict.
(d) There is some E for which there are confidently but not
finitely learnable E-families.
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Example: Learner for (a)

Let Et be approximation to E for t steps and let an,t be the

n-th number k (starting with zeroth number 0) such that
¬hEt k for all h < k, an,t converges to an.

The t-th guess of learner is that index n (standing for set
An = [{a0, a1, . . . , an−1}]) such that n is the first number
with an,t not appearing among the first t data-items

observed so far.

When learning An and t is large enough, then am,t has

converged to am for all m ≤ n and a0, a1, . . . , an−1 have
shown up in the text but an not (as an /∈ An), thus the
learner will for all sufficiently large t make n as the guess
number t.

As N is the union of all An, every learner of {A0,A1, . . .}
does not converge on some text for N to a single index and
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Non-Union Theorem

In standard inductive inference there are explanatorily
learnable classes whose union is not behaviourally
correctly learnable. This is called the Blum and Blum
non-Union Theorem.

Theorem [Belanger, Gao, Jain, Li and Stephan 2021].
(a) The non-Union Theorem holds for behaviourally correct
learning iff there are at least two E-infinite sets.
(b) There are E-families which are explanatorily learnable
such that their union is an E-family but not explanatorily
learnable.
(c) Adding a single set to a confidently learnable E-family
does not destroy confident learnability. However, if one
adds N to the E-family {An : n = 0,1, . . .} then this E-family
is not behaviourally correctly learnable.
(d) If there is a finitely learnable E-family then the finitely
learnable E-families are not closed under union.
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Hypothesis Spaces

The hypothesis space is a numbering which is not
necessarily one-one such that the hypotheses of the
learners are indices in this numbering.

Lange and Zeugmann considered in a series of papers
exact hypothesis spaces (which are the given E-families
and which are one-one), class-preserving hypothesis
spaces (where all indices are for members of the E-family)
and class comprising hypothesis spaces.

If a behaviourally correct family is exactly behaviourally
correctly learnable then it is explanatorily learnable.

There are some E and some E-families which are
class-preservingly explanatorily learnable but not exactly
explanatorily learnable.

The E-family {An : n = 0,1, . . .} is for all E exactly
explanatorily learnable.
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Summary

Realisation-degrees compare positive equivalence relations
with respect to the question which structures of a given type
they can realise. The most prominent results for these
topics were listed in this survey talk.

Investigations were carried out for general types of
structures (all algebras) or for easy structures (island
graphs, permutation algebras, ...) but detailed studies for
advanced algebraic structures like groups are missed out,
as they require excellent knowledge of group theory and the
prior literature.

Investigations in learning theory aim on the question how
the learning hierarchies and criteria interact when learning
E-families for certain positive equivalence relations E.
Which separations from learning theory stand for all E and
which criteria do either not have a learnable E-family at all
or collapse to another criterion for certain E.
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