# Discovering structure within the class of K-trivial sets 

André Nies<br>mostly based on joint work with<br>Greenberg, Miller, Turetsky, in various combinations

Feb 3, 2022

THE UNIVERSITY OF AUCKLAND
NEW ZEALAND

## Martin-Löf randomness

A central algorithmic randomness notion for infinite bit sequences is the one of Martin-Löf.
There are several equivalent ways to define it. Here is one.
$Z \in 2^{\mathbb{N}}$ is Martin-Löf random $\Longleftrightarrow$
for every computable sequence $\left(\sigma_{i}\right)_{i \in \mathbb{N}}$ of binary strings with $\sum_{i} 2^{-\left|\sigma_{i}\right|}<\infty$, there are only finitely many $i$ such that $\sigma_{i}$ is an initial segment of $Z$.

ML-random sequences satisfy properties one would intuitively expect fro randomness: noncomputable, law of large numbers, ...

## What can ML-random oracles compute?

- The Kučera-Gacs theorem says that each set $A \subseteq \mathbb{N}$ is Turing below some ML-random $Z$.
- If $A$ is $\Delta_{2}^{0}$, we can let $Z=$ Chaitin's $\Omega$ because $\Omega \equiv_{T} \emptyset^{\prime}$

Conversely, if we are given a ML-random, which sets are Turing below it?

## Theorem (Kučera 1985)

Each $\Delta_{2}^{0}$ ML-random has a noncomputable c.e. set Turing below it.
Notation: ML stands for Martin-Löf.
MLR is the class of ML-random infinite bit sequences.

## The randomness enhancement principle (N. 2010)

The less a ML-random $Z$ computes, the more random it gets.
Example: $Z$ is called weakly 2-random if $Z$ is in no null $\Pi_{2}^{0}$ class. This is stronger than ML-randomness.

Weak 2-random $\Longleftrightarrow$ ML-random and forms a minimal pair with $\emptyset^{\prime}$.

These results suggest a spectrum of randomness strength:

- from ML-random (including examples such as $\Omega$ that computes all $\Delta_{2}^{0}$ sets)
- to weakly 2-random (computing none but the computable sets).


## Enter the $K$-trivials

Recall the Schnorr-Levin theorem:

- $Z \in 2^{\mathbb{N}}$ is ML-random if and only if $K(Z \upharpoonright n) \geq^{+} n$.

In the other extreme,
Definition (Chaitin, 1975)
$A \in 2^{\mathbb{N}}$ is $K$-trivial if $K(A \upharpoonright n) \leq^{+} K(n)$.

- computable $\Rightarrow K$-trivial
- Chaitin: all $K$-trivials are $\Delta_{2}^{0}$
- Solovay, '75: there is a noncomputable $K$-trivial set.

Letters $A, B$ denote $K$-trivials. Letters $Y, Z$ denote ML-randoms.

## Characterisations of $K$-trivials

## Theorem (Nies-Hirschfeldt;Nies 2003)

The following are equivalent for $A \in 2^{\mathbb{N}}$ :

1. $A$ is $K$-trivial.
2. $K^{A}=^{+} K(A$ is low for $K)$.
3. $\mathrm{MLR}^{A}=\mathrm{MLR}$ ( $A$ is low for ML-randomness).

## Theorem (Nies 2003)

1. $K$-triviality is Turing-invariant.
2. The $K$-trivial Turing degrees form an ideal contained in the superlow sets.
3. Every $K$-trivial set is Turing below a c.e. $K$-trivial set.

## Basis for randomness

## Theorem (Hirschfeldt, Nies, Stephan, 2006)

$A \in 2^{\mathbb{N}}$ is $K$-trivial if and only if $A \leq_{T} Z$ for some $Z \in \mathrm{MLR}^{A}$.
Left to right follows from the equivalence of $K$-triviality with lowness for ML-randomness, and the Kučera-Gacs Theorem.

Proposition (Hirschfeldt, Nies, Stephan, 2006)
If $A \leq_{T} Z$ where $A$ is c.e. and $Z$ is ML-random with $\emptyset^{\prime} \not \leq_{T} Z$, then $Z \in \mathrm{MLR}^{A}$. And hence $A$ is $K$-trivial.

- In other words, if $A$ is c.e. and NOT $K$-trivial, then any ML-random $Z \geq_{T} A$ is above $\emptyset^{\prime}$.
- So there is no version of Kučera-Gacs within the Turing incomplete sets.

Characterising the c.e. $K$-trivials in terms of plain ML-randomness and computability notions

We've seen that every c.e. set below a Turing incomplete ML-random is $K$-trivial.
Stephan (2006) asked whether the converse holds as well.
Theorem (Bienvenu, Greenberg, Kucera, N., Turetsky '16 \& Day, Miller, '16)
The following are equivalent for a c.e. set:

- $A$ is computable from some incomplete ML-random;
- $A$ is $K$-trivial.

And in fact, there is a single incomplete $\Delta_{2}^{0}$ ML-random above all the $K$-trivials!

## Farily recent characterizations of the $K$-trivials

- $A$ is $K$-trivial iff for each ML-random $Y$, the symmetric difference $Y \triangle A$ is ML-random (Kuyper and Miller, 2017)
- $A$ is $K$-trivial iff for all $Y$ such that $\Omega$ is $Y$-random, $\Omega$ is $Y \oplus A$-random (Greenberg, Miller, Monin, and Turetsky, 2018)


## ML-reducibility

## Initials of authors related to this study

B Laurent Bienvenu
G Noam Greenberg
H Denis Hirschfeldt
K Antonin Kučera
M Joseph Miller
N André Nies
T Dan Turetsky

By 2018 there were 18 or so characterisations of the class, but only this was known about the structure of the $K$-trivials:

They form an ideal in the Turing degrees that is contained in the superlow degrees, generated by its c.e. members, has no greatest member, and contains SJT as a proper subidead.

It appears that Turing reducibility is too fine to understand the structure. We are looking from too close to see the structure.
A coarser "reducibility" is suggested by the results above.
Definition (main for this talk)
For sets $A, B$, we write $B \geq_{M L} A$ if

$$
\forall Z \in \operatorname{MLR}\left[Z \geq_{T} B \Rightarrow Z \geq_{T} A\right] .
$$

(Any ML-random computing $B$ also computes $A$.)

Recall: $B \geq_{M L} A$ denotes that $\forall Z \in \operatorname{MLR}\left[Z \geq_{T} B \Rightarrow Z \geq_{T} A\right]$.

- A common paradigm: computational lowness means to be not overly useful as an oracle. $\leq_{L R}$ and other weak reducibilities are based on this. Later on we will introduce $\leq_{S J T}$, a weakening of $\leq_{T}$, also based on this paradigm.
- ML-reducibility seeks to understand relative complexity of sets via an alternative lowness paradigm: computational lowness means being computed by many oracles.


## Some results related to ML degrees

- By HNS 06, the ML-degree of $\emptyset^{\prime}$ contains all the non- $K$-trivial c.e. sets. So among the c.e. sets one can focus on $K$-trivials.
- Each $K$-trivial $A$ is ML-equivalent to a c.e. $K$-trivial $D \geq_{T} A$. (GMNT 22, arXiv 1707.00258)


## Structure of the $K$-trivials w.r.t. $\leq_{M L}$

- The least degree consists of the computable sets . This follows from the low basis theorem with upper cone avoiding.
- There is a ML-complete $K$-trivial set, called a "smart" $K$-trivial. (BGKNT, JEMS 2016)
- There is a dense hierarchy of principal ideals $\mathcal{B}_{q}, q \in(0,1)_{\mathbb{Q}}$. E.g., $\mathcal{B}_{0.5}$ consists of the sets that are computed by both "halves" of a ML-random $Z$, namely $Z_{\text {even }}$ and $Z_{\text {odd }}$ (GMN, JML 2019)
- there are further interesting subclasses of the $K$-trivials that are downward closed under $\leq_{M L}$.
- E.g. the strongly jump traceables, or equivalently the sets below all the $\omega$-c.a. ML-randoms (by HGN, Adv. Maths 2012, along with GMNT 22).

A bit of degree theory for $\leq_{M L}$ on the $K$-trivials Recall: $B \geq_{M L} A$ if $\forall Z \in \operatorname{MLR}\left[Z \geq_{T} B \Rightarrow Z \geq_{T} A\right]$.

## Results from GMNT 22, arxiv 1707.00258

(a) For each noncomputable c.e. $K$-trivial $D$ there are c.e. $A, B \leq_{T} D$ such that $\left.A\right|_{M L} B$.
(b) There are no minimal pairs.
(c) For each c.e. $A$ there is c.e. $B>_{T} A$ such that $B \equiv_{M L} A$.
(a) is based on a method of Kučera. (b) and (c) use cost functions. We don't know whether the ML-degrees of the $K$-trivials are dense. The obstacle is that we don't even know whether $\leq_{M L}$ is arithmetical. So it's hard to envisage a construction showing density.
The results also hold for the coarser, arithmetical reducibility where the ML-randoms are restricted to the $\Delta_{2}^{0}$ sets. Density may be easier to show in this case.

Cost functions

## Definition

A cost function is a computable function $\mathbf{c}: \mathbb{N}^{2} \rightarrow \mathbb{R}^{\geq 0}$ satisfying: $\mathbf{c}(x, s) \geq \mathbf{c}(x+1, s)$ and $\mathbf{c}(x, s) \leq \mathbf{c}(x, s+1)$;
$\underline{\mathbf{c}}(x)=\lim _{s} \mathbf{c}(x, s)<\infty$;
$\lim _{x} \underline{\mathbf{c}}(x)=0$ (the limit condition).

## Definition

Let $\left\langle A_{s}\right\rangle$ be a computable approximation of a $\Delta_{2}^{0}$ set $A$. Let $\mathbf{c}$ be a cost function. The total cost $\mathbf{c}\left(\left\langle A_{s}\right\rangle\right)$ is

$$
\sum_{s} \mathbf{c}(x, s) \llbracket x \text { is least s.t. } A_{s}(x) \neq A_{s-1}(x) \rrbracket .
$$

A $\Delta_{2}^{0}$ set $A$ obeys a cost function $\mathbf{c}$ if there is some computable approximation $\left\langle A_{s}\right\rangle$ of $A$ for which the total cost $\mathbf{c}\left(\left\langle A_{s}\right\rangle\right)$ is finite.

Write $A \models \mathbf{c}$ for this. FACT: There is a c.e., noncomputable $A \models \mathbf{c}$.

## Cost functions characterising ML-ideals

In summary, a $\Delta_{2}^{0}$ set obeys $\mathbf{c}$ if it can be computably approximated obeying the "speed limit" given by c. Let $\mathbf{c}_{\Omega}(x, s)=\Omega_{s}-\Omega_{x}$ (where $\left\langle\Omega_{s}\right\rangle_{s \in \mathbb{N}}$ is an increasing approximation of $\Omega$ ).

## Theorem (N., Calculus of cost functions, 2017)

A $\Delta_{2}^{0}$ set is $K$-trivial if and only if it obeys $\mathbf{c}_{\Omega}$.
Let $\mathbf{c}_{\Omega, 1 / 2}(x, s)=\left(\Omega_{s}-\Omega_{x}\right)^{1 / 2}$.

## Theorem (GMN, 2019)

The following are equivalent:

1. $A$ is computed by both halves of a ML-random.
2. $A$ obeys $\mathbf{c}_{\Omega, 1 / 2}$.

## Cost functions and computing from randoms

## Definition

Let $\mathbf{c}$ be a cost function. A $\mathbf{c}$-test is a sequence $\left(U_{n}\right)$ of uniformly $\Sigma_{1}^{0}$ subsets of $\{0,1\}^{\mathbb{N}}$ satisfying $\lambda\left(U_{n}\right)=O(\underline{\mathbf{c}}(n))$.

## Important Easy Fact

Suppose that $Z$ is ML-random but is captured by a c-test.
Suppose that $A$ obeys c. Then $A \leq_{T} Z$.
Proof idea: Collect the oracles that may become invalid through $A$-change into a Solovay test.
If an approximation of $A$ obeying $\mathbf{c}$ changes $A(n)$ at stage $s$, then $U_{n, s}$ is listed as a component of the test. $A \models \mathbf{c}$ is used to show we indeed build a Solovay test.
$Z$ is outside almost all components, so $Z$ computes $A$ correctly a.e.

## Definition (ML-completeness for a cost function, GMNT 22)

Let $\mathbf{c} \geq \mathbf{c}_{\Omega}$ be a cost function. We say that a $K$-trivial $A$ is smart for $\mathbf{c}$ if $A$ is ML-complete among the sets that obey $\mathbf{c}$.

Thus $A \models \mathbf{c}$, and $B \leq_{M L} A$ for each $B \models \mathbf{c}$.

## Theorem (GMNT 22, extending BGKNT 16 result for $\mathbf{c}_{\Omega}$ )

For each $\mathbf{c} \geq \mathbf{c}_{\Omega}$ there is a c.e. set $A$ that is smart for $\mathbf{c}$.
We may assume that $\mathbf{c}(k) \geq 2^{-k}$. Build $A$. There is a particular Turing functional $\Gamma$ such that it suffices to show $A=\Gamma^{Y} \Rightarrow Y$ fails some c-test.

- During construction, let $\mathcal{G}_{k, s}=\left\{Y: \Gamma_{t}^{Y} \upharpoonright 2^{k+1} \prec A_{t}\right.$ for some $\left.k \leq t \leq s\right\}$.
- Error set $\mathcal{E}_{s}$ : those $Y$ such that $\Gamma_{s}^{Y}$ is to the left of $A_{s}$.
- Ensure $\lambda \mathcal{G}_{k, s} \leq \mathbf{c}(k, s)+\lambda\left(\mathcal{E}_{s}-\mathcal{E}_{k}\right)$. If this threatens to fail put next $x \in\left[2^{k}, 2^{k+1}\right)$ into $A$. Then $\left\langle\mathcal{G}_{k}\right\rangle$ is the required $\mathbf{c}$-test.


## ML-completeness for a cost function

## Definition (recall) <br> Let $\mathbf{c} \geq \mathbf{c}_{\Omega}$ be a cost function. We say that a $K$-trivial $A$ is smart for $\mathbf{c}$ if $A$ is ML-complete among the sets that obey $\mathbf{c}$.

## Theorem (GMNT 22)

For each $K$-trivial $A$ there is a cost function $\mathbf{c}_{A} \geq \mathbf{c}_{\Omega}$ such that $A$ is smart for $\mathbf{c}_{A}$.

This shows that there are no ML-minimal pairs, in a uniform way: if $K$-trivials $A, B$ are noncomputable, there is a noncomputable c.e. $D$ such that $D \models \mathbf{c}_{A}+\mathbf{c}_{B}$.
Then $D \leq_{M L} A, B$.

## Smartness and half-bases

Recall:

## Theorem (BGKNT 16)

Not every $K$-trivial is a half-base.
Proof (different from the original one).

- $\Omega_{\text {even }}$ and $\Omega_{\text {odd }}$ are low;
- If $Y \in$ MLR is captured by a $\mathbf{c}_{\Omega}$-test, then it is superhigh.
- So a smart $K$-trivial is not a half-base.


## A reducibility dual to $\leq_{M L}$

## Definition

For $Z, Y \in \mathrm{MLR}$, by $Z \leq_{M L^{*}} Y$ we denote that for every $K$-trivial $A$,

$$
A \leq_{T} Z \quad \Rightarrow \quad A \leq_{T} Y .
$$

We say that $Z \in$ MLR is feeble for $\mathbf{c}$ if $Z$ is captured by a c-test, and is of the least $M L^{*}$-degree among those. For example:

- For rational $p \in(0,1)$, any appropriate " $p$-part" of $\Omega$ is feeble for $\mathbf{c}_{\Omega, p}$, where $\mathbf{c}_{\Omega, p}(x, s)=\left(\Omega_{s}-\Omega_{x}\right)^{p}$.
- Top degree: all ML-randoms captured by a $\mathbf{c}_{\Omega}$-test (i.e., the non Oberwolfach-randoms).
- Bottom degree: the weakly 2-randoms.

Pieces of $\Omega$ w.r.t. $\leq_{M L^{*}}$

- For any infinite computable $R \subseteq \mathbb{N}$, let $\Omega_{R}$ be the bits of $\Omega$ with position in $R$.
- can define a corresponding cost function $\mathbf{c}_{\Omega, R}$ similar to $\mathbf{c}_{\Omega, p}$ :

$$
A \text { obeys } \mathbf{c}_{\Omega, R} \Longleftrightarrow \quad A \leq_{T} \Omega_{R} .
$$

- Thus, $\Omega_{R}$ is feeble for $\mathbf{c}_{\Omega, R}$.

For each such $R$, let $B_{R}$ be a $K$-trivial that is smart for $\mathbf{c}_{\Omega_{R}}$.

## Theorem (GMNT 22)

The following are equivalent for infinite, computable $R, S \subseteq \mathbb{N}$ :

1. $\Omega_{S} \leq_{M L^{*}} \Omega_{R}$;
2. $B_{S} \geq_{M L} B_{R}$;
3. There is $d \in \mathbb{N}$ such that $|S \cap n| \leq|R \cap n|+d$ for each $n$.

For instance, by (3), $\Omega_{\text {even }}$ and $\Omega_{\text {odd }}$ compute the same $K$-trivials!

Other weak reducibilities

- Note that $A \leq_{T} B$ if $J^{A}=\Psi^{B}$ for some functional $\Psi$ (where $J^{X}=\phi_{e}^{X}(e)$ is the jump of $\left.X\right)$.
- Suppose $B$ instead only can make a small number of guesses for $J^{A}(x)$ ?


## Definition (N. 2009; related to Cole and Simpson 06)

We write $A \leq_{S J T} B$ if for each order function $h$, there is a uniform list $\left\langle\Psi_{r}\right\rangle$ of functionals such that $J^{A}(x)$, if defined, equals $\Psi_{r}^{B}(x)$ for some $r \leq h(x)$.

- $A$ is strongly jump traceable (FNS 08) if $A \leq_{S J T} \emptyset$. These sets are properly contained in the $K$-trivials.
- There is no $\leq_{S J T}$-largest $K$-trivial, essentially by relativizing this.

Recall that $Y$ is $\omega$-c.a. if $Y \leq_{\mathrm{wtt}} \emptyset^{\prime}$.
Let $\mathcal{C}$ be the class of the $\omega$-c.a., superlow, or superhigh sets.

## Theorem (Work without progress, with Greenberg and Turetsky)

The following are equivalent for $K$-trivial c.e. sets $A, B$.
(a) $A \leq_{S J T} B$
(b) $A \leq_{T} B \oplus Y$ for each $Y \in \mathcal{C} \cap$ MLR.

This generalises work of [GHN 2012] where $B=\emptyset$. So we have on the $K$-trivials that

$$
\begin{aligned}
& \leq_{T} \Rightarrow \leq_{M L} \Rightarrow \leq_{\omega-\text { c.a. }-M L} \\
& \leq_{T} \Rightarrow \leq_{S J T} \Rightarrow \leq_{\omega-\text { c.a. }-M L}
\end{aligned}
$$

and none of $\leq_{M L}, \leq_{S J T}$ implies the other.

## Questions

- Is being a smart $K$-trival an arithmetical property?
- Stronger: is $\leq_{\text {ML }}$ an arithmetical relation?
- Are the ML-degrees of the $K$-trivials dense?
- Can a smart $K$-trivial be cappable?

Can it obey a cost function stronger than $\mathbf{c}_{\Omega}$ ?

- Is there an incomplete $\omega$-c.a. ML-random above all the $K$-trivials?


## Some references

- Bienvenu, Greenberg, Kučera, Nies, Turetsky: Coherent randomness tests and computing the K-trivial sets, JEMS 2016
- Greenberg, J. Miller, Nies: Computing from projections of random points, JML 2019
- Greenberg, J. Miller, Nies, Turetsky: Martin-Löf reducibility and cost functions. Early version arxiv 1707.00258

