Lower Bounds for the Strong N-Conjecture

Aquinas Hobor, Singapore
Rupert Hölzl, Munich
Elaine Li, Singapore
Frank Stephan, Singapore
http://www.comp.nus.edu.sg/fstephan/strongnconjecture.pdf http://.../strongnconjectureslides.pdf

Starting Examples

Sometimes one can make additive equations of integers such that, compared to the size, there are only few distinct primefactors.

- $125+3=128$: Primefactors $2,3,5$; radical 30 .
- $1024+5=1029$: Primefactors $2,3,5,7$; radical 210 .
- $2400+1=2401$: Primefactors $2,3,5,7$; radical 210.
- $8181+11=8192$: Primefactors $2,3,11,101$; radical 6666.

Radical of Example: Smallest number such that every member of the sum divides some power of it; alternatively, largest square-free divider of the product of all terms in the sum.
Quality of Example: $\log ($ largest number $) / \log$ (radical). This value should be large.

The N-Conjecture

Requirements for Examples

- No common primefactors of all numbers, so $1024-512-256-256=0$ is forbidden.
- Sum is zero: $a_{1}+a_{2}+\ldots+a_{n}=0$.
- No nontrivial subsums are zero: If $\sum a_{k} \cdot b_{k}=0$ and all $b_{k} \in\{0,1\}$ then $b_{k}=0$ for either all or no k.
Let $\mathbf{A}(\mathbf{n})$ be the set of all these examples in the integers for given n. Let $\mathrm{Q}_{\mathrm{A}(\mathrm{n})}$ be the limit superior of the qualities of any one-one enumeration of the tuples in $\mathbf{A}(\mathbf{n})$.
The abc-conjecture by David Masser (1985) and Joseph Oesterlé (1988). $\mathrm{Q}_{\mathbf{A}(\mathbf{3})}=1$.

The n-conjecture by Jerzy Browkin and Juliusz Brzeziński (1994). For every $\mathrm{n} \geq 3, \mathrm{Q}_{\mathrm{A}(\mathrm{n})}=2 \mathrm{n}-5$.

The Strong N-Conjecture

Requirements for Examples

- No common primefactors of any two numbers, so $9216-8192-1029+5=0$ is forbidden.
- Sum is zero: $a_{1}+a_{2}+\ldots+a_{n}=0$.
- No nontrivial subsums are zero: If $\sum \mathrm{a}_{\mathrm{k}} \cdot \mathrm{b}_{\mathrm{k}}=0$ and all $\mathrm{b}_{\mathrm{k}} \in\{0,1\}$ then $\mathrm{b}_{\mathrm{k}}=0$ for either all or no k .
Let $\mathbf{B}(\mathbf{n})$ be the set of all these examples satisfying the first and second condition and $R(\mathbf{n})$ be the set of all examples satisfying all three conditions for given $\mathrm{n} \geq 3$.
The strong n-conjecture.
(Browkin 2000): $\mathrm{Q}_{\mathrm{B}(\mathrm{n})}<\infty$ for all n . (Ramaekers 2009, Wikipedia): $\mathrm{Q}_{\mathrm{R}(\mathrm{n})}=1$ for all n .
Konyagin (see Browkin 2000): $\mathrm{Q}_{\mathrm{B}(\mathrm{n})} \geq 3 / 2$ for all odd $\mathrm{n} \geq 5 ; \mathrm{Q}_{\mathrm{R}(5)} \geq 3 / 2$ (follows from proof immediately).

Setting of Present Work

Let E, F be finite sets of numbers with $1 \in \mathrm{E}$ and $\min (\mathbf{F}) \geq 3$. Now $\mathbf{U}(\mathbf{E}, \mathbf{F}, \mathbf{n})$ contains all tuples $\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{n}}\right) \in \mathbb{Z}^{\mathbf{n}}$ satisfying the following conditions:

- If $\mathbf{i} \neq \mathbf{j}$ then $\operatorname{gcd}\left(\mathbf{a}_{\mathbf{i}}, \mathbf{a}_{\mathbf{j}}\right) \in \mathrm{E}$;
- $\sum \mathrm{a}_{\mathrm{k}}=0$;
- If $\sum \mathrm{a}_{\mathrm{k}} \cdot \mathrm{b}_{\mathrm{k}}=0$ and $\mathrm{all} \mathrm{b}_{\mathrm{k}} \in\{-1,0,1\}$ then $\mathrm{b}_{\mathrm{k}}=0$ for either all or no k;
- No member of F divides any a_{k}.

Now note that $\mathrm{Q}_{\mathrm{U}(\{1\}, \mathbf{F}, \mathbf{n})} \leq \mathrm{Q}_{\mathrm{R}(\mathrm{n})} \leq \mathrm{Q}_{\mathrm{B}(\mathrm{n})}$ for all $\mathrm{n} \geq 3$.
$\mathrm{Q}_{\mathrm{U}(\{1,2\}, \emptyset, 4)} \geq 3 / 2$ by the following polynomial identity of Daniel Davies: $\left(\mathrm{x}^{\mathrm{m}}+2\right)^{3}-\mathrm{x}^{3 \mathrm{~m}}-6\left(\mathrm{x}^{\mathrm{m}}+1\right)^{2}-2=0$; here one can take m to be a large odd number and x to be 5 .

Main Results

Theorems

1. $\mathrm{Q}_{\mathrm{U}(\{1\}, \emptyset, \mathrm{n})} \geq 5 / 3$ for odd $\mathrm{n} \geq 5$.
2. For any F there is a constant $\mathrm{r}>1$ with $\mathrm{Q}_{\mathrm{U}(\{\mathbf{1}\}, \mathbf{F}, \mathbf{5})} \geq \mathrm{r}$.
3. For any $\mathrm{n} \geq 6$ and any $\mathrm{F}, \mathrm{Q}_{\mathrm{U}(\{1\}, \mathrm{F}, \mathrm{n})} \geq 5 / 4$.

At Gaussian integers and Hamiltonian integers, notions $\mathbf{C}(\mathbf{E}, \mathbf{F}, \mathbf{n})$ and $\mathbf{H}(\mathbf{E}, \mathbf{F}, \mathbf{n})$ similar to $\mathbf{U}(\mathbf{E}, \mathbf{F}, \mathbf{n})$ exist.
4. For any $\mathrm{n} \geq 4$ and any F neither containing units nor fourth roots of $-4, \mathrm{Q}_{\mathrm{C}(\{1\}, \mathrm{F}, \mathrm{n})} \geq 5 / 3$.
5. $\mathrm{Q}_{\mathrm{H}(\{1\}, \emptyset, 3)} \geq 2$ and $\mathrm{Q}_{\mathrm{H}(\{1\}, \emptyset, 4)} \geq 2$;
6. $\mathrm{Q}_{\mathbf{H}(\{1\}, F, n)} \geq 5 / 2$ for $\mathrm{n} \geq 6 ; \mathrm{Q}_{\mathbf{H}(\{1\}, \emptyset, \mathrm{n})} \geq 10 / 3$ for odd $\mathrm{n} \geq 5$.
7. For $n \geq 3$, a lower bound of the n-conjecture in the Hamiltonian integers is $4 \cdot(2 n-5)$.

Arbitrary Forbidden Sets

Theorem. Let \mathbf{F} be a finite set with $\min (\mathbf{F}) \geq \mathbf{3}, \mathrm{E}=\{\mathbf{1}\}$ and $\mathrm{n} \geq 6$. Then $\mathrm{Q}_{\mathrm{U}(\mathrm{E}, \mathrm{F}, \mathrm{n})} \geq 5 / 4$.
Construction. Let y be the product of all members of $\mathrm{F} \cup\{2,3,5,7,11, \mathrm{~s}\}$. Choose as $(\mathrm{y}+1)^{\mathrm{h}!}$ for large h and $a_{1}, a_{2}, a_{3}, a_{4}$ with $a_{1}+a_{2}+a_{3}+a_{4}=-2 y^{5}+100 y^{6}$ by:

- $\mathrm{a}_{1}=(\mathrm{x}+\mathrm{y})^{\mathbf{5}}$;
- $\mathrm{a}_{2}=-(\mathrm{x}-\mathrm{y})^{5}$;
- $\mathrm{a}_{3}=-(10 \cdot \mathrm{y}-1) \cdot \mathrm{x}^{4}$;
- $\mathrm{a}_{4}=-\left(\mathrm{x}^{2}+10 \cdot \mathrm{y}^{3}\right)^{2}$.

Here a sideconstraint is that $10 \cdot y-1$ is a prime; this can be obtained by choosing $s>\max (\mathbf{F} \cup\{11\})$ accordingly.

- $-\mathrm{a}_{7},-\mathrm{a}_{8}, \ldots,-\mathrm{a}_{\mathrm{n}}$ are odd prime numbers such that $\left|6 a_{k}\right|<\left|a_{k+1}\right|$ for $k=7,8, \ldots, n-1$ and $\left|a_{7}\right|>700 y^{6}$.

Choosing the last two numbers

Now one chooses a_{5} and a_{6} such that (a) they are coprime to all other numbers and (b) their sum is
$u=-\left(a_{1}+a_{2}+a_{3}+a_{4}+a_{7}+\ldots+a_{n}\right)$. This makes the sum of all a_{k} to be directly 0 .
One first let q be the product of all primes below $10 \cdot \max \left\{600 \cdot|\mathbf{y}|^{6},\left|\mathrm{a}_{7}\right|,\left|\mathbf{a}_{8}\right|, \ldots,\left|\mathrm{a}_{\mathrm{n}}\right|\right\}$.

1. Let $\mathrm{v}=\mathrm{u}+1+\mathrm{q}$ and $\mathrm{w}=-\mathrm{q}-1$.
2. For all odd prime numbers p dividing q Do
3. \{ While p divides one of v or w

$$
\text { Do }\{\mathbf{v}=\mathbf{v}+\mathbf{q} / \mathbf{p} \text { and } \mathbf{w}=\mathbf{w}-\mathbf{q} / \mathbf{p}\}\} .
$$

4. If 4 divides \mathbf{v} then let $\mathbf{v}=\mathbf{v}+\mathbf{q}$ and $\mathbf{w}=\mathbf{w}-\mathbf{q}$.

Then let $\mathrm{a}_{5}=\mathrm{v}$ and $\mathrm{a}_{6}=\mathrm{w}$.

Choosing h

Now h is chosen larger than the absolute values of all of $a_{5}, a_{6}, \ldots, a_{n}$.
Any prime factor p of a_{5}, \ldots, a_{n} satisfies that $x=(y+1)^{h!}$ is 0 or 1 modulo p; as the prime factor p is at least $600 y^{6}, x$ is actually 1 modulo p. a_{1} and a_{2} are $(\mathrm{y}+1)^{5}$ and $(\mathrm{y}-1)^{5}$ modulo p . a_{3} is $-(10 \cdot \mathrm{y}-1)$ modulo $\mathrm{p} . \mathrm{a}_{4}$ is $\left(1+10 \mathrm{y}^{3}\right)^{2}$ modulo p . As $\mathrm{p}>600 \mathrm{y}^{6}$, p does not divide any of these numbers. a_{5}, \ldots, a_{n} are prime relative to each other. One can also verify that $\mathrm{a}_{1}, \ldots, \mathrm{a}_{4}$ are prime to each other: As x is coprime y and y is even, $\mathrm{x}, \mathrm{x}+\mathrm{y}, \mathrm{x}-\mathrm{y}$ are all coprime to each other; also as $10 \mathrm{y}-1$ is a prime and x is 1 modulo $10 \mathrm{y}-1, \mathrm{a}_{1}$ and a_{2} are coprime to $10 \mathrm{y}-1$ and thus to a_{3}. Similarly one verifies that a_{4} is coprime to $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}$.

Determining the Quality

For the quality of this family of examples, note that y and a_{5}, \ldots, a_{n} are constants in the family while one is varying the exponent h ! in the expression $x=(y+1)^{h!}$. The factors $(\mathrm{x}+\mathrm{y})^{5},-(\mathrm{x}-\mathrm{y})^{5}$ and $-\left(\mathrm{x}^{2}+10 \mathrm{y}^{3}\right)$ contribute to the radical either the factors $\mathrm{x}+\mathrm{y}, \mathrm{x}-\mathrm{y}$ and $\mathrm{x}^{2}+10 \mathrm{y}^{3}$ or some proper factors of these; furthermore, $-(10 y-1) \cdot x^{4}$ contributes to the radical either $(10 y-1) \cdot(y+1)$ or a factor of that what is $\mathrm{O}(1)$, as y is constant independent of x . The numbers a_{5}, \ldots, a_{n} are also constants independent of x and contribute to the radical only size $\mathrm{O}(1)$. Furthermore, $(\mathrm{x}+\mathrm{y})$ is the largest term in the sum. So the quality is

$$
5 \cdot \log (\mathrm{O}(\mathrm{x})) / \log \left(\mathrm{O}(\mathrm{x}) \cdot \mathrm{O}(\mathrm{x}) \cdot \mathbf{O}\left(\mathrm{x}^{2}\right) \cdot \mathbf{O}(\mathbf{1})\right)
$$

which converges to $5 / 4$ for larger and larger values of h and $\mathrm{x}=(\mathrm{y}+1)^{\mathrm{h}!}$.

The Case $\mathbf{N}=5$

Theorem. Let \mathbf{E}, \mathbf{F} be finite sets with $1 \in \mathbf{E}$ and $2,5,7,10 \notin \mathrm{~F}$. Then $\mathrm{Q}_{\mathrm{U}(\mathrm{E}, \mathrm{F}, 5)} \geq 5 / 3$.

Construction. Let $\mathbf{y}=(\max (\mathbf{F} \cup\{\mathbf{1 1}\}))$!, k a large integer and $\mathrm{x}=(\mathrm{y}+1)^{\mathrm{k}}-1$. The sum

$$
(x+1)^{5}-(x-1)^{5}-10\left(x^{2}+1\right)^{2}-7-1=0
$$

and the terms in the sum have at least the quality

$$
5 \cdot \log (\mathrm{x}+\mathbf{1}) / \log \left(\mathbf{7} \cdot(\mathrm{y}+\mathbf{1}) \cdot(\mathrm{x}-\mathbf{1}) \cdot\left(\mathrm{x}^{2}+\mathbf{1}\right)\right)
$$

The coprimeness follows from the fact that
$\mathrm{x}+1, \mathrm{x}-1, \mathrm{x}^{2}+1$ are coprime and that all primes up to 11 are factors of y and y is a factor of x . The subsum condition is easy to verify.
The result holds also for all odd $\mathrm{n} \geq 7$.

Gaussian and Hamiltonian Integers

Gauss (Complex integers): $\mathrm{x}=\mathrm{q}+\mathrm{r} \cdot \mathrm{i}$ where $\mathrm{q}, \mathrm{r} \in \mathbb{Z}$; Hamilton: $\mathbf{x}=\mathbf{q}+\mathbf{r} \cdot \mathrm{i}+\mathrm{s} \cdot \mathrm{j}+\mathrm{t} \cdot \mathrm{k}$ where $\mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t} \in \mathbb{Z}$.
Rules: $\mathrm{i}^{2}=-1, \mathrm{j}^{2}=-1, \mathrm{k}^{2}=-1, \mathrm{i} \cdot \mathrm{j} \cdot \mathrm{k}=-1$;
Product of different imaginary units anticommutative; Product of integers with any number commutative.
Norm and Conjugate: $\overline{\mathrm{x}}=\mathrm{q}-\mathrm{r} \cdot \mathrm{i}-\mathrm{s} \cdot \mathrm{j}-\mathrm{t} \cdot \mathrm{k}$ is conjugate of $\mathrm{x}, \mathrm{x} \cdot \overline{\mathrm{x}}=\mathrm{q}^{2}+\mathrm{r}^{2}+\mathrm{s}^{2}+\mathrm{t}^{2}$ is the norm.
Norms are multiplicative. If the norm is a prime number then the number is prime in Gaussian and Hamiltonian integers. In Gaussian integers, 3 has norm 9 but cannot be factorised, as 3 is not the sum of two integer squares. In the Hamiltonian integers, a natural number x is of the form $-1 \cdot y^{2}$ iff x is the sum of three integer squares, that is, if x is not of the form $4^{\mathrm{a}} \cdot(8 \mathrm{~b}+7)$ (direct application of Legendre's Three Square Theorem).

Definitions

Factorisation and The Radnorm: A factorisation of x is a list of numbers such that their product is x; a factorisation of a tuple ($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$) is the concatination of factorisations of $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ as lists. The radical of a factorisation is the listing out of the members of the factorisation without verbatim repetition.

Radnorm and Maxnorm: The maxnorm of a tuple is the largest norm of a member of the tuple. The radnorm is the smallest norm which is taken by some radical of a factorisation of a tuple.
Quality: The quality of a tuple $\mathrm{a}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ is $\mathrm{q}(\mathrm{a})=\operatorname{maxnorm}(\mathrm{a}) /$ radnorm (a). A set $\mathrm{A}=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots\right\}$ of tuples has quality $\mathrm{Q}_{\mathrm{A}}=\lim \sup _{\mathrm{m}=1,2, \ldots} \mathrm{q}\left(\mathrm{a}_{\mathrm{m}}\right)$. Furthermore, $\mathbf{C}(\mathbf{E}, \mathbf{F}, \mathbf{n}), \mathbf{H}(\mathbf{E}, \mathbf{F}, \mathbf{n})$ are the adjustments of $\mathbf{U}(\mathbf{E}, \mathbf{F}, \mathbf{n})$ to the Gaussian and Hamiltonian integers.

Gaussian and Hamiltonian Integers

Theorem. If $\mathrm{n} \geq 4$ then $\mathrm{Q}_{\mathrm{C}(\{\mathbf{1}\}, \mathrm{F}, \mathrm{n})} \geq 5 / 3$.
Theorem. If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are normal integers with $\mathbf{a}+\mathbf{b}=\mathbf{c}$ then $\mathbf{q}(\mathbf{a}, \mathbf{b}, \mathbf{c})$ in the Hamiltonian integers is between $\mathbf{q}((\mathbf{a}, \mathbf{b}, \mathbf{c}))$ and $2 q(a, b, c)$ in the normal integers.

Theorem. $\mathrm{Q}_{\mathrm{H}(\{\mathbf{1}\}, \mathbf{F}, \mathrm{n})} \geq 5 / 2$ for $\mathrm{n} \geq 6$ by verifying that in $x+y, x-y, x^{2}+10 y^{3}$ are sums of three squares in that result and thus have roots in the Hamiltonian integers; x is a large power of $\mathrm{y}+1$.
Theorem. The quality of the n-conjecture in the Hamiltonian integers is at least $4 \cdot(2 n-5)$, using a result that one can choose an odd x with $\mathrm{x}+\overline{\mathrm{x}}=2$ and $\mathrm{x}, \overline{\mathrm{x}}$ having a joint large factor y occuring four times in the factorisations with all other factors being units.

The Problems of Small \mathbf{N}

No results for the case $\mathrm{n}=3$ for normal and Gaussian integers. The reason is that polynomial identities do not work here and there is even a theorem stating the reason.
Theorem [Mason (1983) and Stother (1981)]. If $\mathbf{p}+\mathbf{q}=\mathbf{r}$ is a polynomial identity of coprime polynomials in ℓ variables and r is not constant then

$$
\operatorname{deg}(\operatorname{rad}(\mathbf{p} \cdot \mathbf{q} \cdot \mathbf{r})) \geq \max \{\operatorname{deg}(\mathbf{p}), \operatorname{deg}(\mathbf{q}), \operatorname{deg}(\mathbf{r})\}+\ell
$$

Such methods give usually

$$
\text { quality } \geq \frac{\operatorname{deg}(\text { largest term })}{\operatorname{deg}(\text { radical })-\ell} .
$$

Furthermore, for the normal integers, no useful polynomial identies are known for $\mathrm{n}=4$ where all coefficients are odd.

Summary

The talk summarised the knowledge about the strong n -conjecture and advocated that one reexamines the bound conjectured there. Lower bounds of $5 / 3$ for odd $n \geq 5$ and $5 / 4$ for even $n \geq 6$ were obtained; however, Ramaekers original bound of 1 was not improved for $n=3$ and $n=4$.
For the complex version of the strong n-conjecture, a uniform lower bound of $5 / 3$ was given for all $\mathrm{n} \geq 4$.
The lower bounds for the strong n-conjecture scale up by a factor 2 and for the n -conjecture by a factor 4 in the Hamiltonian integers.
All these bounds use a strong form of the avoidance of nontrivial subsums; Browkin (2000) citing Konyagin who did not consider the avoidance of subsums had already in the weaker version that odd $n \geq 5$ have the lower bound $3 / 2$.

Case $\mathrm{N}=5$ and Arbitrary F

Theorem. Let \mathbf{F} be finite and $\min (\mathbf{F}) \geq 3$. Then $\mathrm{Q}_{\mathrm{U}(\{1\}, \mathbf{F}, 5)}>1$.

Ramaekers (2009) mentioned a construction for four numbers which will here be slightly modified and the last will be split into two numbers.

1. $\mathrm{a}_{1}=(\mathrm{x}+1)^{\mathrm{p}}$;
2. $\mathrm{a}_{2}=-(\mathrm{x}-1)^{\mathrm{p}}$;
3. $\mathrm{a}_{3}=-2 \mathrm{p} \cdot\left(\mathrm{x}^{2}+(\mathrm{p}-2) / 3\right)^{(\mathrm{p}-1) / 2}$;
4. $a_{4}=-\left(a_{1}+a_{2}+a_{3}+y\right)$ for some odd number $y>p$ to be chosen below;
5. $a_{5}=y$.

Proof Continued

Here p is h ! -1 for some h larger than all members of F . One can compute the values of $a_{1}+a_{2}+a_{3}$ modulo $\mathrm{x}^{2}, \mathrm{x}^{2}-1, \mathrm{x}^{2}+(\mathrm{p}-1) / 2$ which turn out to be numbers and not polynomials, as $a_{1}+a_{2}+a_{3}$ is an even polynomial in x of degree $p-5$. One chooses y such that neither y nor the sum of y with any of the three remainders will be a multiple of any member of F . Furthermore, one chooses x to be a large factorial. The quality of the example is approximately

$$
\mathrm{p} \cdot \log (\mathrm{x}+1) / \log \left(\left(\mathrm{x}^{2}-\mathbf{1}\right) \cdot\left(\mathrm{x}^{2}+(\mathrm{p}-\mathbf{2}) / \mathbf{3}\right) \cdot \mathrm{O}\left(\mathrm{x}^{\mathrm{p}-\mathbf{5}}\right) \cdot \mathrm{y}\right)
$$

which is approximately $\mathrm{p} /(\mathrm{p}-1)$; note that y is constant when choosing x .

Nontrivial Exception Sets E

Coen Ramaekers (2009) discussed a polynomial identity which allows to have $\mathrm{Q}_{\mathrm{U}(\{1,2\}, \emptyset, 4)} \geq 5 / 3$; this identity is

$$
(x+1)^{5}-(x-1)^{5}-10 \cdot\left(x^{2}+1\right)^{2}+8=0 .
$$

Furthermore, for larger but still finite sets E one can show $\mathrm{Q}_{\mathrm{U}(\mathrm{E}, \emptyset, 5)} \geq 7 / 4$ and $\mathrm{Q}_{\mathrm{U}(\mathrm{E}, \emptyset, 5)} \geq 9 / 5$. The polynomial identities are

$$
(x+1)^{7}-(x-1)^{7}-14\left(x^{2}+1\right)^{3}-28 x^{4}+12=0
$$

with $\mathrm{E}=\{1,2,4,7,14\}$ and
$189(\mathrm{x}+1)^{9}-189(\mathrm{x}-1)^{9}-42\left(3 \mathrm{x}^{2}+7\right)^{4}+16\left(63 \mathrm{x}^{2}+79\right)^{2}+608=0$
with $\mathrm{E} \subseteq\{1,2,3, \ldots, 608\}$.

Gaussian Integers Result Part 1

Noam D. Elkies (Darmon and Granville 1995) provided the following polynomial identity:

$$
\begin{aligned}
& \left(\mathrm{x}^{2}+2 \cdot \mathrm{x} \cdot \mathrm{y}-2 \cdot \mathrm{y}^{2}\right)^{5}-\left(\mathrm{x}^{2}-2 \cdot \mathrm{x} \cdot \mathrm{y}-2 \cdot \mathrm{y}^{2}\right)^{5}+ \\
& \mathrm{i} \cdot\left(-\mathrm{x}^{2}+\mathrm{i} \cdot 2 \cdot \mathrm{x} \cdot \mathrm{y}-2 \cdot \mathrm{y}^{2}\right)^{5}- \\
& \mathrm{i} \cdot\left(-\mathrm{x}^{2}-\mathrm{i} \cdot 2 \cdot \mathrm{x} \cdot \mathrm{y}-2 \cdot \mathrm{y}^{2}\right)^{5}=0 .
\end{aligned}
$$

One can show that a common prime factor of any two of these numbers is a factor of either x or 2 y . Furthermore, $\mathrm{x}^{2}-2 \mathrm{xy}-2 \mathrm{y}^{2}=(\mathrm{x}-\mathrm{y})^{2}-3 \mathrm{y}^{2}$ and one can use Pell equations to set this to 1 : $\mathrm{x}-\mathrm{y}=\mathrm{v}, \mathrm{y}=\mathrm{uw}$ where u can be chosen freely and v , w solve $\mathrm{v}^{2}-\left(3 \mathrm{u}^{2}\right) \mathrm{w}^{2}=1$. Now $\mathrm{y}=\mathrm{uw}$ and $\mathrm{x}=\mathrm{v}+\mathrm{uw}$. As uw, v have the greatest common divisor 1, so do $\mathrm{v}+\mathrm{uw}$ and uw, thus x and y . Now one can see that no divisor of x or y divides any of the four terms in the above polynomial identity.

Gaussian Integers Result Part 2

By letting u be the product of all norms of Gaussian integers in a finite set \mathbf{F}, one can achieve that all prime factors of numbers in F divide y and thus none of the four terms is divided by them.
Now there are three fifth powers of similarly large terms plus one term of value -1 in the sum. Thus the radical is bounded by the third power of the largest term z and so the quality is at least $5 \cdot \log (\mathbf{z}) / 3 \cdot \log (\mathbf{z})=5 / 3$.
These arguments can be generalised to all $\mathrm{n} \geq 4$ giving the following theorem, provided that F does not contain any fourth root of -4 .

Theorem. $\mathrm{Q}_{\mathrm{C}(\{1\}, \mathbf{F}, \mathrm{n})} \geq 5 / 3$ for all $\mathrm{n} \geq 4$.

Example

Now $\mathrm{z}_{0}=3650401$ and $\mathrm{y}_{0}=2107560$ satisfy $\mathrm{z}_{0}^{2}-3 \mathrm{y}_{0}^{2}=1$. Furthermore, $y_{0}=2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 193$. Thus Elkies' equation with y_{0} and $\mathrm{x}_{0}=\mathrm{y}_{0}+\mathrm{z}_{0}$ provides an example for $\mathrm{n}=4$ with F containing $3,5,7$ and their factors. One gets further examples by

$$
\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{z}_{\mathrm{n}+1}\right)=\left(2 \cdot \mathrm{y}_{\mathrm{n}} \cdot \mathrm{z}_{\mathrm{n}}+2 \cdot \mathrm{z}_{\mathrm{n}}^{2}-1,2 \cdot \mathrm{y}_{\mathrm{n}} \cdot \mathrm{z}_{\mathrm{n}}, 2 \cdot 2 \cdot \mathrm{z}_{\mathrm{n}}^{2}-1\right)
$$

and then one can use that in Elkies equation the second term is -1 and replace it by $-3-5+7$ to get the following equation

$$
\begin{aligned}
& \left(\mathrm{x}^{2}+2 \cdot \mathrm{x} \cdot \mathrm{y}-2 \cdot \mathrm{y}^{2}\right)^{5}-3-5+7+ \\
& \mathrm{i} \cdot\left(-\mathrm{x}^{2}+\mathrm{i} \cdot 2 \cdot \mathrm{x} \cdot \mathrm{y}-2 \cdot \mathrm{y}^{2}\right)^{5}- \\
& \mathrm{i} \cdot\left(-\mathrm{x}^{2}-\mathrm{i} \cdot 2 \cdot \mathrm{x} \cdot \mathrm{y}-2 \cdot \mathrm{y}^{2}\right)^{5}=0
\end{aligned}
$$

to witness $\mathrm{Q}_{\mathrm{C}(\{1\}, \emptyset, 6)} \geq 5 / 3$ with the above sequence of $\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{z}_{\mathrm{n}}\right)$.

Hamiltonian Integers - Examples

1. The Pell equation $\mathrm{a}^{2}-2 \mathrm{~b}^{2}=1$ can be generalised to $\mathrm{x}^{4}-2 \mathrm{y}^{4}=1$ in the Gaussian integers, as one can find solutions (\mathbf{a}, b) which are sum of three squares and so can be squared. This witnesses quality 2 for strong 3 -conjecture.
2. One can choose $\mathbf{y}=\mathbf{v}+\mathbf{w} \cdot \mathbf{i}+\mathbf{w} \cdot \mathrm{j}$ with (\mathbf{a}, \mathbf{b}) as in 1 and has $\mathrm{y}^{2}=1+2 \mathrm{abi}+2 \mathrm{abj}$ and consider
$\mathrm{x}=\mathrm{y}^{2} \cdot-\mathrm{i} \cdot \mathrm{y}^{2} \cdot \mathrm{i}=1+4 \mathrm{abi}-8 \mathrm{a}^{2} \mathrm{~b}^{2} \mathrm{k} . \overline{\mathrm{x}}=-\mathrm{jxj}$ and $\mathrm{x}+\overline{\mathrm{x}}=2$. This witnesses quality 4 for 3 -conjecture.
3. For x as in 2, one can show that $\mathrm{x}^{2 \mathrm{~m}+1}+\overline{\mathrm{x}}^{2 \mathrm{~m}+1}=\sum_{\mathrm{h}=0,1, \ldots, \mathrm{~m}} \mathrm{c}_{\mathrm{h}} \cdot \operatorname{norm}(\mathrm{x})^{\mathrm{h}}$ with $\mathrm{c}_{0}=2^{\mathrm{m}+1}$. Now $\mathrm{x}^{2 \mathrm{~m}+1}$ and c_{0} are coprime, for $\mathrm{m}=\mathrm{n}-3$ there are n terms and degree $2 \mathrm{~m}+1=2 \mathrm{n}-5$. These equations give the lower bound $4 \cdot(2 n-5)$ for the n-conjecture.

Equations for N-Conjecture

Let $\mathrm{z}=\operatorname{norm}(\mathrm{x})$. One uses below recursive equation to compute concrete polynomials in z; coefficients of even powers of z are positive and those of odd powers are negative; $\mathrm{x}^{\mathrm{m}+2}=2 \mathrm{x}^{\mathrm{m}+1}-\overline{\mathrm{x}} \cdot \mathrm{x}^{\mathrm{m}+1}=2 \mathrm{x}^{\mathrm{m}+1}-\mathrm{z} \cdot \mathrm{x}^{\mathrm{m}}$.

$$
\begin{aligned}
\mathrm{x}^{0}+\overline{\mathrm{x}}^{0} & =2 ; \\
\mathrm{x}+\overline{\mathrm{x}} & =2 ; \\
\mathrm{x}^{2}+\overline{\mathrm{x}}^{2} & =4-2 \cdot \mathrm{z} ; \\
\mathrm{x}^{3}+\overline{\mathrm{x}}^{3} & =8-6 \cdot \mathrm{z} ; \\
\mathrm{x}^{\mathrm{n}+2}+\overline{\mathrm{x}}^{\mathrm{n}+2} & =2 \cdot\left(\mathrm{x}^{\mathrm{n}+1}+\overline{\mathrm{x}}^{\mathrm{n}+1}\right)-\mathrm{z} \cdot\left(\mathrm{x}^{\mathrm{n}}+\overline{\mathrm{x}}^{\mathrm{n}}\right) ; \\
\mathrm{x}^{4}+\overline{\mathrm{x}}^{4} & =16-16 \cdot \mathrm{z}+2 \cdot \mathrm{z}^{2} ; \\
\mathrm{x}^{5}+\overline{\mathrm{x}}^{5} & =32-40 \cdot \mathrm{z}+10 \cdot \mathrm{z}^{2} ; \\
\mathrm{x}^{6}+\overline{\mathrm{x}}^{6} & =64-96 \cdot \mathrm{z}+36 \cdot \mathrm{z}^{2}-2 \cdot \mathrm{z}^{3} ; \\
\mathrm{x}^{7}+\overline{\mathrm{x}}^{7} & =128-224 \cdot \mathrm{z}+112 \cdot \mathrm{z}^{2}-14 \cdot \mathrm{z}^{3} .
\end{aligned}
$$

Computer Search

However, computer search provided lots of examples of good quality, the best have qualities 1.6299 (Eric Reyssat, $2+3^{10} \cdot 109=23^{5}$), 1.6260 (Benne de Weger, $11^{2}+3^{2} \cdot 5^{6} \cdot 7^{3}=2^{21} \cdot 23$) and 1.6235 (Jerzy Browkin, Juliusz Brzezinski, 19 $\cdot 1307+7 \cdot 29^{2} \cdot 31^{8}=2^{8} \cdot 3^{22} \cdot 5^{4}$). Benne de Weger also found the largest known so far example with radical 210 ; it has quality 1.5679 and is $1+2 \cdot 3^{7}=5^{4} \cdot 7=4375$. For extremely large numbers, one bumps up smaller examples at the expense of quality.
For $m=8,9, \ldots, 18$, one got for each m between 10 and 17 examples of 3 -tuples with largest number having m decimal digits and quality at least 1.4 by exhaustive search.
Coen Ramaekers was student of Benne de Weger and did calculations for the strong n-conjecture with $n \in\{4,5\}$.

Summary

The talk summarised the knowledge about the strong n -conjecture and advocated that one reexamines the bound conjectured there. Lower bounds of $5 / 3$ for odd $n \geq 5$ and $5 / 4$ for even $n \geq 6$ were obtained; however, Ramaekers original bound of 1 was not improved for $n=3$ and $n=4$.
For the complex version of the strong n-conjecture, a uniform lower bound of $5 / 3$ was given for all $\mathrm{n} \geq 4$.
The lower bounds for the strong n-conjecture scale up by a factor 2 and for the n -conjecture by a factor 4 in the Hamiltonian integers.
All these bounds use a strong form of the avoidance of nontrivial subsums; Browkin (2000) citing Konyagin who did not consider the avoidance of subsums had already in the weaker version that odd $n \geq 5$ have the lower bound $3 / 2$.

