Lower Bounds for the Strong N-Conjecture

Aquinas Hobor, Singapore Rupert Hölzl, Munich Elaine Li, Singapore Frank Stephan, Singapore

http://www.comp.nus.edu.sg/~fstephan/strongnconjecture.pdf http://..../strongnconjectureslides.pdf

Starting Examples

Sometimes one can make additive equations of integers such that, compared to the size, there are only few distinct primefactors.

- 125 + 3 = 128: Primefactors 2, 3, 5; radical 30.
- 1024 + 5 = 1029: Primefactors 2, 3, 5, 7; radical 210.
- 2400 + 1 = 2401: Primefactors 2, 3, 5, 7; radical 210.
- 8181 + 11 = 8192: Primefactors 2, 3, 11, 101; radical 6666.

Radical of Example: Smallest number such that every member of the sum divides some power of it; alternatively, largest square-free divider of the product of all terms in the sum.

Quality of Example: $\log(largest number) / \log(radical)$. This value should be large.

The N-Conjecture

Requirements for Examples

- No common prime factors of all numbers, so 1024 - 512 - 256 - 256 = 0 is forbidden.
- Sum is zero: $\mathbf{a_1} + \mathbf{a_2} + \ldots + \mathbf{a_n} = \mathbf{0}$.
- No nontrivial subsums are zero: If $\sum a_k \cdot b_k = 0$ and all $b_k \in \{0, 1\}$ then $b_k = 0$ for either all or no k.

Let A(n) be the set of all these examples in the integers for given n. Let $Q_{A(n)}$ be the limit superior of the qualities of any one-one enumeration of the tuples in A(n).

- The abc-conjecture by David Masser (1985) and Joseph Oesterlé (1988). $\mathbf{Q}_{\mathbf{A}(3)} = \mathbf{1}$.
- The n-conjecture by Jerzy Browkin and Juliusz Brzeziński (1994). For every $n\geq 3,$ $Q_{A(n)}=2n-5.$

The Strong N-Conjecture

Requirements for Examples

- No common prime factors of any two numbers, so 9216 - 8192 - 1029 + 5 = 0 is forbidden.
- Sum is zero: $\mathbf{a_1} + \mathbf{a_2} + \ldots + \mathbf{a_n} = \mathbf{0}$.
- No nontrivial subsums are zero: If $\sum a_k \cdot b_k = 0$ and all $b_k \in \{0, 1\}$ then $b_k = 0$ for either all or no k.

Let $\mathbf{B}(\mathbf{n})$ be the set of all these examples satisfying the first and second condition and $\mathbf{R}(\mathbf{n})$ be the set of all examples satisfying all three conditions for given $\mathbf{n} \geq 3$.

The strong n-conjecture.

(Browkin 2000): $Q_{B(n)} < \infty$ for all **n**.

(Ramaekers 2009, Wikipedia): $Q_{R(n)} = 1$ for all n.

 $\begin{array}{l} \mbox{Konyagin (see Browkin 2000): } Q_{B(n)} \geq 3/2 \mbox{ for all odd} \\ n \geq 5; \mbox{ } Q_{R(5)} \geq 3/2 \mbox{ (follows from proof immediately).} \end{array}$

Setting of Present Work

Let \mathbf{E}, \mathbf{F} be finite sets of numbers with $1 \in \mathbf{E}$ and $\min(\mathbf{F}) \geq 3$. Now $\mathbf{U}(\mathbf{E}, \mathbf{F}, \mathbf{n})$ contains all tuples $(\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}) \in \mathbb{Z}^{\mathbf{n}}$ satisfying the following conditions:

- $\bullet \ \ \text{If} \ i \neq j \ \text{then} \ \mathbf{gcd}(a_i,a_j) \in E;$
- $\sum a_k = 0;$
- If $\sum a_k \cdot b_k = 0$ and all $b_k \in \{-1, 0, 1\}$ then $b_k = 0$ for either all or no k;
- No member of \mathbf{F} divides any $\mathbf{a}_{\mathbf{k}}$.

Now note that $\mathbf{Q}_{\mathbf{U}(\{1\},\mathbf{F},n)} \leq \mathbf{Q}_{\mathbf{R}(n)} \leq \mathbf{Q}_{\mathbf{B}(n)}$ for all $n \geq 3$.

 $Q_{U(\{1,2\},\emptyset,4)} \ge 3/2$ by the following polynomial identity of Daniel Davies: $(x^m + 2)^3 - x^{3m} - 6(x^m + 1)^2 - 2 = 0$; here one can take m to be a large odd number and x to be 5.

Main Results

Theorems

- 1. $Q_{U(\{1\},\emptyset,n)} \ge 5/3$ for odd $n \ge 5$.
- 2. For any **F** there is a constant r > 1 with $Q_{U(\{1\},F,5\}} \ge r$.
- 3. For any $n \ge 6$ and any \mathbf{F} , $\mathbf{Q}_{\mathbf{U}(\{1\},\mathbf{F},n)} \ge 5/4$.
- At Gaussian integers and Hamiltonian integers, notions C(E,F,n) and H(E,F,n) similar to U(E,F,n) exist.
 - 4. For any $n \ge 4$ and any F neither containing units nor fourth roots of -4, $Q_{C(\{1\},F,n)} \ge 5/3$.
 - 5. $\mathbf{Q}_{\mathbf{H}(\{\mathbf{1}\},\emptyset,\mathbf{3})} \geq \mathbf{2}$ and $\mathbf{Q}_{\mathbf{H}(\{\mathbf{1}\},\emptyset,\mathbf{4})} \geq \mathbf{2}$;
 - $\begin{array}{ll} \text{6.} \ Q_{H(\{1\},F,n)}\geq 5/2 \text{ for }n\geq 6\text{; }Q_{H(\{1\},\emptyset,n)}\geq 10/3 \text{ for odd} \\ n\geq 5\text{.} \end{array}$
 - 7. For $n \ge 3$, a lower bound of the n-conjecture in the Hamiltonian integers is $4 \cdot (2n 5)$.

Arbitrary Forbidden Sets

Theorem. Let F be a finite set with $\min(F) \ge 3$, $E = \{1\}$ and $n \ge 6$. Then $Q_{U(E,F,n)} \ge 5/4$.

Construction. Let y be the product of all members of $F \cup \{2, 3, 5, 7, 11, s\}$. Choose as $(y + 1)^{h!}$ for large h and a_1, a_2, a_3, a_4 with $a_1 + a_2 + a_3 + a_4 = -2y^5 + 100y^6$ by:

- $a_1 = (x + y)^5;$
- $a_2 = -(x y)^5;$
- $\mathbf{a_3} = -(\mathbf{10} \cdot \mathbf{y} \mathbf{1}) \cdot \mathbf{x^4};$
- $\mathbf{a_4} = -(\mathbf{x^2} + \mathbf{10} \cdot \mathbf{y^3})^2$.

Here a sideconstraint is that $10 \cdot y - 1$ is a prime; this can be obtained by choosing $s > max(F \cup \{11\})$ accordingly.

• $-\mathbf{a_7}, -\mathbf{a_8}, \dots, -\mathbf{a_n}$ are odd prime numbers such that $|\mathbf{6a_k}| < |\mathbf{a_{k+1}}|$ for $\mathbf{k} = 7, 8, \dots, \mathbf{n-1}$ and $|\mathbf{a_7}| > 700\mathbf{y^6}$.

Choosing the last two numbers

Now one chooses a_5 and a_6 such that (a) they are coprime to all other numbers and (b) their sum is $u = -(a_1 + a_2 + a_3 + a_4 + a_7 + ... + a_n)$. This makes the sum of all a_k to be directly 0.

One first let q be the product of all primes below $10 \cdot \max\{600 \cdot |y|^6, |a_7|, |a_8|, \dots, |a_n|\}.$

- 1. Let $\mathbf{v} = \mathbf{u} + \mathbf{1} + \mathbf{q}$ and $\mathbf{w} = -\mathbf{q} \mathbf{1}$.
- 2. For all odd prime numbers ${\bf p}$ dividing ${\bf q}$ Do
- 3. { While p divides one of v or w Do $\{v = v + q/p \text{ and } w = w - q/p\}\}.$

4. If 4 divides v then let v = v + q and w = w - q. Then let $a_5 = v$ and $a_6 = w$.

Choosing h

Now **h** is chosen larger than the absolute values of all of a_5, a_6, \ldots, a_n .

Any prime factor **p** of $\mathbf{a_5}, \ldots, \mathbf{a_n}$ satisfies that $\mathbf{x} = (\mathbf{y} + \mathbf{1})^{\mathbf{h}!}$ is 0 or 1 modulo p; as the prime factor p is at least $600y^6$, x is actually 1 modulo p. a_1 and a_2 are $(y+1)^5$ and $(y-1)^5$ modulo p. $\mathbf{a_3}$ is $-(10 \cdot \mathbf{y} - 1)$ modulo p. $\mathbf{a_4}$ is $(1 + 10\mathbf{y^3})^2$ modulo p. As $p > 600y^6$, p does not divide any of these numbers. a_5, \ldots, a_n are prime relative to each other. One can also verify that a_1, \ldots, a_4 are prime to each other: As x is coprime y and y is even, x, x + y, x - y are all coprime to each other; also as 10y - 1 is a prime and x is 1 modulo 10y - 1, a_1 and a_2 are coprime to 10y - 1 and thus to a_3 . Similarly one verifies that a_4 is coprime to a_1, a_2, a_3 .

Determining the Quality

For the quality of this family of examples, note that y and a_5, \ldots, a_n are constants in the family while one is varying the exponent h! in the expression $\mathbf{x} = (\mathbf{y} + \mathbf{1})^{h!}$. The factors $(\mathbf{x} + \mathbf{y})^5$, $-(\mathbf{x} - \mathbf{y})^5$ and $-(\mathbf{x}^2 + \mathbf{10y}^3)$ contribute to the radical either the factors x + y, x - y and $x^2 + 10y^3$ or some proper factors of these; furthermore, $-(10y - 1) \cdot x^4$ contributes to the radical either $(10y - 1) \cdot (y + 1)$ or a factor of that what is O(1), as y is constant independent of x. The numbers a_5, \ldots, a_n are also constants independent of x and contribute to the radical only size O(1). Furthermore, (x + y) is the largest term in the sum. So the quality is

$\mathbf{5} \cdot \log(\mathbf{O}(\mathbf{x})) / \log(\mathbf{O}(\mathbf{x}) \cdot \mathbf{O}(\mathbf{x}) \cdot \mathbf{O}(\mathbf{x^2}) \cdot \mathbf{O}(\mathbf{1}))$

which converges to 5/4 for larger and larger values of ${\bf h}$ and ${\bf x}=({\bf y}+1)^{{\bf h}!}.$

The Case N = 5

Theorem. Let \mathbf{E}, \mathbf{F} be finite sets with $1 \in \mathbf{E}$ and $2, 5, 7, 10 \notin \mathbf{F}$. Then $\mathbf{Q}_{\mathbf{U}(\mathbf{E},\mathbf{F},5)} \geq 5/3$.

Construction. Let $\mathbf{y}=(\max(\mathbf{F}\cup\{\mathbf{11}\}))!,$ \mathbf{k} a large integer and $\mathbf{x}=(\mathbf{y}+\mathbf{1})^k-\mathbf{1}.$ The sum

$$(x+1)^5 - (x-1)^5 - 10(x^2+1)^2 - 7 - 1 = 0$$

and the terms in the sum have at least the quality

 $5 \cdot \log(x+1) / \log(7 \cdot (y+1) \cdot (x-1) \cdot (x^2+1))$

The coprimeness follows from the fact that $x + 1, x - 1, x^2 + 1$ are coprime and that all primes up to 11 are factors of y and y is a factor of x. The subsum condition is easy to verify.

The result holds also for all odd $n \geq 7$.

Gaussian and Hamiltonian Integers

Gauss (Complex integers): $\mathbf{x} = \mathbf{q} + \mathbf{r} \cdot \mathbf{i}$ where $\mathbf{q}, \mathbf{r} \in \mathbb{Z}$; Hamilton: $\mathbf{x} = \mathbf{q} + \mathbf{r} \cdot \mathbf{i} + \mathbf{s} \cdot \mathbf{j} + \mathbf{t} \cdot \mathbf{k}$ where $\mathbf{q}, \mathbf{r}, \mathbf{s}, \mathbf{t} \in \mathbb{Z}$.

Rules: $i^2 = -1$, $j^2 = -1$, $k^2 = -1$, $i \cdot j \cdot k = -1$; Product of different imaginary units anticommutative; Product of integers with any number commutative.

Norm and Conjugate: $\bar{\mathbf{x}} = \mathbf{q} - \mathbf{r} \cdot \mathbf{i} - \mathbf{s} \cdot \mathbf{j} - \mathbf{t} \cdot \mathbf{k}$ is conjugate of $\mathbf{x}, \, \mathbf{x} \cdot \bar{\mathbf{x}} = \mathbf{q}^2 + \mathbf{r}^2 + \mathbf{s}^2 + \mathbf{t}^2$ is the norm.

Norms are multiplicative. If the norm is a prime number then the number is prime in Gaussian and Hamiltonian integers. In Gaussian integers, 3 has norm 9 but cannot be factorised, as 3 is not the sum of two integer squares. In the Hamiltonian integers, a natural number x is of the form $-1 \cdot y^2$ iff x is the sum of three integer squares, that is, if x is not of the form $4^a \cdot (8b + 7)$ (direct application of Legendre's Three Square Theorem).

Definitions

Factorisation and The Radnorm: A factorisation of x is a list of numbers such that their product is x; a factorisation of a tuple (x_1, x_2, \ldots, x_n) is the concatination of factorisations of x_1, x_2, \ldots, x_n as lists. The radical of a factorisation is the listing out of the members of the factorisation without verbatim repetition.

Radnorm and Maxnorm: The maxnorm of a tuple is the largest norm of a member of the tuple. The radnorm is the smallest norm which is taken by some radical of a factorisation of a tuple.

Quality: The quality of a tuple $\mathbf{a} = (\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n})$ is $\mathbf{q}(\mathbf{a}) = \mathbf{maxnorm}(\mathbf{a})/\mathbf{radnorm}(\mathbf{a})$. A set $\mathbf{A} = \{\mathbf{a_1}, \mathbf{a_2}, \dots\}$ of tuples has quality $\mathbf{Q_A} = \limsup_{\mathbf{m}=1,2,\dots} \mathbf{q}(\mathbf{a_m})$. Furthermore, $\mathbf{C}(\mathbf{E}, \mathbf{F}, \mathbf{n}), \mathbf{H}(\mathbf{E}, \mathbf{F}, \mathbf{n})$ are the adjustments of $\mathbf{U}(\mathbf{E}, \mathbf{F}, \mathbf{n})$ to the Gaussian and Hamiltonian integers.

Gaussian and Hamiltonian Integers

Theorem. If $n \ge 4$ then $Q_{C(\{1\},F,n)} \ge 5/3$.

Theorem. If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are normal integers with $\mathbf{a} + \mathbf{b} = \mathbf{c}$ then $\mathbf{q}(\mathbf{a}, \mathbf{b}, \mathbf{c})$ in the Hamiltonian integers is between $\mathbf{q}((\mathbf{a}, \mathbf{b}, \mathbf{c}))$ and $2\mathbf{q}(\mathbf{a}, \mathbf{b}, \mathbf{c})$ in the normal integers.

Theorem. $Q_{H(\{1\},F,n)} \ge 5/2$ for $n \ge 6$ by verifying that in $x + y, x - y, x^2 + 10y^3$ are sums of three squares in that result and thus have roots in the Hamiltonian integers; x is a large power of y + 1.

Theorem. The quality of the n-conjecture in the Hamiltonian integers is at least $4 \cdot (2n - 5)$, using a result that one can choose an odd x with $x + \bar{x} = 2$ and x, \bar{x} having a joint large factor y occuring four times in the factorisations with all other factors being units.

The Problems of Small N

No results for the case n = 3 for normal and Gaussian integers. The reason is that polynomial identities do not work here and there is even a theorem stating the reason.

Theorem [Mason (1983) and Stother (1981)]. If $\mathbf{p}+\mathbf{q}=\mathbf{r}$ is a polynomial identity of coprime polynomials in ℓ variables and \mathbf{r} is not constant then

 $\label{eq:cad} deg(rad(p \cdot q \cdot r)) \geq max\{deg(p), deg(q), deg(r)\} + \ell.$

Such methods give usually

$$\label{eq:quality} \textbf{quality} \geq \frac{\textbf{deg}(\textbf{largest term})}{\textbf{deg}(\textbf{radical}) - \ell}.$$

Furthermore, for the normal integers, no useful polynomial identies are known for n = 4 where all coefficients are odd.

Summary

The talk summarised the knowledge about the strong n-conjecture and advocated that one reexamines the bound conjectured there. Lower bounds of 5/3 for odd $n \ge 5$ and 5/4 for even $n \ge 6$ were obtained; however, Ramaekers original bound of 1 was not improved for n = 3 and n = 4.

For the complex version of the strong n-conjecture, a uniform lower bound of 5/3 was given for all $n \ge 4$.

The lower bounds for the strong n-conjecture scale up by a factor 2 and for the n-conjecture by a factor 4 in the Hamiltonian integers.

All these bounds use a strong form of the avoidance of nontrivial subsums; Browkin (2000) citing Konyagin who did not consider the avoidance of subsums had already in the weaker version that odd $n \ge 5$ have the lower bound 3/2.

Case N=5 and Arbitrary F

Theorem. Let F be finite and $\min(F) \geq 3.$ Then $Q_{U(\{1\},F,5)} > 1.$

Ramaekers (2009) mentioned a construction for four numbers which will here be slightly modified and the last will be split into two numbers.

- 1. $a_1 = (x+1)^p$;
- 2. $a_2 = -(x 1)^p;$
- 3. $\mathbf{a_3} = -2\mathbf{p} \cdot (\mathbf{x^2} + (\mathbf{p} \mathbf{2})/3)^{(\mathbf{p} 1)/2};$
- 4. $\mathbf{a_4} = -(\mathbf{a_1} + \mathbf{a_2} + \mathbf{a_3} + \mathbf{y})$ for some odd number $\mathbf{y} > \mathbf{p}$ to be chosen below;
- 5. $a_5 = y$.

Proof Continued

Here p is h! - 1 for some h larger than all members of F. One can compute the values of $a_1 + a_2 + a_3$ modulo $x^2, x^2 - 1, x^2 + (p - 1)/2$ which turn out to be numbers and not polynomials, as $a_1 + a_2 + a_3$ is an even polynomial in x of degree p - 5. One chooses y such that neither y nor the sum of y with any of the three remainders will be a multiple of any member of F. Furthermore, one chooses x to be a large factorial. The quality of the example is approximately

 $p \cdot \log(\mathbf{x}+1) / \log((\mathbf{x^2-1}) \cdot (\mathbf{x^2}+(p-2)/3) \cdot O(\mathbf{x^{p-5}}) \cdot \mathbf{y})$

which is approximately p/(p-1); note that y is constant when choosing x.

Nontrivial Exception Sets E

Coen Ramaekers (2009) discussed a polynomial identity which allows to have $Q_{U(\{1,2\},\emptyset,4)} \ge 5/3$; this identity is

$$(x+1)^5 - (x-1)^5 - 10 \cdot (x^2+1)^2 + 8 = 0.$$

Furthermore, for larger but still finite sets E one can show $Q_{U(E,\emptyset,5)} \geq 7/4$ and $Q_{U(E,\emptyset,5)} \geq 9/5$. The polynomial identities are

$$(x+1)^7 - (x-1)^7 - 14(x^2+1)^3 - 28x^4 + 12 = 0$$

with $\mathbf{E} = \{\mathbf{1}, \mathbf{2}, \mathbf{4}, \mathbf{7}, \mathbf{14}\}$ and

 $189(x+1)^9 - 189(x-1)^9 - 42(3x^2+7)^4 + 16(63x^2+79)^2 + 608 = 0$

with $E \subseteq \{1, 2, 3, \dots, 608\}$.

Gaussian Integers Result Part 1

Noam D. Elkies (Darmon and Granville 1995) provided the following polynomial identity:

$$\begin{split} &(\mathbf{x}^2 + 2 \cdot \mathbf{x} \cdot \mathbf{y} - 2 \cdot \mathbf{y}^2)^5 - (\mathbf{x}^2 - 2 \cdot \mathbf{x} \cdot \mathbf{y} - 2 \cdot \mathbf{y}^2)^5 + \\ &\mathbf{i} \cdot (-\mathbf{x}^2 + \mathbf{i} \cdot 2 \cdot \mathbf{x} \cdot \mathbf{y} - 2 \cdot \mathbf{y}^2)^5 - \\ &\mathbf{i} \cdot (-\mathbf{x}^2 - \mathbf{i} \cdot 2 \cdot \mathbf{x} \cdot \mathbf{y} - 2 \cdot \mathbf{y}^2)^5 = \mathbf{0}. \end{split}$$

One can show that a common prime factor of any two of these numbers is a factor of either x or 2y. Furthermore, $x^2 - 2xy - 2y^2 = (x - y)^2 - 3y^2$ and one can use Pell equations to set this to 1: x - y = v, y = uw where u can be chosen freely and v, w solve $v^2 - (3u^2)w^2 = 1$. Now y = uw and x = v + uw. As uw, v have the greatest common divisor 1, so do v + uw and uw, thus x and y. Now one can see that no divisor of x or y divides any of the four terms in the above polynomial identity.

Gaussian Integers Result Part 2

By letting \mathbf{u} be the product of all norms of Gaussian integers in a finite set \mathbf{F} , one can achieve that all prime factors of numbers in \mathbf{F} divide \mathbf{y} and thus none of the four terms is divided by them.

Now there are three fifth powers of similarly large terms plus one term of value -1 in the sum. Thus the radical is bounded by the third power of the largest term z and so the quality is at least $5 \cdot \log(z)/3 \cdot \log(z) = 5/3$.

These arguments can be generalised to all $n \ge 4$ giving the following theorem, provided that F does not contain any fourth root of -4.

Theorem. $\mathbf{Q}_{\mathbf{C}(\{1\},\mathbf{F},\mathbf{n})} \geq 5/3$ for all $\mathbf{n} \geq 4.$

Example

Now $z_0 = 3650401$ and $y_0 = 2107560$ satisfy $z_0^2 - 3y_0^2 = 1$. Furthermore, $y_0 = 2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 193$. Thus Elkies' equation with y_0 and $x_0 = y_0 + z_0$ provides an example for n = 4 with F containing 3, 5, 7 and their factors. One gets further examples by

$$(\mathbf{x_{n+1}},\mathbf{y_{n+1}},\mathbf{z_{n+1}}) = (\mathbf{2}\cdot\mathbf{y_n}\cdot\mathbf{z_n} + \mathbf{2}\cdot\mathbf{z_n^2} - \mathbf{1},\mathbf{2}\cdot\mathbf{y_n}\cdot\mathbf{z_n},\mathbf{2}\cdot\mathbf{z_n^2} - \mathbf{1})$$

and then one can use that in Elkies equation the second term is -1 and replace it by -3 - 5 + 7 to get the following equation

$$\begin{aligned} (\mathbf{x}^2 + 2 \cdot \mathbf{x} \cdot \mathbf{y} - 2 \cdot \mathbf{y}^2)^5 &-3 - 5 + 7 + \\ \mathbf{i} \cdot (-\mathbf{x}^2 + \mathbf{i} \cdot 2 \cdot \mathbf{x} \cdot \mathbf{y} - 2 \cdot \mathbf{y}^2)^5 &- \\ \mathbf{i} \cdot (-\mathbf{x}^2 - \mathbf{i} \cdot 2 \cdot \mathbf{x} \cdot \mathbf{y} - 2 \cdot \mathbf{y}^2)^5 &= 0 \end{aligned}$$

to witness $Q_{C(\{1\},\emptyset,6\}} \ge 5/3$ with the above sequence of $(\mathbf{x_n}, \mathbf{y_n}, \mathbf{z_n})$.

Hamiltonian Integers - Examples

1. The Pell equation $a^2 - 2b^2 = 1$ can be generalised to $x^4 - 2y^4 = 1$ in the Gaussian integers, as one can find solutions (a, b) which are sum of three squares and so can be squared. This witnesses quality 2 for strong 3-conjecture.

2. One can choose $y = v + w \cdot i + w \cdot j$ with (a, b) as in 1 and has $y^2 = 1 + 2abi + 2abj$ and consider $x = y^2 \cdot -i \cdot y^2 \cdot i = 1 + 4abi - 8a^2b^2k$. $\bar{x} = -jxj$ and $x + \bar{x} = 2$. This witnesses quality 4 for 3-conjecture.

3. For x as in 2, one can show that $x^{2m+1} + \bar{x}^{2m+1} = \sum_{h=0,1,...,m} c_h \cdot norm(x)^h$ with $c_0 = 2^{m+1}$. Now x^{2m+1} and c_0 are coprime, for m = n - 3 there are n terms and degree 2m + 1 = 2n - 5. These equations give the lower bound $4 \cdot (2n - 5)$ for the n-conjecture.

Equations for N-Conjecture

Let z = norm(x). One uses below recursive equation to compute concrete polynomials in z; coefficients of even powers of z are positive and those of odd powers are negative; $x^{m+2} = 2x^{m+1} - \overline{x} \cdot x^{m+1} = 2x^{m+1} - z \cdot x^m$.

 $x^0 + \bar{x}^0 = 2;$ $\mathbf{x} + \bar{\mathbf{x}} = \mathbf{2};$ $x^2 + \bar{x}^2 = 4 - 2 \cdot z;$ $x^3 + \bar{x}^3 = 8 - 6 \cdot z;$ $\mathbf{x^{n+2}} + \mathbf{\overline{x}^{n+2}} = \mathbf{2} \cdot (\mathbf{x^{n+1}} + \mathbf{\overline{x}^{n+1}}) - \mathbf{z} \cdot (\mathbf{x^n} + \mathbf{\overline{x}^n});$ $x^4 + \bar{x}^4 = 16 - 16 \cdot z + 2 \cdot z^2;$ $x^{5} + \bar{x}^{5} = 32 - 40 \cdot z + 10 \cdot z^{2};$ $x^{6} + \bar{x}^{6} = 64 - 96 \cdot z + 36 \cdot z^{2} - 2 \cdot z^{3}$: $x^7 + \bar{x}^7 = 128 - 224 \cdot z + 112 \cdot z^2 - 14 \cdot z^3$

Computer Search

However, computer search provided lots of examples of good quality, the best have qualities 1.6299 (Eric Reyssat, $2 + 3^{10} \cdot 109 = 23^5$), 1.6260 (Benne de Weger, $11^2 + 3^2 \cdot 5^6 \cdot 7^3 = 2^{21} \cdot 23$) and 1.6235 (Jerzy Browkin, Juliusz Brzezinski, $19 \cdot 1307 + 7 \cdot 29^2 \cdot 31^8 = 2^8 \cdot 3^{22} \cdot 5^4$). Benne de Weger also found the largest known so far example with radical 210; it has quality 1.5679 and is $1 + 2 \cdot 3^7 = 5^4 \cdot 7 = 4375$. For extremely large numbers, one bumps up smaller examples at the expense of quality.

For m = 8, 9, ..., 18, one got for each m between 10 and 17 examples of 3-tuples with largest number having m decimal digits and quality at least 1.4 by exhaustive search.

Coen Ramaekers was student of Benne de Weger and did calculations for the strong n-conjecture with $n \in \{4, 5\}$.

Summary

The talk summarised the knowledge about the strong n-conjecture and advocated that one reexamines the bound conjectured there. Lower bounds of 5/3 for odd $n \ge 5$ and 5/4 for even $n \ge 6$ were obtained; however, Ramaekers original bound of 1 was not improved for n = 3 and n = 4.

For the complex version of the strong n-conjecture, a uniform lower bound of 5/3 was given for all $n \ge 4$.

The lower bounds for the strong n-conjecture scale up by a factor 2 and for the n-conjecture by a factor 4 in the Hamiltonian integers.

All these bounds use a strong form of the avoidance of nontrivial subsums; Browkin (2000) citing Konyagin who did not consider the avoidance of subsums had already in the weaker version that odd $n \ge 5$ have the lower bound 3/2.