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Starting Examples

Sometimes one can make additive equations of integers
such that, compared to the size, there are only few distinct
primefactors.

• 125+ 3 = 128: Primefactors 2,3,5; radical 30.

• 1024+ 5 = 1029: Primefactors 2,3,5,7; radical 210.

• 2400+ 1 = 2401: Primefactors 2,3,5,7; radical 210.

• 8181+ 11 = 8192: Primefactors 2,3,11,101; radical
6666.

Radical of Example: Smallest number such that every
member of the sum divides some power of it; alternatively,
largest square-free divider of the product of all terms in the
sum.
Quality of Example: log(largest number)/ log(radical). This
value should be large.
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The N-Conjecture

Requirements for Examples

• No common primefactors of all numbers, so
1024− 512− 256− 256 = 0 is forbidden.

• Sum is zero: a1 + a2 + . . .+ an = 0.

• No nontrivial subsums are zero: If
∑

ak · bk = 0 and all
bk ∈ {0,1} then bk = 0 for either all or no k.

Let A(n) be the set of all these examples in the integers for
given n. Let QA(n) be the limit superior of the qualities of

any one-one enumeration of the tuples in A(n).

The abc-conjecture by David Masser (1985) and Joseph
Oesterlé (1988). QA(3) = 1.

The n-conjecture by Jerzy Browkin and Juliusz Brzeziński
(1994). For every n ≥ 3, QA(n) = 2n− 5.
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The Strong N-Conjecture

Requirements for Examples

• No common primefactors of any two numbers, so
9216− 8192− 1029+ 5 = 0 is forbidden.

• Sum is zero: a1 + a2 + . . .+ an = 0.

• No nontrivial subsums are zero: If
∑

ak · bk = 0 and all
bk ∈ {0,1} then bk = 0 for either all or no k.

Let B(n) be the set of all these examples satisfying the first
and second condition and R(n) be the set of all examples
satisfying all three conditions for given n ≥ 3.

The strong n-conjecture.
(Browkin 2000): QB(n) < ∞ for all n.

(Ramaekers 2009, Wikipedia): QR(n) = 1 for all n.

Konyagin (see Browkin 2000): QB(n) ≥ 3/2 for all odd

n ≥ 5; QR(5) ≥ 3/2 (follows from proof immediately).
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Setting of Present Work

Let E,F be finite sets of numbers with 1 ∈ E and
min(F) ≥ 3. Now U(E,F,n) contains all tuples
(a1, a2, . . . , an) ∈ Z

n satisfying the following conditions:

• If i 6= j then gcd(ai, aj) ∈ E;

•
∑

ak = 0;

• If
∑

ak · bk = 0 and all bk ∈ {−1,0,1} then bk = 0 for
either all or no k;

• No member of F divides any ak.

Now note that QU({1},F,n) ≤ QR(n) ≤ QB(n) for all n ≥ 3.

QU({1,2},∅,4) ≥ 3/2 by the following polynomial identity of

Daniel Davies: (xm + 2)3 − x3m − 6(xm + 1)2 − 2 = 0; here
one can take m to be a large odd number and x to be 5.
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Main Results

Theorems

1. QU({1},∅,n) ≥ 5/3 for odd n ≥ 5.

2. For any F there is a constant r > 1 with QU({1},F,5) ≥ r.

3. For any n ≥ 6 and any F, QU({1},F,n) ≥ 5/4.

At Gaussian integers and Hamiltonian integers, notions
C(E,F,n) and H(E,F,n) similar to U(E,F,n) exist.

4. For any n ≥ 4 and any F neither containing units nor
fourth roots of −4, QC({1},F,n) ≥ 5/3.

5. QH({1},∅,3) ≥ 2 and QH({1},∅,4) ≥ 2;

6. QH({1},F,n) ≥ 5/2 for n ≥ 6; QH({1},∅,n) ≥ 10/3 for odd

n ≥ 5.

7. For n ≥ 3, a lower bound of the n-conjecture in the
Hamiltonian integers is 4 · (2n− 5).
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Arbitrary Forbidden Sets

Theorem. Let F be a finite set with min(F) ≥ 3, E = {1} and
n ≥ 6. Then QU(E,F,n) ≥ 5/4.

Construction. Let y be the product of all members of

F ∪ {2,3,5,7,11, s}. Choose as (y + 1)h! for large h and

a1, a2, a3, a4 with a1 + a2 + a3 + a4 = −2y5 + 100y6 by:

• a1 = (x+ y)5;

• a2 = −(x− y)5;

• a3 = −(10 · y − 1) · x4;

• a4 = −(x2 + 10 · y3)2.

Here a sideconstraint is that 10 · y − 1 is a prime; this can
be obtained by choosing s > max(F ∪ {11}) accordingly.

• −a7,−a8, . . . ,−an are odd prime numbers such that

|6ak| < |ak+1| for k = 7,8, . . . ,n− 1 and |a7| > 700y6.
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Choosing the last two numbers

Now one chooses a5 and a6 such that (a) they are coprime
to all other numbers and (b) their sum is
u = −(a1 + a2 + a3 + a4 + a7 + . . .+ an). This makes the
sum of all ak to be directly 0.

One first let q be the product of all primes below

10 ·max{600 · |y|6, |a7|, |a8|, . . . , |an|}.

1. Let v = u+ 1+ q and w = −q− 1.

2. For all odd prime numbers p dividing q Do

3. { While p divides one of v or w
Do {v = v + q/p and w = w − q/p}}.

4. If 4 divides v then let v = v + q and w = w − q.

Then let a5 = v and a6 = w.
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Choosing h

Now h is chosen larger than the absolute values of all of
a5, a6, . . . , an.

Any prime factor p of a5, . . . , an satisfies that x = (y + 1)h! is

0 or 1 modulo p; as the prime factor p is at least 600y6, x is

actually 1 modulo p. a1 and a2 are (y + 1)5 and (y − 1)5

modulo p. a3 is −(10 · y − 1) modulo p. a4 is (1+ 10y3)2

modulo p. As p > 600y6, p does not divide any of these
numbers. a5, . . . , an are prime relative to each other. One
can also verify that a1, . . . , a4 are prime to each other: As x

is coprime y and y is even, x,x+ y,x− y are all coprime to
each other; also as 10y − 1 is a prime and x is 1 modulo
10y − 1, a1 and a2 are coprime to 10y − 1 and thus to a3.
Similarly one verifies that a4 is coprime to a1, a2, a3.
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Determining the Quality

For the quality of this family of examples, note that y and
a5, . . . , an are constants in the family while one is varying

the exponent h! in the expression x = (y + 1)h!. The factors

(x+ y)5, −(x− y)5 and −(x2 + 10y3) contribute to the

radical either the factors x+ y, x− y and x2 + 10y3 or some

proper factors of these; furthermore, −(10y − 1) · x4

contributes to the radical either (10y− 1) · (y+ 1) or a factor
of that what is O(1), as y is constant independent of x. The
numbers a5, . . . , an are also constants independent of x and
contribute to the radical only size O(1). Furthermore,
(x+ y) is the largest term in the sum. So the quality is

5 · log(O(x))/ log(O(x) ·O(x) ·O(x2) ·O(1))

which converges to 5/4 for larger and larger values of h and

x = (y + 1)h!.
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The Case N = 5

Theorem. Let E,F be finite sets with 1 ∈ E and
2,5,7,10 /∈ F. Then QU(E,F,5) ≥ 5/3.

Construction. Let y = (max(F ∪ {11}))!, k a large integer

and x = (y + 1)k − 1. The sum

(x+ 1)5 − (x− 1)5 − 10(x2 + 1)2 − 7− 1 = 0

and the terms in the sum have at least the quality

5 · log(x+ 1)/ log(7 · (y + 1) · (x− 1) · (x2 + 1))

The coprimeness follows from the fact that

x+ 1,x− 1,x2 + 1 are coprime and that all primes up to 11

are factors of y and y is a factor of x. The subsum condition
is easy to verify.

The result holds also for all odd n ≥ 7.
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Gaussian and Hamiltonian Integers

Gauss (Complex integers): x = q+ r · i where q, r ∈ Z;
Hamilton: x = q+ r · i+ s · j+ t · k where q, r, s, t ∈ Z.

Rules: i2 = −1, j2 = −1, k2 = −1, i · j · k = −1;
Product of different imaginary units anticommutative;
Product of integers with any number commutative.

Norm and Conjugate: x̄ = q− r · i− s · j− t · k is conjugate

of x, x · x̄ = q2 + r2 + s2 + t2 is the norm.
Norms are multiplicative. If the norm is a prime number
then the number is prime in Gaussian and Hamiltonian
integers. In Gaussian integers, 3 has norm 9 but cannot be
factorised, as 3 is not the sum of two integer squares. In the
Hamiltonian integers, a natural number x is of the form

−1 · y2 iff x is the sum of three integer squares, that is, if x
is not of the form 4a · (8b+ 7) (direct application of
Legendre’s Three Square Theorem).
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Definitions

Factorisation and The Radnorm: A factorisation of x is a list
of numbers such that their product is x; a factorisation of a
tuple (x1,x2, . . . ,xn) is the concatination of factorisations of
x1,x2, . . . ,xn as lists. The radical of a factorisation is the
listing out of the members of the factorisation without
verbatim repetition.

Radnorm and Maxnorm: The maxnorm of a tuple is the
largest norm of a member of the tuple. The radnorm is the
smallest norm which is taken by some radical of a
factorisation of a tuple.

Quality: The quality of a tuple a = (x1,x2, . . . ,xn) is
q(a) = maxnorm(a)/radnorm(a). A set A = {a1, a2, . . .} of
tuples has quality QA = lim supm=1,2,... q(am). Furthermore,

C(E,F,n),H(E,F,n) are the adjustments of U(E,F,n) to
the Gaussian and Hamiltonian integers.
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Gaussian and Hamiltonian Integers

Theorem. If n ≥ 4 then QC({1},F,n) ≥ 5/3.

Theorem. If a,b, c are normal integers with a+ b = c then
q(a,b, c) in the Hamiltonian integers is between q((a,b, c))
and 2q(a,b, c) in the normal integers.

Theorem. QH({1},F,n) ≥ 5/2 for n ≥ 6 by verifying that in

x+ y,x− y,x2 + 10y3 are sums of three squares in that
result and thus have roots in the Hamiltonian integers; x is
a large power of y + 1.

Theorem. The quality of the n-conjecture in the Hamiltonian
integers is at least 4 · (2n− 5), using a result that one can
choose an odd x with x+ x̄ = 2 and x, x̄ having a joint large
factor y occuring four times in the factorisations with all
other factors being units.
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The Problems of Small N

No results for the case n = 3 for normal and Gaussian
integers. The reason is that polynomial identities do not
work here and there is even a theorem stating the reason.

Theorem [Mason (1983) and Stother (1981)]. If p+ q = r is
a polynomial identity of coprime polynomials in ℓ variables
and r is not constant then

deg(rad(p · q · r)) ≥ max{deg(p),deg(q),deg(r)}+ ℓ.

Such methods give usually

quality ≥
deg(largest term)

deg(radical)− ℓ
.

Furthermore, for the normal integers, no useful polynomial
identies are known for n = 4 where all coefficients are odd.
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Summary

The talk summarised the knowledge about the strong
n-conjecture and advocated that one reexamines the bound
conjectured there. Lower bounds of 5/3 for odd n ≥ 5 and
5/4 for even n ≥ 6 were obtained; however, Ramaekers
original bound of 1 was not improved for n = 3 and n = 4.

For the complex version of the strong n-conjecture, a
uniform lower bound of 5/3 was given for all n ≥ 4.

The lower bounds for the strong n-conjecture scale up by a
factor 2 and for the n-conjecture by a factor 4 in the
Hamiltonian integers.

All these bounds use a strong form of the avoidance of
nontrivial subsums; Browkin (2000) citing Konyagin who did
not consider the avoidance of subsums had already in the
weaker version that odd n ≥ 5 have the lower bound 3/2.
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Case N=5 and Arbitrary F

Theorem. Let F be finite and min(F) ≥ 3. Then
QU({1},F,5) > 1.

Ramaekers (2009) mentioned a construction for four
numbers which will here be slightly modified and the last
will be split into two numbers.

1. a1 = (x+ 1)p;

2. a2 = −(x− 1)p;

3. a3 = −2p · (x2 + (p− 2)/3)(p−1)/2;

4. a4 = −(a1 + a2 + a3 + y) for some odd number y > p to
be chosen below;

5. a5 = y.
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Proof Continued

Here p is h!− 1 for some h larger than all members of F.
One can compute the values of a1 + a2 + a3 modulo

x2,x2 − 1,x2 + (p− 1)/2 which turn out to be numbers and
not polynomials, as a1 + a2 + a3 is an even polynomial in x

of degree p− 5. One chooses y such that neither y nor the
sum of y with any of the three remainders will be a multiple
of any member of F. Furthermore, one chooses x to be a
large factorial. The quality of the example is approximately

p · log(x+ 1)/ log((x2 − 1) · (x2 + (p− 2)/3) ·O(xp−5) · y)

which is approximately p/(p− 1); note that y is constant
when choosing x.

Lower Bounds for the Strong N-Conjecture – p. 18



Nontrivial Exception Sets E

Coen Ramaekers (2009) discussed a polynomial identity
which allows to have QU({1,2},∅,4) ≥ 5/3; this identity is

(x+ 1)5 − (x− 1)5 − 10 · (x2 + 1)2 + 8 = 0.

Furthermore, for larger but still finite sets E one can show
QU(E,∅,5) ≥ 7/4 and QU(E,∅,5) ≥ 9/5. The polynomial

identities are

(x+ 1)7 − (x− 1)7 − 14(x2 + 1)3 − 28x4 + 12 = 0

with E = {1,2,4,7,14} and

189(x+1)9−189(x−1)9−42(3x2+7)4+16(63x2+79)2+608 = 0

with E ⊆ {1,2,3, . . . ,608}.
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Gaussian Integers Result Part 1

Noam D. Elkies (Darmon and Granville 1995) provided the
following polynomial identity:

(x2 + 2 · x · y − 2 · y2)5 − (x2 − 2 · x · y − 2 · y2)5 +

i · (−x2 + i · 2 · x · y − 2 · y2)5 −

i · (−x2 − i · 2 · x · y − 2 · y2)5 = 0.

One can show that a common prime factor of any two of
these numbers is a factor of either x or 2y. Furthermore,

x2 − 2xy − 2y2 = (x− y)2 − 3y2 and one can use Pell
equations to set this to 1: x− y = v, y = uw where u can

be chosen freely and v,w solve v2 − (3u2)w2 = 1. Now
y = uw and x = v + uw. As uw,v have the greatest
common divisor 1, so do v+ uw and uw, thus x and y. Now
one can see that no divisor of x or y divides any of the four
terms in the above polynomial identity.
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Gaussian Integers Result Part 2

By letting u be the product of all norms of Gaussian
integers in a finite set F, one can achieve that all prime
factors of numbers in F divide y and thus none of the four
terms is divided by them.

Now there are three fifth powers of similarly large terms
plus one term of value −1 in the sum. Thus the radical is
bounded by the third power of the largest term z and so the
quality is at least 5 · log(z)/3 · log(z) = 5/3.

These arguments can be generalised to all n ≥ 4 giving the
following theorem, provided that F does not contain any
fourth root of −4.

Theorem. QC({1},F,n) ≥ 5/3 for all n ≥ 4.
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Example

Now z0 = 3650401 and y0 = 2107560 satisfy z20 − 3y2
0 = 1.

Furthermore, y0 = 23 · 3 · 5 · 7 · 13 · 193. Thus Elkies’
equation with y0 and x0 = y0 + z0 provides an example for
n = 4 with F containing 3,5,7 and their factors. One gets
further examples by

(xn+1,yn+1, zn+1) = (2 ·yn ·zn+2 ·z2n−1,2 ·yn ·zn,2 ·z
2
n−1)

and then one can use that in Elkies equation the second
term is −1 and replace it by −3− 5+ 7 to get the following
equation

(x2 + 2 · x · y − 2 · y2)5 −3− 5+ 7 +

i · (−x2 + i · 2 · x · y − 2 · y2)5 −

i · (−x2 − i · 2 · x · y − 2 · y2)5 = 0

to witness QC({1},∅,6) ≥ 5/3 with the above sequence of

(xn,yn, zn).
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Hamiltonian Integers - Examples

1. The Pell equation a2 − 2b2 = 1 can be generalised to

x4 − 2y4 = 1 in the Gaussian integers, as one can find
solutions (a,b) which are sum of three squares and so can
be squared. This witnesses quality 2 for strong
3-conjecture.

2. One can choose y = v +w · i+w · j with (a,b) as in 1

and has y2 = 1+ 2abi+ 2abj and consider

x = y2 · −i · y2 · i = 1+ 4abi− 8a2b2k. x̄ = −jxj and
x+ x̄ = 2. This witnesses quality 4 for 3-conjecture.

3. For x as in 2, one can show that

x2m+1 + x̄2m+1 =
∑

h=0,1,...,m ch · norm(x)h with c0 = 2m+1.

Now x2m+1 and c0 are coprime, for m = n− 3 there are n

terms and degree 2m+ 1 = 2n− 5. These equations give
the lower bound 4 · (2n− 5) for the n-conjecture.
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Equations for N-Conjecture

Let z = norm(x). One uses below recursive equation to
compute concrete polynomials in z; coefficients of even
powers of z are positive and those of odd powers are

negative; xm+2 = 2xm+1 − x̄ · xm+1 = 2xm+1 − z · xm.

x0 + x̄0 = 2;

x+ x̄ = 2;

x2 + x̄2 = 4− 2 · z;

x3 + x̄3 = 8− 6 · z;

xn+2 + x̄n+2 = 2 · (xn+1 + x̄n+1)− z · (xn + x̄n);

x4 + x̄4 = 16− 16 · z+ 2 · z2;

x5 + x̄5 = 32− 40 · z+ 10 · z2;

x6 + x̄6 = 64− 96 · z+ 36 · z2 − 2 · z3;

x7 + x̄7 = 128− 224 · z+ 112 · z2 − 14 · z3.
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Computer Search

However, computer search provided lots of examples of
good quality, the best have qualities 1.6299 (Eric Reyssat,

2+ 310 · 109 = 235), 1.6260 (Benne de Weger,

112 + 32 · 56 · 73 = 221 · 23) and 1.6235 (Jerzy Browkin,

Juliusz Brzezinski, 19 · 1307+ 7 · 292 · 318 = 28 · 322 · 54).
Benne de Weger also found the largest known so far
example with radical 210; it has quality 1.5679 and is

1+ 2 · 37 = 54 · 7 = 4375. For extremely large numbers, one
bumps up smaller examples at the expense of quality.

For m = 8,9, . . . ,18, one got for each m between 10 and 17

examples of 3-tuples with largest number having m decimal
digits and quality at least 1.4 by exhaustive search.

Coen Ramaekers was student of Benne de Weger and did
calculations for the strong n-conjecture with n ∈ {4,5}.
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Summary

The talk summarised the knowledge about the strong
n-conjecture and advocated that one reexamines the bound
conjectured there. Lower bounds of 5/3 for odd n ≥ 5 and
5/4 for even n ≥ 6 were obtained; however, Ramaekers
original bound of 1 was not improved for n = 3 and n = 4.

For the complex version of the strong n-conjecture, a
uniform lower bound of 5/3 was given for all n ≥ 4.

The lower bounds for the strong n-conjecture scale up by a
factor 2 and for the n-conjecture by a factor 4 in the
Hamiltonian integers.

All these bounds use a strong form of the avoidance of
nontrivial subsums; Browkin (2000) citing Konyagin who did
not consider the avoidance of subsums had already in the
weaker version that odd n ≥ 5 have the lower bound 3/2.
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