
Asymptotic Analysis

S. Halim YJ. Chang

School of Computing
National University of Singapore

CS3230 Lec01b; Tue, 13 Aug 2024

Overview

Introduction

Problem-Solving Example: Fibonacci

Model of Computation: RAM

Asymptotic Analysis
Big O (upper bound)
Ω (lower bound)
New notation Θ (tight bound)
Little-o and ω
Taking Limits

Algorithm

Algorithm

“A sequence of unambiguous and executable instructions for
solving a problem (given a valid input, obtain a valid output)”

Let’s elaborate:

▶ What are the valid inputs?

▶ What is the meaning of unambiguous instructions?

▶ What is the meaning of executable instructions?

▶ Are all algorithms deterministic?

▶ Are all algorithms terminate?

Pseudocode

We can give an algorithm already written in a particular
programming language, pros and cons:

▶ Unambiguous1

▶ Clear

▶ Quite tedious

▶ Harder to understand

Alternative: Pseudocode (we will use this going forward)

▶ Slightly informal

▶ Still precise enough to understand exactly what instructions
are, and how to implement it in some programming language

1Unless we do not understand that language

An Example

In Python (source code)

A = [(1, 2, 3), (4, 5, 6)]

[*zip(*A)]

Do you know what is this?

In Pseudocode:

https://github.com/stevenhalim/cpbook-code/blob/master/ch1/zip.py

Some Properties of Good Algorithms

There can be many possible algorithms for solving a problem

Given the choices, we prefer:

▶ Correctness (the most important property)

▶ Efficiency (time/space/resources)

▶ Generality: Applicable to a wide range on inputs
and not dependent on a particular computer/device

▶ Usability as a ‘subroutine’ for other problems

▶ Simplicity: so that it is easy to code, understand, debug, etc

▶ Well documented (easy to understand and to extend it)

Some objectives may have trade-offs: simplicity vs efficiency

Design and Analysis of Algorithms

Designing an algorithm is both science and art
You need to know the relevant techniques
But you also need creativity, intuition, perseverance

Paradigms

▶ Complete Search (for example, using brute force,
backtracking, branch and bound)

▶ Divide and Conquer (D&C)

▶ Dynamic Programming (DP)

▶ Greedy Algorithm

▶ Deterministic versus non-deterministic strategies

▶ Iterative Improvement

Problem-Solving

The general steps:

1. Understand the problem

2. Design a method to solve the problem

3. Convert it into an algorithm/pseudocode

4. Choose data structures

5. Prove correctness of the algorithm

6. Analyze the complexity of the algorithm
(time/space/resources needed)

7. PS: Implement that correct and efficient algorithm

Fibonacci Numbers

▶ Fib(0) = 0

▶ Fib(1) = 1

▶ For n > 1, Fib(n) = Fib(n − 1) + Fib(n − 2)

▶ First 10 terms: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

Problem: Given n as input, compute Fib(n)

We will look at two algorithms:

▶ Recursive algorithm

▶ Iterative algorithm

PS: Yes, there are other (faster) algorithms

Recursive algorithm to compute Fib(n)

define Fib(n)

if n <= 1

return n

else

return Fib(n-1)+Fib(n-2)

Simple, direct recursive implementation from the Fib(n) definition

Iterative algorithm to compute F (n)

define IFib(n)

if n <= 1

return n

else

prev2 = 0

prev1 = 1

for i = 2 to n

temp = prev1

prev1 = prev1+prev2

prev2 = temp

return prev1

Analysis of an Algorithm

We analyze the resources needed by an algorithm:

▶ Time – in this course, we will mostly concentrate on time

▶ Space – in this course, we assume all data fits in memory

Sometimes, we do trade-offs:

▶ If space is not an issue, most of the time, we sacrifice
(or use more) space to gain faster time

▶ For some applications (e.g., Big Data), we may have to
sacrifice time so that we are able to process the data

Actual time needed to run an algorithm depends on the machine
used, and this is not easy to calculate/measure

Model of Computation: RAM

Random-Access Machine (RAM) model is simple
and close to how real computers work:

▶ Each instruction takes a constant amount of time: fetch the
instruction, execute, store back the results in the memory

▶ We count the number of basic instructions needed

▶ The time complexity is based on input size (more details soon)

https://en.wikipedia.org/wiki/Random-access_machine

RAM, Continued

▶ Word is basic unit of memory
In this course, you can usually assume each number
(or relevant item) can be stored in one word

▶ RAM is an array of words, storing instructions and data
It takes one unit of time to access any word (this is important)

▶ Each arithmetic or logical operation (+, -, *, /, mod, AND,
OR, NOT, etc) takes a constant amount of time (notice that
exponent operation is not constant – see D&C lecture later)

▶ Details of word size and different time taken by different
instructions are important, but USUALLY do not have a large
impact; so we usually ignore it, unless it makes a difference

▶ We need to be careful: when numbers are very large (and thus
cannot fit in one word), the complexity depends on number of
bits/words needed to store the number

https://en.wikipedia.org/wiki/Word_(computer_architecture)

For our Fib(n) and IFib(n) analysis

For large computation of Fib(n),
the resulting number can be very large

To address the above, one can consider computing the Fibonacci
numbers modulo some m (for example 2wordsize)

We omit this detail in our first analysis to simplify discussion

Analysis of recursive algorithm to compute Fib(n)

define Fib(n)

if n <= 1

return n

else

return Fib(n-1)+Fib(n-2)

See the recursion tree@VisuAlgo
(which is a big tree for large n)

Let T (n) be the number of
operations done by Fib(n)

T (0) = T (1) = 2
(if+return)

For n ≥ 2, T (n) =
T (n − 1) + T (n − 2) + 6
(if+else+two function
calls+add+return)

So T (n) ≥ Fib(n)

We can show that
Fib(n) ≥ 2

n−2
2 (How?)

T (n) is exponential in n

https://visualgo.net/en/recursion?slide=4-1

Analysis of iterative algorithm to compute F (n)

define IFib(n)

if n <= 1

return n

else

prev2 = 0

prev1 = 1

for i = 2 to n

temp = prev1

prev1 = prev1+prev2

prev2 = temp

return prev1

For n ≥ 2,
T (n) ≈ 4 + (n− 1) ∗ 5 + 1
(if+else+two assignments
+ (n − 1) iterations,
each takes ≈ 5 steps
+return)

So T (n) ≈ 5n, linear in n

This is much faster than
the recursive version that
runs exponential in n

Actual Running Time

Running Time of an Algorithm

▶ We often give the running time in terms of the size of the
input (usually parameter n)

▶ Size of the input can be the number of items (e.g., sorting n
Integers) or length of inputs coded in binary (e.g., Integer n in
Fib(n) requires log n bits encoding – details in the second half)

▶ We usually perform these analysis:
▶ Worst-case analysis: T (n) is the maximum time needed for

any input of size (at most) n
▶ Average-case analysis: T (n) is the expected time taken over

all inputs of size n; either all inputs are equally probable, or we
know the probability distribution over the inputs of size n

▶ We usually do not consider best-case analysis, as inputs that
trigger best-case are usually not the typical ones

▶ It is difficult to compute the exact number of operations
(as seen earlier), thus we often give upper bounds instead

Question 2 at VisuAlgo Online Quiz

Which algorithm is more efficient?

Algorithm 1:
T1(n) = 100n + 1000

Algorithm 2:
T2(n) = n2 + 5

Asymptotic Analysis

Why we do not measure the actual run time:

▶ Different machines have different speeds,
i.e., new gaming desktop if fast vs 10-years old laptop is slow

▶ Different programming languages have different runtimes,
i.e., C++ is fast vs Python is slow

We prefer to do asymptotic analysis:

▶ For large inputs, how does the runtime behave?

▶ Comparison of algorithms is based on the asymptotic analysis

▶ We often ignore lower terms and constant multiplicative
factors in the asymptotic analysis

Most common asymptotic notation: Big O (upper bound)

For the following discussion on asymptotics, assume f and g are
functions of one parameter n

f ∈ O(g) if there exists constant c > 0 and n0 > 0 such that for
all n ≥ n0 : 0 ≤ f (n) ≤ c · g(n)

Interpretation: g is an upper bound on f

O(g) = {f : there exists constant c > 0 and n0 > 0 such that for
all n ≥ n0, 0 ≤ f (n) ≤ c · g(n)}

We sometimes also write f = O(g), though not 100% correct

We frequently write f (n) = O(g(n)), though technically, n should
not have been used (there can be more than one parameter)

Similarly for other asymptotic notations; PS: we accept all versions

Pictorial interpretation of O-notation

Apologize for poor image quality, we plan to redraw these figures

O-notation is an upper-bound notation
So, saying f (n) is at least O(g(n)) is not correct

Big O (upper bound)

Example: 100n + 1000 ∈ O(n2)

▶ 0 ≤ 100n + 1000 (for any positive n)

▶ 0 ≤ 100n + 1000 ≤ 101n (for n ≥ 1000)

▶ 0 ≤ 100n + 1000 ≤ 101n ≤ 101n2 (for n ≥ 1000)
i.e., we can set c = 101 and n0 = 1000

Hence, 100n + 1000 ∈ O(n2)

Question 3 at VisuAlgo Online Quiz

Let f (n) = 10n3 + 5n + 15 and g(n) = n4

We want to prove that f (n) ∈ O(g(n)) by showing that
0 ≤ f (n) ≤ c · g(n) for all n ≥ n0

What should be the appropriate c and n0? (there are > 1 answers)

A). c = 2, n0 = 10

B). c = 1, n0 = 11

C). c = 5, n0 = 1

D). c = 1, n0 = 10

New notation Ω (lower bound)

f ∈ Ω(g) if there exists constant c > 0 and n0 > 0 such that for
all n ≥ n0 : 0 ≤ cg(n) ≤ f (n)

Interpretation: g is a lower bound on f

Ω (lower bound)

Example: n2 ∈ Ω(100n + 1000)
We swap f (n) and g(n) from the earlier Big O example

▶ 0 ≤ 1
101 · (100n + 1000) ≤ n2 for n ≥ 1000

i.e., we can set c = 1
101 and n0 = 1000

just set this c to be the reciprocal of the c in Big O analysis

Again, there are many other possible c and n0

PS: We usually have f (n) as the more complex function and g(n)
to be the simpler one, i.e., 7n2 + 5n + 77 ∈ Ω(n2)

Pictorial interpretation of Ω-notation

New notation Θ (tight bound)

f ∈ Θ(g) if there exists constants c1, c2 > 0 and n0 > 0 such that
for all n ≥ n0 : 0 ≤ c1 · g(n) ≤ f (n) ≤ c2 · g(n)

Interpretation: g is a tight bound on f

We will frequently do Θ analysis in CS3230

Θ-notation (tight bound)

Example: 10n2 + n ∈ Θ(n2)

▶ 0 ≤ 1
2n

2 ≤ (10n2 + n) ≤ 11n2 for n ≥ 2
i.e., c1 =

1
2 , c2 = 11, and n0 = 2

again, these are not the only valid constants c1, c2, and n0

Hence, 10n2 + n ∈ Θ(n2)

Pictorial interpretation of Θ-notation

O, Ω, and Θ

Θ(g) = O(g) ∩ Ω(g)

Little-o (strict upper bound)

f ∈ o(g) if for any constant c > 0, there exists n0 > 0 such that
for all n ≥ n0 : 0 ≤ f (n) < c · g(n) (notice for any constant
c > 0 instead of there exists constant c > 0 and < instead of ≤)

PS: some textbooks define Little-o using ≤ instead of <
This will only change the chosen c and/or n0

Example: n ∈ o(n2)
For any constant c > 0, let n0 = 1 + 1

c (setting n0 = 2 is also ok)
Then, for n ≥ n0, n < c · n2

But n2 − n /∈ o(n2)
Let’s say we pick c = 1

2 (just need to show one counterexample),
for any n0 and large enough n, we have:
n2 − n > 1

2n
2

1
2n

2 > n
n2 > 2n

ω (strict lower bound)

f ∈ ω(g) if for any constant c > 0, there exists n0 > 0 such that
for all n ≥ n0 : 0 ≤ c · g(n) < f (n)

Example: n2 − 36 ∈ ω(n)
For any constant c > 0, let n0 >

√
36 + c ,

0 ≤ c · n < n2 − 36

Asymptotic Notation: Taking Limits

Assume f (n), g(n) > 0, we have:

▶ limn→∞
f (n)
g(n) = 0 ⇒ f (n) ∈ o(g(n))

▶ limn→∞
f (n)
g(n) < ∞ ⇒ f (n) ∈ O(g(n))

▶ 0 < limn→∞
f (n)
g(n) < ∞ ⇒ f (n) ∈ Θ(g(n))

▶ limn→∞
f (n)
g(n) > 0 ⇒ f (n) ∈ Ω(g(n))

▶ limn→∞
f (n)
g(n) = ∞ ⇒ f (n) ∈ ω(g(n))

It is easier to show o, Θ, vs ω using limits

limn→∞
f (n)
g(n) = 0 ⇒ f (n) ∈ o(g(n))

Proof:

By definition of limit, limn→∞
f (n)
g(n) = 0, means

∀ϵ > 0,∃n0 > 0, such that ∀n ≥ n0,
f (n)
g(n) < ϵ

Hence, for any constant c > 0 (i.e., we can set c = ϵ), ∃n0 > 0,
such that ∀n ≥ n0,
f (n) < ϵ · g(n), i.e.,
f (n) < c · g(n),
f (n) ∈ o(g(n))

We will prove at least one other during Tut01

Example

By limit, show that n6 + 233n2 ∈ ω(n2)

limn→∞
n6+233n2

n2
= limn→∞

n4+233
n2

= ∞ ⇒ f (n) ∈ ω(g(n))

Asymptotic Notation: Some Properties

▶ Reflexivity: For O,Ω, and Θ,
f (n) = O(f (n)), similarly for Ω and Θ

▶ Transitivity: For all five: O,Ω,Θ, o, and ω
f (n) ∈ O(g(n)) and g(n) ∈ O(h(n)) implies f (n) ∈ O(h(n))

▶ Symmetry:
f (n) ∈ Θ(g(n)) iff g(n) ∈ Θ(f (n))

▶ Complementary:
f (n) = O(g(n)) iff g(n) ∈ Ω(f (n))
f (n) = o(g(n)) iff g(n) ∈ ω(f (n))

We will prove some of these during Tut01

See Asymptotic Analysis-Useful Facts.pdf for math refresher

Acknowledgement

The slides are modified from previous editions of this course and
similar course elsewhere

List of credits: Erik D. Demaine, Charles E. Leiserson, Surender
Baswana, Leong Hon Wai, Lee Wee Sun, Ken Sung, Diptarka
Chakraborty, Steven Halim, Sanjay Jain

	Introduction
	Problem-Solving Example: Fibonacci
	Model of Computation: RAM
	Asymptotic Analysis
	Big O (upper bound)
	 (lower bound)
	New notation (tight bound)
	Little-o and
	Taking Limits

