
CS3230 – Design and Analysis of Algorithms
(S1 AY2024/25)

Lecture 3b: Divide and Conquer

Divide and conquer

1. Divide the problem into smaller subproblems.
2. Solve the subproblems recursively.
3. Combine the subproblem solutions to get the solution of the full

problem.

Divide and conquer

1. Divide the problem into smaller subproblems.
2. Solve the subproblems recursively.
3. Combine the subproblem solutions to get the solution of the full

problem.

• If , do the following steps.
• .
• .
• “Merge” the two sorted arrays.

VisuAlgo (Merge sort): https://visualgo.net/en/sorting?mode=Merge

Divide and conquer

1. Divide the problem into smaller subproblems.
2. Solve the subproblems recursively.
3. Combine the subproblem solutions to get the solution of the full

problem.

• If , do the following steps.
• .
• .
• “Merge” the two sorted arrays.

There are 2 subproblems.

The size of each subproblem is 𝑛/2.

Θ 𝑛 = the cost for splitting/combining:
• Split a problem into subproblems.
• Combine the solutions of subproblems.

Divide and conquer

1. Divide the problem into smaller subproblems.
2. Solve the subproblems recursively.
3. Combine the subproblem solutions to get the solution of the full

problem.

There are 𝑎 subproblems.

The size of each subproblem is 𝑛/𝑏.

𝑓 𝑛 = the cost for splitting/combining:
• Split a problem into subproblems.
• Combine the solutions of subproblems.

Question 3 @ VisuAlgo online quiz

• The recurrence for the running time of a divide-and-conquer algorithm:

•
௡

ଶ
ଷ

• Two improvements to the algorithm are found:
• Improvement 1: The cost for splitting/combining is reduced from ଷ to ଶ.
• Improvement 2: The number of subproblems is reduced from to .

• Which of the improvements is asymptotically better?
• Improvement 1
• Improvement 2
• Both improvements yield the same improved asymptotic running time.
• Both improvements do not improve the asymptotic running time.

Question 3 @ VisuAlgo online quiz

• The recurrence for the running time of a divide-and-conquer algorithm:

•
௡

ଶ
ଷ

• Two improvements to the algorithm are found:
• Improvement 1: The cost for splitting/combining is reduced from ଷ to ଶ.
• Improvement 2: The number of subproblems is reduced from to .

• Which of the improvements is asymptotically better?
• Improvement 1
• Improvement 2
• Both improvements yield the same improved asymptotic running time.
• Both improvements do not improve the asymptotic running time.

Exponentiation

• Input: two positive integers and .
• Output:

Exponentiation

• Input: two positive integers and .
• Output:

Note: To ensure that the output fits into one word, we consider modular arithmetic.
• The output is 𝑎௡ mod 𝑚 .
• 𝑚 is some integer that fits into one word.

For the sake of simplicity, we omit explicitly stating mod 𝑚 in the subsequent discussion.

Exponentiation

• Input: two positive integers and .
• Output:

First approach:

• 𝑎௡ = 𝑎௡ିଵ ⋅ 𝑎

• Recurrence: 𝑇 𝑛 = 𝑇 𝑛 − 1 + Θ 1

• Computing 𝑎௡ିଵ recursively: 𝑇 𝑛 − 1 time

• Computing 𝑎௡ from 𝑎௡ିଵ: Θ 1 time

• 𝑇 𝑛 ∈ Θ 𝑛

Exponentiation

• Input: two positive integers and .
• Output:

First approach:

• 𝑎௡ = 𝑎௡ିଵ ⋅ 𝑎

• Recurrence: 𝑇 𝑛 = 𝑇 𝑛 − 1 + Θ 1

• Computing 𝑎௡ିଵ recursively: 𝑇 𝑛 − 1 time

• Computing 𝑎௡ from 𝑎௡ିଵ: Θ 1 time

• 𝑇 𝑛 ∈ Θ 𝑛

Second approach:

• If (𝑛 is even), 𝑎௡ = 𝑎
೙

మ ⋅ 𝑎
೙

మ

• If (𝑛 is odd), 𝑎௡ = 𝑎
೙

మ ⋅ 𝑎
೙

మ ⋅ 𝑎

• Recurrence: 𝑇 𝑛 = 𝑇
௡

ଶ
+ Θ 1

• Computing 𝑎
೙

మ recursively: 𝑇 ௡

ଶ
time

• Computing 𝑎௡ from 𝑎
೙

మ : Θ 1 time

• 𝑇 𝑛 ∈ Θ log 𝑛

Exponential improvement!

Fibonacci numbers

• ଴

• ଵ

• For , ௡ ௡ିଵ ௡ିଶ

•

• Recall: ௡ can be computed in time.

Fibonacci numbers

• ଴

• ଵ

• For , ௡ ௡ିଵ ௡ିଶ

•

• Recall: ௡ can be computed in time.

• If
• return

• Else,
• prev2
• prev1
• for to

• temp prev1
• prev1 prev1 prev2
• prev2 temp

• return prev1

Question: Can we do better by divide and conquer?

Fibonacci numbers

•
ଵା ହ

ଶ

•
ଵି ହ

ଶ

• It can be shown that ௡
ଵ

ହ
௡ ௡ .

• Can we use the exponentiation algorithm to compute ௡ in time?

Fibonacci numbers

•
ଵା ହ

ଶ

•
ଵି ହ

ଶ

• It can be shown that ௡
ଵ

ହ
௡ ௡ .

• Can we use the exponentiation algorithm to compute ௡ in time?

• Potential issues:
• Even if we intend to do modulo arithmetic, handling real numbers can be tricky.
• How many bits of precision do we need to ensure that the output is correct?

Fibonacci numbers

௡ାଵ ௡

௡ ௡ିଵ

௡ ௡ିଵ ௡

௡ିଵ ௡ିଶ ௡ିଵ

௡ ௡ିଵ

௡ିଵ ௡ିଶ

௡ାଵ ௡

௡ ௡ିଵ

௡

Fibonacci numbers

௡ାଵ ௡

௡ ௡ିଵ

௡ ௡ିଵ ௡

௡ିଵ ௡ିଶ ௡ିଵ

௡ ௡ିଵ

௡ିଵ ௡ିଶ

௡ାଵ ௡

௡ ௡ିଵ

௡

The exponentiation algorithm can compute 1 1
1 0

௡

 in 𝑂 log 𝑛 time.

𝐹௡ can be computed in 𝑂 log 𝑛 time.

Exponential improvement!

Matrix multiplication

• Input: Two matrices ௜,௝ and ௜,௝

• Output: 

ଵ,ଵ ଵ,௡

௡,ଵ ௡,௡

ଵ,ଵ ଵ,௡

௡,ଵ ௡,௡

ଵ,ଵ ଵ,௡

௡,ଵ ௡,௡

௜,௝ ௜,௞  ௞,௝

௡

௞ୀଵ

Matrix multiplication

• Input: Two matrices ௜,௝ and ௜,௝

• Output: 

ଵ,ଵ ଵ,௡

௡,ଵ ௡,௡

ଵ,ଵ ଵ,௡

௡,ଵ ௡,௡

ଵ,ଵ ଵ,௡

௡,ଵ ௡,௡

௜,௝ ௜,௞  ௞,௝

௡

௞ୀଵ

Θ 𝑛 time

𝑛ଶ entries

Θ 𝑛ଷ time

Matrix multiplication

• Input: Two matrices ௜,௝ and ௜,௝

• Output: 

ଵ,ଵ ଵ,௡

௡,ଵ ௡,௡

ଵ,ଵ ଵ,௡

௡,ଵ ௡,௡

ଵ,ଵ ଵ,௡

௡,ଵ ௡,௡

௜,௝ ௜,௞  ௞,௝

௡

௞ୀଵ

Θ 𝑛 time

𝑛ଶ entries

Θ 𝑛ଷ time

Question: Can we do better by divide and conquer?

Divide and conquer

•

•

•

•

are ௡

ଶ

௡

ଶ
matrices.

𝐴 =

2 3
9 4

1 7
5 0

6 3
8 6

6 7
3 4

 =

2 3
9 4

1 7
5 0

6 3
8 6

6 7
3 4

=
𝑎 𝑏
𝑐 𝑑

• 𝑎 =
2 3
9 4

• 𝑏 =
1 7
5 0

• 𝑐 =
6 3
8 6

• 𝑑 =
6 7
3 4

Divide and conquer

•

•

•

•

are ௡

ଶ

௡

ଶ
matrices.

8 multiplications of ௡

ଶ
×

௡

ଶ
matrices: 8𝑇

௡

ଶ
time.

4 additions of ௡

ଶ
×

௡

ଶ
matrices: Θ 𝑛ଶ time.

𝑇 𝑛 = 8𝑇
𝑛

2
+ Θ 𝑛ଶ

𝑇 𝑛 ∈ Θ 𝑛୪୭୥మ ଼ = Θ(𝑛ଷ)

Divide and conquer

•

•

•

•

are ௡

ଶ

௡

ଶ
matrices.

8 multiplications of ௡

ଶ
×

௡

ଶ
matrices: 8𝑇

௡

ଶ
time.

4 additions of ௡

ଶ
×

௡

ଶ
matrices: Θ 𝑛ଶ time.

𝑇 𝑛 = 8𝑇
𝑛

2
+ Θ 𝑛ଶ

𝑇 𝑛 ∈ Θ 𝑛୪୭୥మ ଼ = Θ(𝑛ଷ)

Observation: The asymptotic running time can be improved if the number of subproblems is reduced.

Strassen’s algorithm

• ହ ସ ଶ ଺

• ଵ ଶ

• ଷ ସ

• ହ ଵ ଷ ଻

• ଵ

• ଶ

• ଷ

• ସ

• ହ

• ଺

• ଻

Strassen’s algorithm

• ହ ସ ଶ ଺

• ଵ ଶ

• ଷ ସ

• ହ ଵ ଷ ଻

• ଵ

• ଶ

• ଷ

• ସ

• ହ

• ଺

• ଻

𝑟 = 𝑃ହ + 𝑃ସ − 𝑃ଶ + 𝑃଺

𝑟 = 𝑎 + 𝑑 𝑒 + ℎ + 𝑑 𝑔 − 𝑒 − 𝑎 + 𝑏 ℎ + 𝑏 − 𝑑 𝑔 + ℎ
𝑟 = 𝑎𝑒 + 𝑎ℎ + 𝑑𝑒 + 𝑑ℎ + 𝑑𝑔 − 𝑑𝑒 − 𝑎ℎ − 𝑏ℎ + 𝑏𝑔 + 𝑏ℎ − 𝑑𝑔 − 𝑑ℎ
𝑟 = 𝑎𝑒 + 𝑏𝑔

Checking its correctness.

Strassen’s algorithm

• ହ ସ ଶ ଺

• ଵ ଶ

• ଷ ସ

• ହ ଵ ଷ ଻

• ଵ

• ଶ

• ଷ

• ସ

• ହ

• ଺

• ଻
7 multiplications of ௡

ଶ
×

௡

ଶ
matrices: 7𝑇

௡

ଶ
time.

18 additions of ௡

ଶ
×

௡

ଶ
matrices: Θ 𝑛ଶ time.

𝑇 𝑛 = 7𝑇
𝑛

2
+ Θ 𝑛ଶ

𝑇 𝑛 ∈ Θ 𝑛୪୭୥మ ଻ = Θ 𝑛ଶ.଼଴଻…

State of the art Timeline of matrix multiplication exponent

AuthorsMatrix multiplication exponentYear

Strassen2.80741969

Pan2.7961978

Bini, Capovani, Romani2.7801979

Schönhage2.5221981

Romani2.5171981

Coppersmith, Winograd2.4961981

Strassen2.4791986

Coppersmith, Winograd2.37551990

Stothers2.37372010

Williams2.37292012

Le Gall2.37286392014

Alman, Williams2.37285962020

Duan, Wu, Zhou2.3718662022

Williams, Xu, Xu, and Zhou2.3715522024

Strassen’s algorithm

Coppersmith–Winograd algorithm

https://en.wikipedia.org/wiki/Computational_complexity_of_matrix_multiplication

Acknowledgement

• The slides are modified from previous editions of this course and
similar course elsewhere.

• List of credits:
• Diptarka Chakraborty
• Yi-Jun Chang
• Erik Demaine
• Steven Halim
• Sanjay Jain
• Wee Sun Lee
• Charles Leiserson
• Hon Wai Leong
• Wing-Kin Sung

